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Abstract

Homological stability for unordered configuration spaces of connected manifolds
was discovered by Th. Church and extended by O. Randal-Williams and B. Knudsen:
Hi(Ck(M);Q) is constant for k ≥ f(i). We characterize the manifolds satisfying strong
stability: H∗(Ck(M);Q) is constant for k ≫ 0. We give few examples of closed oriented
manifolds with even cohomology, whose top Betti numbers are stable after a shift of
degree.
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1 Introduction and statement of results

For a topological space X we consider the k-points ordered configuration space Fk(X) and
the unordered configuration space Ck(X) defined by

Fk(X) = {(x1, . . . , xk) ∈ Xk|xi ̸= xj for i ̸= j}, Ck(X) = Fk(X)/Sk,

with the induced topology and quotient topology respectively.
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One of the first results in the study of configuration spaces was the cohomological strong
stability theorem of V. I. Arnold [1]: for k ≥ 2

Hi(Ck(R2);Q) =

{
Q, if i = 0, 1

0, if i ≥ 2.

The abelianization of Artin braid group is Z; Arnold proved that higher cohomology groups
are finite groups (they are trivial for i ≥ k) and also he proved cohomological stability for
the torsion part:

Hi(C2i−2(R2);Z) ∼= Hi(C2i−1(R2);Z) ∼= Hi(C2i(R2);Z) ∼= . . .

The isomorphisms (for k large depending on i)

Hi(Ck(M);Q) ∼= Hi(Ck+1(M);Q) ∼= Hi(Ck+2(M);Q) ∼= . . .

were generalized for open manifolds by D. McDuff [24] and G. Segal [31]. Using represen-
tation stability, Th. Church [7] proved that

Hi(Ck(M);Q) ∼= Hi(Ck+1(M);Q) ∼= Hi(Ck+2(M);Q) ∼= . . .

for k > i and M a connected oriented manifold of finite type. This result was extended by
O. Randal-Williams [27] and B. Kundsen [21].

We will define and study other stability properties of the rational cohomology of un-
ordered configuration spaces of connected manifolds of finite type. Without a special men-
tion, the (co)homology groups will have coefficients in Q. For a manifold M of dimension
n, its Betti numbers, its Poincaré polynomial and its total Betti number are defined by

βi(M) = dimQH
i(M), PM (t) =

n∑
i=0

βi(M)ti, β(M) = PM (1).

The top Betti number βτ (M) is the last non-zero Betti number of M , its cohomological
dimension is cd(M) = τ(M) = τ and its q-truncated Poincaré polynomial contains the last
q-Betti numbers:

P
[q]
M (t) = βτ−q+1(M)tτ−q+1 + . . .+ βτ (M)tτ .

A space X has even cohomology if all its odd Betti numbers are zero, and a space Y has
odd cohomology if all its positive even Betti numbers are zero (and it is path connected):

H∗(X) = Heven(X), respectively H̃∗(Y ) = Hodd(Y ).

We say that a manifold M4m is a homology projective plane if its Poincaré polynomial
is 1 + t2m + t4m.

Remark 1. There are classical results on topological spaces with three nonzero integral
Betti numbers; see many example in the paper of J. Eells and N. Kuiper ”Manifolds which
are like projective planes” [12]. In all of themm takes values 1, 2, 4.More rational projective
planes are described in [26], [17], [20] and [33].
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The computation of H∗(Ck(M)), using cohomology algebra of M, is easy in the odd
dimensional case (see [5] and [16]):

Theorem 1. (C-F. Bödigheimer, F. Cohen, L. Taylor – Y. Félix, D. Tanré)
For a manifold M2m+1 we have

H∗(Ck(M)) = Symk(H∗(M)).

In the even dimensional case, the cohomology groups H∗(C∗(M)) are given by the
cohomology of a differential bigraded algebra (Ω∗(∗)(V ∗,W ∗), ∂) introduced by Y. Félix
and J. C. Thomas [15] and extended by B. Kundsen [21] (the two graded vector spaces V ∗,
and W ∗ and the differential ∂ depend on various cohomology groups of M and cohomology
product):

Theorem 2. (Y. Félix, J. C. Thomas – B. Knudsen)
For a manifold M2m we have

H∗(Ck(M)) ∼= H∗(Ω∗(k)(V ∗,W ∗), ∂).

We recall the definition of V ∗, W ∗ and ∂ in Section 4, for a closed oriented manifold
M2m, and in Section 5, for an arbitrary even dimensional manifold; the model Ω∗ introduces
a bigrading on the cohomology of Ck(M):

H∗(Ck(M)) =
⊕
i≥0

Hi(Ck(M)), Hi(Ck(M)) =
⊕
j≥0

Hi,j(Ck(M))

and we can use the two-variables Poincaré polynomial

PCk(M)(t, s) =
∑
i,j≥0

dimQH
i,j(Ck(M))tisj =

∑
i,j≥0

βi,jt
isj

(of course we have PCk(M)(t) = PCk(M)(t, 1)).
We will prove a bigraded version of classical stability:

Theorem 3. For a manifold M2m we have:
a) if i ≤ k

Hi,0(Ck(M)) ∼= Hi,0(Ck+1(M)) ∼= Hi,0(Ck+2(M)) ∼= . . .

b) if j ≥ 1 and i ≤ k + (2m− 2)j − 1

Hi,j(Ck(M)) ∼= Hi,j(Ck+1(M)) ∼= Hi,j(Ck+2(M)) ∼= . . . .

Here is our first definition:

Definition 1. A connected manifold satisfies the strong stability condition for its unordered
configuration spaces {Ck(M)}k≥1, with range r, if and only if the cohomology groups are
eventually constant:

H∗(Cr(M)) ∼= H∗(Cr+1(M)) ∼= H∗(Cr+2(M)) ∼= . . . .
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In the literature there are few examples of manifolds satisfying this condition: R2-V. I.
Arnold [1], Rn-F. Cohen [9] (see also [28]), S2-M. B. Sevryuk [32], Sn-P. Salvatore [29] (see
also [28]), CP2-Y. Félix and D. Tanré [16] (see also [22]), RPn-B. Knudsen [21].

Remark 2. The (strong) stability property is missing in the torsion part of homology: E.
Fadell and J. Van Buskirk [13] computed the first homology group of Ck(S

2) : Z/(2k−2)Z.
Also D. B. Fuchs [18] proved that, for an arbitrary degree i, one can find a large k such
that H≥i(Ck(R2);Z2) is non-zero, hence S2 and R2 have not the strong stability property
with integral cohomology.

The first results say the previous examples are essentially all manifolds with the strong
stability property.

Theorem 4. A manifold of odd dimension has the strong stability property if and only if
M has odd cohomology. In this case the range of stability is:

r =

{
1, if M is rationaly acyclic,

β(M)− 1, otherwise.

Theorem 5. A closed oriented manifold of even dimension has the strong stability property
if and only if M is a homology sphere or a homology projective plane and the ranges of
stability are 3 and 4 respectively.

Corollary 1. A closed oriented manifold M has the strong stability property if and only if
M is a homology sphere or a homology projective plane.

Various results and conjectures on stability of the top Betti number could be found in
the literature: J. Miller and J. Wilson [25], Th. Church, B. Farb and A. Putman [8] or M.
Maguire [23] and, recently, S. Galatius, A. Kupers and O. R. Williams [19]. Here is our
second definition:

Definition 2. A connected manifold M satisfies the shifted stability condition for its un-
ordered configuration spaces {Ck(M)}k≥1, with range r, shift σ and length q (r, σ, q ≥ 1),
if and only if the q-truncated Poincaré polynomial is stable after a shift: for any k ≥ r we
have

P
[q]
Ck+1(M)(t) = tσP

[q]
Ck(M)(t).

We give two examples, CP1×CP1 and CP3, where classical stability and shifted stability
properties combined give the entire two variable Poincaré polynomials:

Proposition 1. The product of two projective lines, CP1 × CP1, has the shifted stability
property with range 8, shift 2 and length 5:

P
[5]

Ck+1(CP1×CP1)
(t, s) = t2P

[5]

Ck(CP1×CP1)
(t, s) for k ≥ 8.

