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Abstract

Let (P ) be any of the following properties: the weak ideal property, the topological
dimension zero, the combination of pure infiniteness and the ideal property, residual
(SP), pure infiniteness, strong pure infiniteness, provided that the zero C*-algebra is
included, and D-stability for a separable unital strongly self-absorbing C*-algebra D.
Let A be a separable unital C*-algebra with unit 1A, and assume that there exist
non-zero projections ei, 1 5 i 5 n, in A such that

∑n
i=1 ei = 1A. We show that A

has (P ) ⇔ eiAei has (P ) for every 1 5 i 5 n ⇔ c0(A) has (P ) (in fact, we prove
a much more general result). We also show that, somehow surprisingly, for two large
classes C of non-zero C*-algebras, if A,B ∈ C, then the fact that A⊗B has the weak
ideal property implies (or, is equivalent to) the fact that A and B have the weak ideal
property. We prove that one of these two results still holds if we replace the weak ideal
property by some related properties.
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1 Introduction

The weak ideal property was introduced in [17].

Definition 1. (Definition 8.1 of [17]) Let A be a C*-algebra. We say that A has the weak
ideal property if whenever I ⊆ J ⊆ K ⊗ A are ideals in K ⊗ A such that I ̸= J , then J/I
contains a non-zero projection.

The topological dimension zero, was introduced in [7], and it is a non-Hausdorff version
of total disconnectedness of the primitive spectrum of a C*-algebra. A C*-algebra A has
topological dimension zero if Prim(A) has a base for its topology consisting of compact
open sets (Remark 2.5(vi) of [7]). Note that a separable purely infinite C*-algebra A has
real rank zero if and only if A has topological dimension zero and it satisfies a certain
K-theoretical condition (see Theorem 4.2 of [20].)

The weak ideal property and the topological dimension zero have good permanence
properties (see, e.g., [16], [17], [18], and [7]) and are closely related. They are also close to
the older concept of ideal property (a C*-algebra A has the ideal property if any ideal of
A is generated, as an ideal, by its projections), but these properties are not identical (see
[18]). However, it was shown in [18] that, in many interesting cases, these three concepts
coincide. It is known that the ideal property ⇒ the weak ideal property ⇒ the topological
dimension zero (the first implication is obvious, the second one is Theorem 2.8 of [18].) A
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good understanding of the weak ideal property and of other similar properties (like, e.g.,
the topological dimension zero, the ideal property, residual (SP) (see Definition 7.1 of [17]),
and, the combination of pure infiniteness (see Definition 4.1 of [9]) and the ideal property)
is important in identifying and studying regularity properties for non-simple C*-algebras,
in an attempt to extend Elliott’s Classification Program beyond the class of simple C*-
algebras.

In this paper we continue our investigation of the weak ideal property (and also, of some
related properties) (see [16], [17], [18], [19], [14], and [15]), trying to better understand its
behavior in tensor products. Our motivation comes, in part, from Question 4.12 of [18].
Extending a result in [18], we prove, in particular, that the ideal property, the weak ideal
property, and the topological dimension zero coincide in the case of type I C*-algebras.
We also characterize the weak ideal property and several other important properties, for (a
large class of) unital separable C*-algebras.

It was shown in Remark 1.9 of [15] that there are non-zero separable C*-algebras A and
B with A or B exact, such that A ⊗ B has the weak ideal property but A or B does not
have the weak ideal property. However, in this paper we show that, somehow surprisingly,
for two large classes C of non-zero C*-algebras, if A,B ∈ C, then the fact that A ⊗ B
has the weak ideal property implies (or, is equivalent to) the fact that A and B have the
weak ideal property. We prove that one of these two results still holds if we replace the
weak ideal property by several other related properties. We show that if A and B are
non-zero C*-algebras which are not antiliminary and such that A ⊗ B has the weak ideal
property, then A and B have the weak ideal property (see Theorem 2.) Let (P ) be any of
the following properties: being an AF algebra, the real rank zero, the projection property,
the ideal property, the weak ideal property, and the topological dimension zero. Let A and
B be non-zero type I C*-algebras. Then A⊗B has (P ) if and only if A and B have (P ) (see
Theorem 3.) We also answer some natural questions involving the weak ideal property and
some ideals constructed in [15], the center of a C*-algebra or relative commutants in tensor
products (see Proposition 1, Proposition 2, the paragraph after Question 1 and Corollary
1.)

We also prove a characterization of the weak ideal property (and of several other prop-
erties) for (a large class of) unital separable C*-algebras. Let A be a separable unital
C*-algebra with unit 1A, and assume that there are non-zero projections ei, 1 5 i 5 n,
in A such that

∑n
i=1 ei = 1A. We show that A has the weak ideal property ⇔ eiAei has

the weak ideal property for every 1 5 i 5 n ⇔ c0(A) has the weak ideal property (see
Corollary 2 for a more general result.) (In fact, we prove in Theorem 4 that this holds for
properties which are much more general than the weak ideal property.)

The definitions of the type I C*-algebras and of the antiliminary C*-algebras, together
with some interesting results involving these concepts, could be found, e.g., in Section 6.1
of Chapter 6 of [21]. The definition of the real rank zero could be found in Section 1 of [6].