More precisely, for k ≥ 8, we have:

PCk(CP1×CP1)(t, s) = 1 + 2t2 + 3t4 + 2t6 + 2t8 + . . .+ 2t2k+

+ s(2t7 + 4t9 + 5t11 + 4t13 + 4t15 + . . .+ 4t2k+1 + 2t2k+3)+

+ s2(t14 + 2t16 + 2t18 + . . .+ 2t2k+4).
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Proposition 2. The complex projective space, CP3, has the shifted stability property with
range 8, shift 2 and length 6:

P
[6]

Ck+1(CP3)
(t, s) = t2P

[6]

Ck(CP3)
(t, s) for k ≥ 8.

More precisely, for k ≥ 8, we have:

PCk+1(CP3)(t, s) = 1 + t2 + 2t4 + 2t6 + 2t8 + t10 + t12 + . . .+ t2k+

+ s(t11 + 2t13 + 3t15 + 3t17 + 3t19 + 2t21 + 2t23 + . . .+ 2t2k+5 + t2k+7)+

+ s2(t24 + t26 + . . .+ t2k+12).

More examples will be given in [4].
In Section 2 we introduce the algebraic tool to analyze Félix-Thomas model and Knudsen

model, a sequence of weighted spectral sequences. As a first application we give the proof of
Theorem 3 and an improved version of it. The proof of Theorem 4 is given in Section 3 and
the proof of Theorem 5 in Section 5. Partial results for even dimensional manifolds, open or
non-orientable, are presented in Section 5. In Section 6 we introduce three new notions of
shifted stability and we describe their relations. Two necessary conditions for these shifted
stability conditions are given. For large k, combining the classical stability with the shifted
stability, we obtain the whole Poincaré polynomial PCk(M)(t). Section 7 contains stability

properties of CP1 × CP1 and CP3 and the proofs of Propositions 1 and 2.

2 Weighted spectral sequences

In this section we analyze algebraic properties of the differential algebra (Ω∗(∗)(V ∗,W ∗), ∂)
introduced by Y. Félix and J. C. Thomas [15] and extended by B. Knudsen [21].

Let us introduced some notation. For a graded Q-vector space A∗ = ⊕i∈ZA
i we will use

the notation

A≥q =
⊕
i≥q

Ai, Aeven =
⊕
i∈Z

A2i, Ã∗ =
⊕
i ̸=0

Ai,

and similarly A≤q and Aodd; the degree i component of the shifted graded space A∗[r] is
Ai+r. We suppose that A∗ is connected: if A0 ̸= 0, then A0 ∼= Q. The symmetric algebra
Sym(A∗) is the tensor product of a polynomial algebra and an exterior algebra:

Sym(A∗) =
⊕
k≥0

Symk(A∗) = Polynomial(Aeven)
⊗

Exterior(Aodd),

where Symk is generated by the monomials of length k (without any other convention, the
elements in A∗ have length 1).

Fix a positive even number 2m, the “geometric ” dimension, and consider two graded
vector spaces V ∗, W ∗, and a degree 1 linear map ∂W :

V ∗ =

2m⊕
i=0

V ∗, W ∗ =

4m−1⊕
j=2m−1

W j , ∂W : W ∗ −→ Sym2V ∗.



164 Strong and shifted stability for the cohomology of configuration spaces

By definition, the elements in V ∗ have length 1 and weight 0 and the elements in W ∗ have
length 2 and weight 1. We choose bases in V i and W j as

V i = Q⟨vi,1, vi,2, . . .⟩, W j = Q⟨wj,1, wj,2, . . .⟩

(the degree of an element is marked by the first lower index; xq
i stands for the product

xi ∧ xi ∧ . . . ∧ xi of q-factors). Always we take V 0 = Q⟨v0⟩. The graded vector space V ∗ is
(h− 1)-connected if V ∗ = V 0 ⊕ V ≥h.

The definition of the bigraded differential algebra Ω∗(k) is

Ω∗(∗)(V ∗,W ∗) =
⊕
k≥1

Ω∗(k)(V ∗,W ∗),

Ω∗(k)(V ∗,W ∗) =
⊕
i≥0

Ωi(k)(V ∗,W ∗) = Symk(V ∗ ⊕W ∗),

where the total degree i is given by the grading of V ∗ and W ∗ and the length degree k
is the multiplicative extension of length on V ∗ and W ∗. The differential is defined by
∂|V ∗ = 0, ∂|W∗ = ∂W and it has bidegree (1, 0). For instance,

H∗(Ω∗(1)(V ∗,W ∗), ∂) = H∗(Sym1(V ∗), ∂ = 0) = V ∗.

We are interested in the stability properties of the sequence {H∗(Ω∗(k)(V ∗,W ∗), ∂)}k≥1

i.e. we have to compare H∗(Ω∗(k−1)(V ∗,W ∗), ∂) with H∗(Ω∗(k)(V ∗,W ∗), ∂), and for this
we introduce a sequence of weighted spectral sequences.

The subspace of Ω∗(k) containing the elements of weight ω is denoted ωΩ∗(k) and we
have

Ω∗(k)(V ∗,W ∗) =

⌊ k
2 ⌋⊕

ω=0

ωΩ∗(k), 0Ω(k) = Symk(V ∗),

∂ : ωΩ∗(k) −→ ω−1Ω∗+1(k).

We define an increasing filtration of subcomplexes {F iΩ∗(k)(V ∗,W ∗)}i=0,...,2m:

F iΩ∗(k) = [V ≤i ⊗ Ω∗(k − 1)(V ∗,W ∗)] + [W≤2i ⊗ Ω∗(k − 2)(V ∗,W ∗)].

Obviously we have

∂(V ≤i ⊗ Ω∗(k − 1)) ⊂ V ≤i ⊗ Ω∗(k − 1) and
∂(W≤2i ⊗ Ω∗(k − 2)) ⊂ V ≤i ⊗ Ω∗(k − 1) +W≤2i ⊗ Ω∗(k − 2).

The filtration {F i}i=0,...,2m and the weight decomposition {ωΩ∗(k)}ω=0,...,⌊ k
2 ⌋

are compa-

tible:

F iΩ∗(k) = F i ∩ 0Ω∗(k)⊕ F i ∩ 1Ω∗(k)⊕ . . .⊕ F i ∩ ⌊ k
2 ⌋Ω∗(k) =

⌊ k
2 ⌋⊕

ω=0

F iΩ∗(k),

hence the spectral sequence E∗,∗
∗ (k) associated with the filtration {F iΩ∗(k)}i=0,...,2m is

weight-splitted at any page:

E∗,∗
∗ (k) =

⌊ k
2 ⌋⊕

ω=0

ωE∗,∗
∗ (k),
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with differential

di,jr : ωEi,j
r (k) −→ ω−1Ei−r,j+r+1

r (k).

Some general properties of these spectral sequences are obvious:

Proposition 3. Every E∗,∗
∗ (k) is a first quadrant spectral sequence; as E≥2m+1,q

r (k) = 0,
the spectral sequence degenerate at 2m+ 1.

Here are few pictures of the polygons containing the support of the weighted components
of the first page of the spectral sequences E∗,∗

∗ (k):
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The equations of the lines are ε : q = 3p, θ : q = p + 2m − 1, η : q = 3p − 1 and
ϱ : q = p+ 4m− 1.
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The equations of the lines are λ : q = 4p, µ : q = 4p − 1 and ν : q = 4p − 1. Using the



B. Berceanu, M. Yameen 167

definition of the filtration F i, one can describe the support of ωE∗,∗
∗ (k), in general:

Proposition 4. a) If 2ω > k, then ωE∗,∗
0 (k) = 0.

b) The support of the weighted componenets of ωE∗,∗
0 (k) are contained in the following

regions:

ω = 0 : the triangle defined by 0 ≤ (k − 1)p ≤ q ≤ 2(k − 1)m;
ω = 1 : if k = 2, the trapezoid defined by m− 1 ≤ p− 1 ≤ q ≤ min(p, 2m− 1);

if k ≥ 3, the quaddrilateral defined by
max((k − 3)p+ 2m− 1, (k − 1)p− 1) ≤ q ≤ 2(k − 1)m− 1;

ω ≥ 2 : if k = 2ω, the trapezoid defined by m ≤ p ≤ 2m− 1 and
(k − 1)p− 1 ≤ q ≤ p+ (2k − 4)m− k + 3;

if k ≥ 2ω + 1, the pentagon defined by
max((k − 2ω − 1)p+ 2ωm− 1, (k − 1)p− 1) ≤ q ≤ 2(k − 1)m− 2ω + 1
and the exterior point (p, q) = (2m− 1, 2(k − 1)m− 2).

Proof. In the table there is a list of elements of minimal degree (in bottom position) and el-
ements of maximal degree (in top position) in the column F p/F p−1 of the spectral sequence
ωE∗,∗

0 (k):

(ω, k) 0 ≤ p ≤ m− 1 m ≤ p ≤ 2m− 1 p = 2m

ω = 0
vpv

k−1
4m

vkp

vpv
k−1
4m

vkp

vk4m
vk2m

ω = 1
k = 2

—
w2p

w2p−1

w4p−1

w4p−1

ω = 1
k > 2

vpv
k−3
2m w4m−1

vk−2
p w2m−1

vpv
k−3
2m w4m−1

vk−2
p w2p−1

vk−2
2m w4m−1

vk−2
2m w4m−1

ω ≥ 2
k = 2ω

—
w2pw

ω−2
4m−2w4m−1

w2p−1w
ω−1
2p

—

ω ≥ 2
k > 2ω

vpv
k−2ω−1
2m wω−1

4m−2w4m−1

vk−2ω
p w2m−1w

ω−1
2m

vpv
k−2ω−1
2m wω−1

4m−2w4m−1

vk−2ω
p w2p−1w

ω−1
2p

—

There is a unique exception: if p = 2m − 1, ω ≥ 2 and k ≥ 2ω + 1, the element of
maximal degree is vk−2ω

2m wω−1
4m−2w4m−1.

Proof of Theorem 3. Let us define

k(j) =

{
k, if j = 0

k + (2m− 2)j − 1 if j ≥ 1.

On the 0-th page of the spectral sequence ∗E∗,∗
∗ (k + 1) we find that jE≥1,∗

0 (k + 1) has no
element under the line p+q = k+1 for j = 0 and nothing under the line p+q = k+(2m−2)j
for j ≥ 1.
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On the column 0 we have jE0,∗
1 (k + 1) = H∗,j(C∗(M)) and also
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0,≤k(j)
1 (k + 1) ∼= jE0,≤k(j)

∞ (k + 1) ∼= H≤k(j),j(Ck+1(M)).

�

Theorem 6. For a (h− 1)-connected closed orientable manifold M2m we have:
a) if i ≤ h(k + 1)− 1

Hi,0(Ck(M)) ∼= Hi,0(Ck+1(M)) ∼= Hi,0(Ck+2(M)) ∼= . . .

b) if j ≥ 1 and i ≤ hk + (2m− h− 1)j − 1

Hi,j(Ck(M)) ∼= Hi,j(Ck+1(M)) ∼= Hi,j(Ck+2(M)) ∼= . . . .

Proof. In this case the two graded spaces V ∗ and W ∗ are given by

V ∗ = V 0 ⊕ V h ⊕ V h+1 ⊕ . . . V 2m−h ⊕ V 2m,

W ∗ = W 2m−1 ⊕W 2m+h−1 ⊕W 2m+h ⊕ . . .⊕W 4m−h−1 ⊕W 4m−1,

where the first (and last) components are one dimensional:

V 0 = ⟨v0⟩, W 2m−1 = ⟨w2m−1⟩ (see [15] or Section 4).

As in the previous proof we find out the lowest lines:

p+ q = h(k + 1) for j = 0 and p+ q = hk + (2m− h− 1)j for j ≥ 1.
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Corollary 2. (Th. Church) For a (h−1)-connected closed oriented manifold M2m we have

Hi(Ck(M)) ∼= Hi(Ck+1(M)) ∼= Hi(Ck+2(M)) ∼= . . .

for i ≤ hk + h− 2

Proof. As M2m is not a homology sphere, we have the relation m ≥ h and the Theorem 6
gives the inequality min{h(k + 1)− 1, hk + (2m− h− 1)j − 1}j≥1 ≥ hk + h− 2.

3 Strong stability: odd dimensional case

In this section the manifold M has odd dimension.
Proof of Theorem 4. If there is a non-zero cohomology class (of positive degree) x ∈ H2i(M),
then x∧x∧. . .∧x = xk will give a non-zero cohomology class inH2ki(Ck(M)), with arbitrary
high degree, hence H∗(Ck(M)) cannot be stable.

If M has odd cohomology, with total Betti number β(M) = β, and a basis {1 =
x1, x2, . . . , xβ} of H∗(M), then the highest degree of a product of length β + q − 1 is∑βτ

i=0 iβi(M), the degree of the product xq−1
1 ∧ (∧β

i=2xi). We have the sequence of isomor-
phisms:

Symβ−1(H∗(M)) Symβ(H∗(M)) Symβ+1(H∗(M))

H∗(Cβ−1(M)) H∗(Cβ(M)) H∗(Cβ+1(M))

? ? ?
∼= ∼= ∼=

- - -x1∧ x1∧ x1∧
∼= ∼= ∼=

. . .

�
Proof of Corollary 1. If M2m+1 is a closed oriented manifold, by Poincaré duality we

find that β2i+1(M) ̸= 0 implies β2m−2i(M) ̸= 0; if M has the strong stability property, this
implies m = i.

If M has even dimension, the statement is a direct consequence of Theorem 5. �

4 Strong stability: closed orientable even dimensional
manifolds

First we give a necessary restriction for the strong stability property.

Proposition 5. If M2m has negative Euler-Poincaré characteristics, then M2m cannot
have the strong stability property.
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Proof. From [15] and [14] we have

1 +

∞∑
k=1

χ(Ck(M))tk = (1 + t)χ(M),

hence, if χ(M) is negative, the sequence {χ(Ck(M))}≥1 is not eventually constant.

In this section we analyze the strong stability property for a closed oriented manifold
of even dimension M2m. The DG-algebra introduced by Y. Félix and J. C. Thomas [15] is
defined by

V ∗ = H∗(M), W ∗ = H∗(M)[2m− 1]

and the differential ∂ is dual to the cup product

H∗(M)
⊗

H∗(M)
∪−→ H∗(M).

Lemma 1. If M2m is a homology sphere, then M has the strong stability property with the
range of stability 3.

Proof. As H∗(M) = Q[x]/(x2), the two graded vector spaces are V ∗ = Q⟨v0, v2m⟩, and
W ∗ = Q⟨w2m−1, w4m−1⟩ with differential

∂w2m−1 = 2v0v2m, ∂w4m−1 = v22m.

The second spectral sequence is

6 6 6
•

- - -

•
6 6

- -• • •

E∗,∗
0 (2)

• •

@
@I

• •

6

m− 1 m− 1

2m− 1 2m− 1

m m m2m 2m 2mm m2m 2m

ω = 0 ω = 0 ω = 0ω = 1 ω = 1

⊕ ⊕2m 2m 2m

E∗,∗
1 (2) = E∗,∗

m (2)

m m m

E∗,∗
m+1(2) = E∗,∗

∞ (2)

and this implies that PC2(M)(t, s) = 1.
The third spectral sequence is

6 6 6 6

- - - -

2m 2m

64m 4m

2m− 1

3m− 1 3m− 1

4m− 1

m m m m2m 2m 2m 2m

ω = 0 ω = 0

••

•

•

•

•

•

E∗,∗
0 (3)

ω = 1 ω = 1
•

•

•

E∗,∗
1 (3) = E∗,∗

∞ (3)

6

6

⊕ ⊕
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therefore PC3(M)(t, s) = 1 + st4m−1.
By induction on k, we suppose that PCk

(M)(t, s) = 1+ st4m−1. In the k+1-th spectral
sequence we have

6 6 6

E∗,∗
0 (k + 1)

- - -

ω = 0

m m m

ω = 1

2m 2m 2m

ω = 2

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

6

6

6

6

6

2m

6

6

6
2km

6

6

2m− 1

⊕ ⊕6m− 2

(2k − 1)m− 1

2km− 1

(2k − 1)m− 2

2km− 2

The differential d0 kills the 2m-th column; the 0-th column has the cohomology of Ck(M):

E∗,∗
1 (k + 1) = E∗,∗

∞ (k + 1)

6 6

⊕
- -

ω = 0

m m

ω = 1

2m 2m

4m− 1

•

•

hence PCk+1
(t, s) = 1 + st4m−1.

The case m = 1 in the following lemma, that is M = CP2, was obtained by Y. Félix
and D. Tanré [16].

Lemma 2. If M4m is a homology projective plane, then M has the strong stability property
with the range of stability 4.

Proof. The two graded spaces are V ∗ = Q⟨v0, v2m, v4m⟩, W ∗ = Q⟨w4m−1, w6m−1, w8m−1⟩,
with differential

∂w4m−1 = 2v0v4m + v22m, ∂w6m−1 = 2v2mv4m, ∂w8m−1 = v24m.

The sequence of spectral sequences starts with:

∗E∗,∗
0 (1) = ∗E∗,0

∞ (1) ∼= V ∗

and
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6 6 6

•

- - -
2m− 1

6 6

2m
- -

∗E∗,∗
0 (2)

•

•

•

A
AK

•

•

•

3m
•

•

•
•

•2m 2m 2m

•

3m− 1 3m− 1

4m− 1

4m 4m 4m

2m 2m 3m4m 4m

•

ω = 0 ω = 0 ω = 0

•

ω = 1 ω = 1

•

∗E∗,∗
1 (2) = ∗E∗,∗

m (2)

•

∗E∗,∗
m+1(2) =

∗E∗,∗
∞ (2)

6

6

so PC1(M)(t, s) = PC2(M)(t, s) = 1 + t2m + t4m. The result for the spectral sequences
∗E∗,∗

∗ (k), k = 3, 4, . . . are given in the following table

k non-zero terms ∗E≥1,∗
r (k) = ∗E≥1,∗

∞ (k)

3 1E2m,6m−1
1 (3) = ⟨v4mw4m−1⟩ 1E3m,7m−1

1 (3) = ⟨v4mw6m−1⟩
4 1E2m,10m−1

1 (4) = ⟨2v24mw4m−1 − v2mv4mw6m−1⟩
5 -

hence

PC3(M)(t, s) = 1 + t2m + t4m + s(t8m−1 + t10m−1)

and

PC4(M)(t, s) = 1 + t2m + t4m + s(t8m−1 + t10m−1 + t12m−1).

From k = 6 the spectral sequences become stable at ∗E∗,∗
1 :

ω = 0 ω = 1

0Ω∗(k − 1)

6

q

- p

6

q

- p

1Ω∗(k − 1)

2m(k − 1)

2mk

4m(k − 1)

2m 4m

vk2m

vk−1
2m v4m

v2mvk−1
4m vk4

··
··
··
··
··
··
··
·

2m 3m 4m

2m(k − 1)− 1

2mk − 1

2m(k + 1)

2m(2k − 3)− 1
2m(2k − 3) +m− 1

4m(k − 1)− 1

vk−2
2m w4m−1

vk−2
4m w4m−1

vk−2
2m w6m−1

v2mvk−3
4m w6m−1

··
··
··
··
··
··
··
·

··
··
··
··
··
·

vk−2
2m w8m−1

v2mvk−3
4m w8m−1

vk−2
4m w6m−1

··
··
··
··
··
··
··

vk−2
4m w8m−1
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ω = 2

6

q

- p

2Ω∗(k − 1)

3m2m

2mk − 2 vk−4
2m w4m−1w6m−1

2m(k + 1)− 2

vk−4
4m w4m−1w6m−1

2m(k + 2)− 2

vk−4
2m w4m−1w8m−1

2m(2k − 4)− 2

vk−4
4m w4m−1w8m−12m(2k − 3)− 2

vk−4
2m w6m−1w8m−1

2m(2k − 3) +m− 2
v2mvk−5

4m w6m−1w8m−1

··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

··
··
··
··
··

vk−4
4m w6m−1w8m−1

ω = 3

6

q

- p

3Ω∗(k − 1)

2m

2m(k + 2)− 3 vk−6
2m w4m−1w6m−1w8m−1

2m(2k − 4)− 3 vk−6
4m w4m−1w6m−1w8m−1

··
··
··
·

The differential d0 is given by d0(w4m−1, w8m−1) = (v22m, v24m) and

d0(v
α
2mvβ4mw6m−1) =

{
0, if α = 0

2vα+1
2m vβ+1

4m if α ≥ 1.

On the column p = 0 we get ω(Ck−1) and nothing on the last two columns, p = 3m and
p = 4m; the differential d0 is also an isomorphism in the cases:

1E
2m,2m(k−1)−1
0 (k) −→ 0E

2m,2m(k−1)
0 (k)

1E
2m,2m(2k−2)−1
0 (k) −→ 0E

2m,2m(2k−2)
0 (k).
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In general, we have the exact sequence (j = k + 2, k + 3, . . . , 2k − 4)

3E2m,2mj−3
0 (k)

[1]

� 2E2m,2mj−2
0 (k)

[3]

d0−→ 1E2m,2mj−1
0 (k)

[3]

� 0E2m,2mj
0 (k)

[1]

:

in the square brackets are given the dimensions the first and last terms are of dimension
one and the matrix of d0 is

d0 =

−2 −1 0
1 0 −1
0 1 2


2E2m,2mk−2

0 (k)
[1]

� 1E2m,2mk−1
0 (k)

[2]

� 0E2m,2mk
0 (k)

[1]

2E
2m,2m(k+1)−2
0 (k)

[1]

� 1E
2m,2m(k+1)−1
0 (k)

[2]

� 0E
2m,2m(k+1)
0 (k)

[1]

2E
2m,2m(2k−3)−1
0 (k)

[1]

� 1E
2m,2m(2k+1)−1
0 (k)

[2]

� 3E
2m,2m(2k−3)
0 (k)

[1]

In conclusion, we get

∗E∗,∗
1 (k) = ∗E∗,∗

∞ (k) = 0E0,∗
∞ (k)⊕ 1E0,∗

1 (k),

with the Poincaré polynomial (k ≥ 4) :

PCk(M)(t, s) = 1 + t2m + t4m + s(t8m−1 + t10m−1 + t12m−1).

Proof of Theorem 5. Lemmas 1 and 2 give one implication of the theorem. For the
opposite implication, we show in the next three lemmas that M cannot have strong stability
property in the following cases:

Case 1) the Poincaré polynomial of M4m is 1 + β2mt2m + t4m, β2m ≥ 2;
Case 2) there is a non-zero odd Betti number β2i+1;
Case 3) there is a non-zero even Betti number of M2m, β2i, i ̸= 0, m

2 , m. �

Lemma 3. If M4m has the Poincaré polynomial 1+bt2m+ t4m, with b ≥ 2, then M cannot
have the strong stability property.

Proof. The associated graded spaces are V ∗ = Q⟨v0; v2m,1, v2m,2, . . . v2m,b; v4m⟩ and W ∗ =
Q⟨w0;w2m,1, w2m,2, . . . w2m,b;w4m⟩ (although irrelevant for the argument, one can choose

the basis such that ∂w4m−1 = 2v0v4m+
∑b

i=1 v
2
2m,i, ∂w6m−1,i = 2v2m,iv4m, ∂w8m−1 = v24m).

In the k-th spectral sequence, the domain and the range of the differential

d0 : 1E
2m,2m(k−1)−1
0 (k) −→ 0E

2m,2m(k−1)
0 (k)

have dimensions
(
k+b−3
b−1

)
and

(
k+b−1
b−1

)
respectively. Obviously d0(

0E∗,∗
0 (k)) = 0 and d(vk−2

4m ⊗
W ∗) ⊂ vk−2

4m ⊗ ∧2V ∗, therefore we have non-zero elements in 0E
2m,2m(k−1)
∞ (k) of arbitrary

large degree.
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Lemma 4. If M2m has a non-zero odd Betti number, then M cannot have the strong
stability property.

Proof. Choose the non-zero odd Betti number of the highest degree, 2i + 1. The graded
spaces V ∗ and W ∗ are

V ∗ = Q⟨v0, . . . , v2i+1, v
′
2i+1, . . . , v2p, . . . , v2q, . . . , v2m⟩,

W ∗ = Q⟨w2m−1, . . . , w2m+2i, w
′
2m+2i, . . . , w2m+2p−1, . . . , w2m+2q−1, . . . , w4m−1⟩.

The differential of w2m+2i contains a unique term, 2v2i+1v2m, for degree reason (a quadratic
product vsvt with 2i + 1 < s, t < 2m has even degree). The spectral sequence kE∗,∗

∗ (2k +
1) contains the product z = v2i+1w

k
2m+2i, which is a permanent cocycle. Its is never a

coboundary:
d(∧∗V ∗ ⊗ ∧∗W ∗) ⊂ ∧≥2V ⊗ ∧∗W ∗.

The degree of z is arbitrary large, therefore M has not strong stability.

Remark 3. C. Schliessl [30] computed all Betti numbers of Ck(T2). Its top Betti number

is βk+1(Ck(T2)) =
2k − 1− 3(−1)k

4
(see also [11] and [23]).

Lemma 5. If M2m has a non-zero even Betti number β2i, (with 2i ̸= 0, m and 2m), then
M cannot have the strong stability property.

Proof. Using Poincaré duality we can choose a positive i satisfying 0 < 2i < m : V∗ =
Q⟨v0, . . . , v2i, . . . , v2m⟩. In the spectral sequence 0E∗,∗

∗ (2k), the product v2k2i is a permanent
cocycle and it is never a coboundary:

d(Symk−2V ≥2i+1 ⊗W ∗) ⊂ Symk−2V ≥2i+1 ⊗ Sym2V.

Remark 4. M. Maguire [23] computed all Betti numbers of Ck(CP3). Its top Betti number
is βk+12(Ck(CP3)) = 1 (k ≥ 11).

5 Strong stability: open or nonorientable even dimen-
sional manifolds

In this section we use B. Knudsen model [21]: the differential graded algebra computing
the cohomology of Ck(M) for an even dimensional manifold M2m is given by

H∗(Ω∗(k)(V ∗,W ∗), ∂),

where the graded spaces V ∗ and W ∗ are

V ∗ = H−∗
c (M ;Qw)[2m], W ∗ = H−∗

c (M ;Q)[4m− 1],
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and the differential is the shifted dual of the product

H−∗
c (M ;Qw)⊗H−∗

c (M ;Qw) −→ H−∗
c (M ;Q)

(here H−∗
c is cohomology with compact supports and Qw is the orientation sheaf; as before

A∗[q] is the graded space A∗ shifted by q).
In the same paper B. Kundsen computed the cohomology of Ck(M) for three even

dimensional manifolds with odd cohomology: Klein bottle K, the punctured Euclidean

space
◦
Rn = Rn \ {pt} and the punctured torus

◦
T = T \ {pt}. He found that their top Betti

numbers are
βτ (Ck(K)) = βk(Ck(K)) = 2,

βτ (Ck(
◦
Rn)) = βk(Ck(

◦
Rn)) = 1,

βτ (Ck(
◦
T)) = βk(Ck(

◦
T)) =

3 + (−1)k+1

4
k + 1,

so these three spaces does not have the strong stability.
We will describe few cases of manifolds of even dimensions with the strong stability

property.

Proposition 6. Let M2m be closed nonoriented manifold with τ(M) ≤
⌊
4m−2

3

⌋
. Then M

has the strong stability property if and only if M is acyclic.

Proof. For a closed non-orientable manifold we have

H−∗
c (M) = H−∗(M) and H−∗(M ;Q) ∼= H2m−∗(M)

and these imply that

V ∗ = V 0 ⊕ V 1 ⊕ . . .⊕ V τ(M), W ∗ = W 4m−τ(M)−1 ⊕W 4m−τ(M) ⊕ . . .⊕W 4m−1

The product V ∗ ⊗V ∗ → W ∗ is zero by degree relation:

2τ(M) < 4m− τ(M)− 1 or τ(M) ≤ 4m− 2

3
,

hence the differential ∂ is also zero. If M2m is not acyclic, then there is a non-zero x ∈
H≥1(M). If the degree of x is even, then there is a corresponding non-zero v ∈ V even ≥ 2
; otherwise, there is corresponding non-zero w ∈ W even. Therefore vk, respectively wk

are non-zero cohomology classes of arbitrary large degree, and this contradicts the strong
stability property.

Proposition 7. Let M2m be a closed nonorientable manifold with odd cohomology. Then
M has the strong stability property if and only if M is acyclic.

Proof. For a closed non-orientable manifold we have H−∗
c (M) = H−∗(M), H−2m(M) = 0,

H0(M) = Q, hence W ∗ = W≥2m, W 4m−1 = Q⟨w4m−1⟩.
If M has odd cohomology, we have

W ∗ = W even ⊕W 4m−1
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by Poincaré duality (see [B] or [D]), H−∗(M2m;Qw) ∼= H2m−∗(M ;Q), hence

V ∗ = V ≤2m−1 = Q⟨v0⟩ ⊕ V odd.

A non-zero (odd) Betti number of M2m will give a nonzero w ∈ W even. Its differential

∂w is in (
∧2

V )odd = v0∧V odd; the degree of w is at least 2m, and the degree of an element
in v0∧V odd is at most 2m−1, therefore ∂w = 0. The product wk gives a permanent cocycle
in E∗,∗

∗ (2k), and it is never a coboundary:

∂(SymV ∗ ⊗ SymW ∗) ⊂ Sym≥2V ∗ ⊗ SymW ∗.

The degree of wk is arbitrary large, hence M cannot have strong stability property.
If M2m is acyclic, the cohomology of Ck(M) is reduced to

H∗(Ck(M)) ∼= Q⟨vk0 , vk−2
0 w4m−1⟩

and this is stable.

Proposition 8. Let M2m be an open orientable manifold with odd cohomology. Then M
has the strong stability property if and only if M is acyclic.

Proof. For an open oriented manifold M2m we have, by Poincaré duality,

H−∗
c (M ;Qw) = H−∗

c (M ;Q) ∼= H2m−∗(M ;Q), H2m(M) = 0, H0(M) = Q,

hence W ∗ = Q⟨w2m−1⟩ ⊕W≥2m. If M has odd cohomology, we also have

W ∗ = Q⟨w2m−1⟩ ⊕W even and V ∗ = Q⟨v0⟩ ⊕ V odd≤2m−1.

Now we can repeat the argument of the proof of Proposition 4.

Remark 5. It seems that in general the sequence of Betti numbers {βi(Ck(M))}k≥1 is
increasing for any i ≥ 0 and for any manifold M, with the exception of S2m. For other
peculiar properties of the cohomology of configuration spaces of S2, see [2] and [3].

6 Shifted stability

We start to analyse the odd dimensional case.

Proposition 9. A manifold M2m+1 satisfies the shifted stability condition if and only if
the top positive even Betti number is one.

Proof. Let β2a the top even Betti number (a ≥ 1). For k ≥ Σi≥2a βi + 1 = β + 1 we have

Htop(Ck(M)) = Symk−βV 2a
⊗ β∧

V ≥2a+1

hence M has the shifted stability property if and only if dimSymk−βV 2a does not depend
on k therefore β2a should be one.
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Now we give three new definitions for shifted stability of the sequence {Ck(M)}k≥1 for an
even dimensional manifold M . In the first definition, the spectral sequences {∗E∗,∗

∗ (k)}k≥1

are those defined in Section 2. We suppose that M is not an even dimensional homology
sphere, that is ωE0,∗

∞ (k + 1) = ωH∗(Ck(M)).

Definition 3. The manifold M satisfies the spectral shifted stability condition with range
r and shift σ (r, σ ≥ 1) if and only if, for any k ≥ r, any p ≥ 1 and any ω ≥ 0, we have

ωEp,q+σ
∞ (k + 1) = ωEp,q

∞ (k) and this is non-zero.

6 6 6

∗E≥1,∗
∞ (k)

q q q

∗E≥1,∗
∞ (k + 1)

p p p

∗E≥1,∗
∞ (k + 2)

- - -
• • •

•
• • • • •

•
• • • • •

•
• •

Definition 4. The manifold M satisfies the Poincaré polynomial shifted stability condition
with range r, shift σ and ratio R(s, t) ̸= 0 (r, σ ≥ 1) if and only if, for any k ≥ r, we have

PCk+1(M)(t, s) = PCk(M)(t, s) + t(k+1−r)σR(t, s).

Definition 5. The manifold M satisfies the extended shifted stability condition with range
r and shift σ (r, σ ≥ 1) if and only if, for any k ≥ r, we have

P
[(k−r+1)σ]
Ck+1(M) (t, s) = tσP

[(k−r+1)σ]
Ck(M) (t, s).

The relation between these shifted stability conditions are given by:

Proposition 10. Spectral shifted stability ⇒ Poincaré polynomial shifted stability ⇒ ex-
tended shifted stability ⇒ shifted stability.

Proof. First implication: Let us define the polynomial R(s, t), the ratio of an arithmetical
sequence, as the double Poincaré of ωE≥1,∗

∞ (r):

R(s, t) =
∑
ω≥0

∑
p+q=i
p≥1

dimωEp,q
∞ (r)tisω.

By induction we get

ωEp,q
∞ (r) = ωEp,q+(k−r)σ

∞ (k) (for a positive p and k ≥ r)

and this implies that the Poincaré polynomial of ωE≥1,∗
∞ (k) is constant, for k ≥ r, up to a

shift with tσ. Therefore we have:

PCk+1(M)(t, s) = P∗E0,∗
∞ (k+1)(t, s) + P∗E

≥1,∗
∞ (k+1)

(t, s)

= PCk(M)(t, s) + t(k+1−r)σR(t, s),
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hence the spectral shifted stability condition with range r and shift σ gives the Poincaré
polynomial shifted stability condition with the same range r and shift σ.

Second implication: The recurrence formula PCk+1
= PCk

+ t(k+1−r)σR gives

PCk(M)(t, s) = PCr(M)(t, s) + (tσ + t2σ + . . .+ t(k−r)σ)R(t, s).

Take ρ such that the strip [0, ρ]×R contains the support of PCr(M)(t, s) and h big enough

such that support of thσR(s, t) is contained in [ρ+ 1,∞)× R.

6 6 6
s s s

- - -t t t�
�
�
�

���

A
A

�
�
�
�

���

A
A

@
�

�
@

@
�@

�@
�@
�@
�@
�@
�@

�@
�@

�
•••
•
•• ••••••

Pr(t, s)

ρ ρ+ 1

•
···
···
···
··· R(t, s)

···
···
···
··· t

hσR(t, s)

For ρ = r + h− 1 we have P
[σ]
ρ+1(t, s) = tσP

[σ]
ρ (t, s), next we have P

[2σ]
ρ+2(t, s) = tσP

[2σ]
ρ+1(t, s),

and in general, for k ≥ ρ,

P
[(k+1−ρ)σ]
k+1 (t, s) = tσP

[(k+1−ρ)σ]
k (t, s).

Third implication: This is obvious.

Remark 6. In order to have “weight stability at 0” in the sequence of spectral sequences
{∗E∗,∗

∗ (k)}k≥1 (i.e, there is a range r and a weight ωmax such that ωE∗,∗
0 (k) = 0 for any

k ≥ r and any ω > ωmax), we have to consider only manifolds with even cohomology: a
non-zero odd cohomology class x ∈ Hodd(M) will give a non-zero ω ∈ W even and infinitely
many non-zero terms ωs ∈ sE∗,∗

0 (2s) of arbitrary large weights.

In fact, if the manifold M has the spectral shifted stability condition, then M should
have even cohomology.

Proposition 11. If there is a nonzero cohomology class x ∈ Hodd(M), then M cannot
have the spectral sequence shifted stability property.

Proof. Take a maximal odd degree element v2i+1 ∈ V ∗ = ⟨v0, . . . , v2m⟩ and the corespond-
ing w2m+2i ∈ W ∗. The relations

d(w2m+2i) = 2v2i+1v2m and d(w4m−1) = v22m

gives the infinite (non-zero) cocycle

2hv2m+1w
h−1
2m+2iw4m−1 + v2mwh

2m+2i ∈ hE∗,∗
∞ (2h+ 1)

of arbitrary large weight. Definitely, the spectral sequence shifted stability condition implies
the “weight stability condition at∞”: there is a range r and a weight such that ωE∗,∗

∞ (k) = 0
for k ≥ r and ω > ωmax.

For the Poincaré polynomial shifted stability condition, a weaker condition is needed.
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Proposition 12. If χ(M) ≤ −2, then the manifold M does not satisfy the Poincaré poly-
nomial shifted stability condition.

Proof. The recurrence relations (k ≥ r)

PCk+1(M)(t, s) = PCk(M)(t, s) + t(k+1−r)σR(t, s),

PCk+2(M)(t, s) = PCk+1(M)(t, s) + t(k+2−r)σR(t, s)

imply that, for large k, χ(Ck(M)) is an arithmetic sequence (if σ is even) or χ(Ck(M)) =
χ(Ck+2(M)) = χ(Ck+4(M)) = . . . (if σ is odd).

If χ(M) ≤ −2, the Euler characteristics {χ(Ck(M))}k≥1, that is the coefficients in the
expansion of (1 + t)χ(M), have a polynomial growth (at least quadratic) for χ(M) ≤ −3
and, for χ(M) = −2, χ(Ck(M)) = (−1)k+1(k + 1).

In the case of a manifold M2m with Poincaré polynomial shifted stability, Propositions
3 and 6 give some restriction for the shift σ and ratio R(t, s). For instance, we have:

Proposition 13. For a (h−1)-connected closed orientable manifold M2m satisfying Poincaré
polynomial shifted condition with shift σ, we have the inequality h ≤ σ.

Proof. Choose j ≥ 0 such that there is a non-zero coefficient ri,j of the ratio polynomial
R(s, t). From Proposition 6

(k + 1− r)σ + i ≥

{
h(k + 1) if i = 0

hk + (2m− h− 1)j if i ≥ 1,

and, for large k, this implies σ ≥ h.

Remark 7. In the following examples, CP1 ×CP1 and CP3, we have h = σ = 2; the same
is true for CP4. For CP5 and CP6 we have h = 2, σ = 4.

The shifted stability property gives a formula for the cd(k), the cohomological dimension
of Ck(M).

Proposition 14. For a manifold M satisfying the shifted stability condition with range r
and shift σ we have, for any k ≥ r,

cd(k) = cd(r) + (k − r)σ.

Proof. This is clear from the definition.

Example 1. The cohomological dimension of Ck(CP1 × CP1) is given by

cd(1) = cd(2) = 4,

cd(3) = 9,

cd(4) = 11,

cd(k) = 2k + 4 if k ≥ 5.
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For large k, the classical stability property and the extended shifted stability property
give all the Betti numbers of Ck(M).

Proposition 15. Let M2m be a (h− 1)-connected closed orientable manifold satisfying the
extended shifted stability condition with the range r and shift σ. Then, for any k satisfying
the inequality max{r, cd(r)} ≤ hk + h− 2, we have the recurrence relation

H∗(Ck+1(M)) = H≤cd(r)(Ck(M))
⊕

H≥cd(r)−σ+1(CK(M))[σ].

Proof. If cd(r) ≤ hk + h− 2, from Corollary 2, we have the initial equality

H≤cd(r)(Ck(M)) = H≤cd(r)(Ck(M))

and, if r ≤ k, using the extended shifted stability property, we have final equality

H≥cd(r)+1(Ck+1(M)) = H≥cd(r)−σ+1(Ck(M))[σ].

7 Shifted stability: examples

The first example is the product CP1 × CP1. In this case the graded spaces V ∗, W ∗ and
the differential ∂ω are

V ∗ = ⟨v0, v2, v̄2, v4⟩, W ∗ = ⟨w3, w5, w̄5, w7⟩

∂ω(w3, w5, w̄5, w7) = (2v0v4 + v22 , 2v2v4, 2v̄2v4, v
2
4).

New cocycles in ∗E∗,∗
0 (k), k ≥ 3, are generated by

γ = v2w̄5 − v4w3, γ̄ = v̄2w5 − v4w3,

ε = v4w5 − v2w7, ε̄ = v4w̄5 − v̄2w7,

η = v4w5w̄5 − v̄2w5w7 + v2w̄5w7 (η̄ = −η).

Proposition 16. The product of two projective lines, CP1 × CP1, satisfies the spectral
shifted stability condition with range 6 and shift 2. More precisely, the nonzero pieces
∗E≥1,∗

∞ (k) (for k ≥ 6) are:

0E2,2k−2
∞ (k) = ⟨vk2 , v̄k2 ⟩,

1E2,2k−1
∞ (k) = ⟨vk−3

2 γ, v̄k−3
2 γ̄⟩, 1E2,2k+1

∞ (k) = ⟨vk−3
2 ε, v̄k−3

2 ε̄⟩,
2E2,2k+2

∞ (k) = ⟨vk−5
2 η, v̄k−5

2 η̄⟩.

Proof. The sequence of spectral sequences starts with

∗E∗,∗
0 (1) = ∗E∗,0

∞ (1) ∼= V ∗

and
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6 6 6

J

- - -
1

6 6

2
- -

∗E∗,∗
0 (2)

• •
A
AK

• •

3

• •
w7

••
v22 , v̄

2
2

v22 , v̄
2
2J2 2 2

Iv4

2 2

3

4 4 4

2 2 234 4

w3

ω = 0 ω = 0 ω = 0

v24

ω = 1 ω = 1

Iv4

∗E∗,∗
1 (2)

I2

∗E∗,∗
2 (2) = ∗E∗,∗

∞ (2)

6

6

Here and in the following computations we use the notation

I = ⟨v2, v̄2⟩, J = ⟨w5, w̄5⟩ and also Ik = ⟨vk2 , vk−1
2 v̄2, . . . , v̄

k
2 ⟩,

J2 = ⟨w5, w̄5, ⟩, IJ = ⟨v2w5, v̄2w5, v2w̄5, v̄2w̄5⟩ and so on.

The results for the spectral sequences ∗E∗,∗
∗ (k), k = 3, 4, . . . , 7, the “weight unstable part,”

are given in the table (△k = PCk
(t, s)− PCk−1

(t, s)):

Table 1

k non-zero terms ∗E≥1,∗
r (k) = ∗E≥1,∗

∞ (k) △k

3
0E2,4

1 = ⟨v32 , v̄32⟩,
1E2,5

1 = ⟨γ, γ̄⟩, 1E2,7
1 = ⟨ε, ε̄⟩

2t6 + s(2t7 + 2t9)

4

0E2,6
1 = ⟨v42 , v̄42⟩,

1E2,7
1 = ⟨v2γ, v̄2γ̄⟩,

1E2,9
2 = ⟨v2ε, v̄2ε̄, v2ε̄ (= −v̄2ε)⟩

2t8 + s(2t9 + 3t11)

5

0E2,8
1 = ⟨v52 , v̄52⟩,

1E2,9
1 = ⟨v22γ, v̄22 γ̄⟩, 1E

2,11
1 = ⟨v22ε, v̄2ε̄⟩,

2E3,11
1 = ⟨v4J2⟩

2t10 + s(2t11 + 2t13) + s2t14

6

0E2,10
1 = ⟨v62 , v̄62⟩,

1E2,11
1 = ⟨v32γ, v̄32 γ̄⟩, 1E

2,11
1 = ⟨v32ε, v̄32 ε̄⟩,

2E2,14
1 = ⟨v2η, v̄2η̄⟩

2t12 + s(2t13 + 2t15) + 2s2t16

7

0E2,12
1 = ⟨v72 , v̄72⟩,

1E2,13
1 = ⟨v42γ, v̄42 γ̄⟩, 1E

2,15
1 = ⟨v42ε, v̄42 ε̄⟩,

2E2,16
1 = ⟨v22η, v̄22 η̄⟩

2t14 + s(2t15 + 2t17) + 2s2t18

For k ≥ 8 the sequence {∗E∗,∗
∗ (k)} is “weight stable at 0” (≥5E∗,∗

0 (k) = 0) and we have
the following picture of the first page of the k-th term ∗E∗,∗

0 (k):
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ω = 0 ω = 1

0Ω∗(k − 1)

6

q

- p

6

q

-p

1Ω∗(k − 1)

2k − 2

2k

4k − 4

2

Ik

4 2 3 4

vk4

Ik−1v4

Ivk−1
4

Ik−2w7··
··
··
··
··
··
··
··
··
··

2k − 3 Ik−2w3

2k − 1 Ik−2J

4k − 7 vk−2
4 w3 Ivk−3

4 J
4k − 6
4k − 5

··
··
··
··
··
··
··
··
·

··
··
··
··
··
··
·

Ivk−3
4 w7

2k + 1

vk−2
4 J

··
··
··
··
··
··
·

vk−2
4 w7

ω = 2

6

q

- p

2Ω∗(k − 1)

2k − 2 Ik−4w3J

2k Ik−4J2

2k + 2

Ik−4w3w7

4k − 10

Ik−4Jw7

4k − 9
vk−4
4 w3J

··
··
··

··
··
··
··
··

··
··
··

4k − 8

Ivk−5
4 J2

4k − 7
vk−4
4 w3w7

··
··
··
··
·

Ivk−5
4 Jw7

vk−4
4 J2

vk−4
4 Jw7

2 3
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ω = 3 ω = 4

6

q

- p

6

q

- p

3Ω∗(k − 1) 4Ω∗(k − 1)

2k − 1 Ik−6w3J
2

2k + 1

vk−6
4 w3J

2

2k + 3

Ik−6w3Jw7

4k − 13

vk−6
4 w3Jw74k − 11

Ik−6J2w7

4k − 10
Ivk−7

4 J2w7

··
··
··
··
··
··
·

··
··
··
··
··
··
·

··
··
··
··
·

vk−6
4 J2w7

2 23

2k + 2 Ik−8w3J
2w7

4k − 14 vk−8
4 w3J

2w7

··
··
·

The differential d0 is d0(w3, w7) = (2v2v̄2, v
2
4) and

d0(v
α
2 v̄

β
2 v

γ
4w5, v

α
2 v̄

β
2 v

γ
4 w̄5) =

{
(0, 0) if α = β = 0

(2vα+1
2 v̄ β

2 v
γ+1
4 , 2vα2 v̄

β+1
2 vγ+1

4 ) if α+ β ≥ 1.

On the column p = 0 we get ωH∗(Ck−1) and nothing on the columns p = 3 and p = 4: the
differential d0 is an isomorphism in the following case:

2E3,4k−7
0 (k) = vk−4

4 Jw7 −→ 1E3,4k−6
0 (k) = vk−2

4 J,

3E3,4k−10
0 (k) = vk−6

4 J2w7 −→ 2E3,4k−9
0 (k) = vk−4

4 J2,

1E4,4k−5
0 (k) = vk−2

4 w7 −→ 2E4,4k−4
0 (k) = vk4 .

On the column p = 2 we have a five components cochain complex e(q), where q takes values
in the interval [k − 2, 2k − 3]:
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- - - -
a b c

q q q q q

d
4E2,2q−2

0 (k) 3E2,2q−1
0 (k) 2E2,2q

0 (k) 1E2,2q+1
0 (k) 0E2,2q+2

0 (k)

⊕

I2k−q−6vq−k−2
4 w3J

2w7 I2k−q−6vq−k
4 w3J

2 I2k−q−5vq−k+1
4 w3J I2k−q−4vq−k+2

4 w3 I2k−q−2vq−k+2
4⊕ ⊕ ⊕

⊕ ⊕ ⊕I2k−q−5vq−k−1
4 w3Jw7 I2k−q−4vq−k

4 J2 I2k−q−3vq−k+1
4 J

I2k−q−4vq−k−2
4 J2w7 I2k−q−4vq−k

4 w3w7 I2k−q−2vq−k
4 w7

I2k−q−3vq−k−1
4 Jw7

In the generic case, q ∈ [k + 2, 2k − 6], all the five components are non-zero and e(q) is
acyclic; the matrices of the differentials are

a =
(
id ∗ ∗

)
b =


∗ id 0
∗ 0 id
0 ∗ ∗
0 ∗ ∗



c =

∗ 0 id 0
∗ ∗ 0 id
0 0 ∗ ∗

 d =
(
∗ ∗ id

)
.

For the last values of q the cochain complex e(q) is shorter and still acyclic:

- - -
q = 2k − 5

q q q q

b c d
3E2,4k−11

0 (k) 2E2,4k−10
0 (k) 1E2,4k−9

0 (k) 0E2,4k−8
0 (k)

vk−6
4 w3Jw7 vk−4

4 w3J Ivk−3
4 w3 I3vk−3

4⊕ ⊕ ⊕
Ivk−7

4 J2w7 Ivk−5
4 J2 I2vk−4

4 J⊕ ⊕
⊕Ivk−5

4 w3w7 I3vk−5
4 w7

I2vk−6
4 Jw7

∗ 0 id 0
∗ ∗ 0 id
0 0 ∗ ∗



id 0
0 id
∗ ∗
∗ ∗

 (
∗ ∗ id

)
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- -

⊕

0E2,4k−6
0 (k)

c d
q = 2k − 4

q q q
vk−4
4 w3w7⊕ ⊕ I2vk−2

4

Ivk−5
4 Jw7

1E2,4k−7
0 (k)

Ivk−3
4 J

vk−2
4 w3

J2vk−4
4 w7

2E2,4k−8
0 (k) id 0

0 id
∗ ∗

 (
∗ ∗ id

)

-d
1E2,4k−5

0 (k) 0E2,4k−4
0 (k)

q q

q = 2k − 3

Ivk−3
4 w7 Ivk−1

4

(
id
)

For the first values of q we obtain non-zero cohomology classes.

-d
1E2,2k−3

0 (k) 0E2,2k−2
0 (k)

q q

q = k − 2

Ik−2w3 Ik

 0
id
0



and this gives 0E2,2k−2
1 (k) = ⟨vk2 , v̄k2 ⟩.

> >> >2E2,2k−2
0 (k)

q = k − 1

1E2,2k−1
0 (k) 0E2,2k

0 (k)
q q q

c

Ik−4w3J Ik−3v4w3 Ik−1v4⊕
Ik−2J

Obviously the first differential is injective and the second is surjective, the Euler char-
acteristic is (2k− 6)− (3k− 4)+ k = −2 and ⟨vk−3

2 γ, v̄k−3
2 γ̄⟩ is a complement for the image

of c, hence 1E2,2k−1
1 (k) = ⟨vk−3

2 γ, v̄k−3
2 γ̄⟩.
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q = k

> > >> >

q q q q

b c d
3E2,2k−1

0 (k) 2E2,2k
0 (k) 1E2,2k+1

0 (k) 0E2,2k+2
0 (k)

Ik−6w3J
2 Ik−5v4w3J Ik−4v24w3 Ik−2v24⊕ ⊕

Ik−4J2

Ik−2w7

Ik−3v4J⊕ ⊕
Ik−4w3w7

Definitely, ⟨vk−3
2 ε, v̄k−3

2 ε̄⟩ ⊂ ker(d) and its intersection with Im(e) is 0. The subcomplex
f(k) ⊂ e(k) generated by v24 and w7 is acyclic (αv24 7→ αw7 gives a homotopy idf(k) ≃ 0)
and the quotient complex e(k)/f(k) is

Ik−6w3J
2 � Ik−5v4w3J⊕ Ik−4J2 → Ik−3v4J

with dimensions k−5, 3k−11 and 2k−4 respectively. Therefore 1E2,2k+1
1 (k) has dimension

2 and it is equal to ⟨v k−3
2 ε, v̄ k−3

2 ε̄⟩.

> > >> >

q = k + 1

q q q q

⊕

3E2,2k+1
0 (k) 2E2,2k+2

0 (k) 1E2,2k+3
0 (k) 0E2,4k+4

0 (k)

Ik−7v4w3J
2 Ik−6v24w3J Ik−5v34w3 Ik−3v34⊕ ⊕ ⊕

Ik−6w3Jw7 Ik−5v4J
2 Ik−4v24J⊕ ⊕

Ik−3v4w7Ik−5v4w3w7

Ik−4Jw7

As in the previous case, ⟨v k−5
2 η, v̄ k−5

2 η̄⟩ ⊂ ker(e) and its intersection with Im(b) is 0.
The same subcomplex f(k + 1) ⊂ e(k + 1) is acyclic and in the quotient subcomplex

Ik−3v4w3J
2 � Ik−5v4J

2

the dimensions are k − 6 and k − 4. Hence 2E2,2k+2
1 (k) = ⟨v k−5

2 η, v̄ k−5
2 η̄⟩.

In conclusion, the spectral sequences {∗E∗,∗
∗ (k)}k≥8 degenerate at ∗E∗,∗

1 with the de-

scribed eight cohomology classes in ∗E≥1,∗
∗ (k).

As a consequence of the computation we have the table of the double variables Poincaré
polynomials (for each k, the first line contains the coefficients corresponding to s = 0, the
second line those with s = 1 and the third line corresponds to s = 2) and Corollary 3, 4
and the proof of Proposition 1.
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Table 2
k 0 2 4 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 2 1
2 1 2 3
3 1 2 3 2

2 2
4 1 2 3 2 2

2 4 3
5 1 2 3 2 2 2

2 4 5 2
1

6 1 2 3 2 2 2 2
2 4 5 4 2

1 2
7 1 2 3 2 2 2 2 2

2 4 5 4 4 2
1 2 2

Corollary 3. The space CP1 ×CP1 satisfies the Poincaré polynomial shifted stability con-
dition with range 6, shift 2 and recurrence relation

PCk+1(CP1×CP1)(t, s) = PCk(CP1×CP1)(t, s) + 2t2k+2[1 + s(t+ t2) + s2t4] (k ≥ 6).

Corollary 4. The space CP1 × CP1 satisfies the extended shifted stability condition with
range 6 and shift 2. For any k ≥ 6 we have:

P
[(k−5)2]

Ck+1(CP1×CP1)
(t, s) = t2P

[(k−5)2]

Ck(CP1×CP1)
(t, s).

With a different terminology, that of “stable instability,” M. Maguire proved in [23] the
shifted stability property for the complex projective space CP3. Using our method one can
obtain M. Maguire’s result as Proposition 17 and Corollaries 5, 6

Proposition 17. The complex projective space CP3 satisfies the spectral sequence shifted
stability condition with range 6 and shift 2. More precisely, the nonzero pieces ∗E≥1,∗

∞ (k)
(for k ≥ 6) are:

0E2,2k−2
∞ (k), 1E2,2k+3

∞ (k), 1E2,2k+5
∞ (k) and 2E2,2k+10

∞ (k)

and all these spaces have dimension one.

The next table contains the double variable Poincaré polynomials of the first configura-
tion spaces Ck(CP3) (we use the convention of Table 2):
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Table 3
k 0 2 4 6 8 10 11 12 13 14 15 17 19 21 24 26
1 1 1 1 1
2 1 1 2 1 1
3 1 1 2 2 1

1 1 1
4 1 1 2 2 2

1 2 2 1 1
5 1 1 2 2 2 1

1 2 3 2 1
6 1 1 2 2 2 1 1

1 2 3 3 2
1

7 1 1 2 2 2 1 1 1
1 2 3 3 3 1

1 1

Corollary 5. The space CP3 satisfies the Poincaré polynomial shifted stability condition
with range 5, shift 2 and recurrence relation

PCk+1(CP3)(t, s) = PCk(CP3)(t, s) + t2k+2[1 + s(t5 + t7) + s2t12] (k ≥ 5).

Corollary 6. The spaces CP3 satisfies the extended shifted stability condition with range
6 and shift 2. For any k ≥ 6 we have:

P
[(k−5)2]

Ck+1(CP3)
(t, s) = t2P

[(k−5)2]

Ck(CP3)
(t, s).

The complete details of the proofs of these and other results for unordered configuration
spaces of CPn will be given in [4].
Proof of Proposition 2 Obvious from Corollary 6. �

Remark 8. In these two examples, CP1×CP1 and CP3, the sequence of odd Betti numbers
is unimodal for any k. This is not true for the sequence of even Betti numbers, but the
sequences of double Betti numbers, for each s ∈ {0, 1, 2}, are unimodal too.
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