Ideals in C*-algebras are assumed to be closed and two sided. If A is a C*-algebra, then
P(A) will denote the set of all projections of A (P(A) := {p ∈ A : p = p∗ = p2}), Prim(A)
will denote the primitive spectrum of A, Z(A) will denote the center of A, and I � A will
denote the fact that I is an ideal of A. If A and B are C*-algebras, then A ⊗ B denotes
the minimal tensor product of A with B. The C*-algebra of all linear bounded operators
acting on a Hilbert space H is denoted by B(H), and the C*-algebra of all compact linear
bounded operators acting on a Hilbert space H is denoted by K(H). When H is a separable
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infinite dimensional Hilbert space, we denote K := K(H).

2 The results

We begin by recalling some notations from [15] (see also [1]).

Notation 1. (see Notation 2.1 of [15]; see also Lemma 2.13(i) of [1]) Let A and B be C*-
algebras and let I�A⊗B. Denote IA := {a ∈ A : a⊗B ⊆ I} and IB := {b ∈ B : A⊗b ⊆ I}.
When I is a prime ideal of A⊗B, this notation was introduced in Lemma 2.13(i) of [1].

Notation 2. (see Notation 2.2 of [15]) Let A and B be non-zero C*-algebras and let
I � A⊗B. Assume first that I ̸= 0. Denote by I(A) the ideal of A generated by all a ∈ A
with the property that there is b ∈ B such that a⊗ b is a non-zero element of I. Similarly,
denote by I(B) the ideal of B generated by all b ∈ B with the property that there is a ∈ A
such that a ⊗ b is a non-zero element of I. If I = 0 is the zero ideal of A ⊗ B, denote
I(A) := 0 and I(B) := 0.

Let A and B be non-zero C*-algebras such that A or B is exact. Let 0 ̸= I �A⊗B and
assume that I has the weak ideal property. Do IA and IB have the weak ideal property?
Do I(A) and I(B) have the weak ideal property? The next two propositions show that
these two natural questions have negative answers, even in the separable case.

Proposition 1. There are separable non-zero C*-algebras A and B such that A or B is
exact, and there is an ideal 0 ̸= I � A ⊗ B such that I has the weak ideal property but IA
or IB does not have the weak ideal property.

Proof. By the proof of Remark 1.9 of [15] there are non-zero separable C*-algebras A and
B such that A or B is exact, and such that A⊗B and A have the weak ideal property but
B does not have the weak ideal property. Let I := A ⊗ B. Then 0 ̸= I � A ⊗ B, I has
the weak ideal property but IB = B does not have the weak ideal property. This ends the
proof.

Proposition 2. There are separable non-zero C*-algebras A and B such that A or B is
exact, and there is an ideal 0 ̸= I �A⊗B such that I has the weak ideal property but I(A)
or I(B) does not have the weak ideal property.

Proof. Let A, B and I be as in the proof of Proposition 1. Note that IB = B implies that
I(B) = B (since IB ⊆ I(B) ⊆ B), and hence I(B) = B does not have the weak ideal
property. The proof is over.

Remark 1. (1) If we replace the weak ideal property by the ideal property in Proposition
1 and Proposition 2, the results still hold. The proofs are similar with the ones of
Proposition 1 and Proposition 2 (see the proof of Remark 1.9 of [15].)

(2) Let A and B be non-zero C*-algebras such that A or B is exact. If for every ideal
I�A⊗B that has the weak ideal property we have that I(A)⊗I(B) has the weak ideal
property, then, if we denote by J the largest ideal of A⊗ B which has the weak ideal
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property (whose existence is proved in [19]), we have that J = J(A)⊗ J(B). Indeed,
note first that J � A ⊗ B and that J has the weak ideal property. We know from
Theorem 2.3(2) of [15] that J ⊆ J(A)⊗ J(B). Since also J(A)⊗ J(B) has the weak
ideal property (by the hypothesis), the definition of J implies that J = J(A)⊗ J(B).

We next recall that an AF algebra is a C*-algebra which can be locally approximated
by finite dimensional sub-C*-algebras (see [2].)

Question 1. Let A be a C*-algebra. If A has the weak ideal property, does Z(A) have the
weak ideal property?

The answer to this question is ”no”. Indeed, let B be a commutative separable C*-
algebra such that Prim(B) is not totally disconnected, i.e., such that B does not have
the weak ideal property (e.g., we may take B = C([0, 1]).) On the other hand, by the
corollary in Section 4 of [3], there exists a separable AF algebra A such that Z(A) = B.
But (separable) AF algebras have the weak ideal property (e.g., since they have the ideal
property) and hence, in particular, A has the weak ideal property while Z(A) = B does
not have the weak ideal property.

Let A and B be C*-algebras. If B is unital with unit 1, we define the relative commutant
of A in A⊗B by A′ ∩ (A⊗B) := {x ∈ A⊗B : xa = ax,∀ a ∈ A⊗ C1}. If A is unital, we
define B′ ∩ (A⊗B) in a similar way.

Proposition 3. Let A and B be C*-algebras and assume that B is unital.

(1) If Z(A) and B have the weak ideal property, then A′ ∩ (A ⊗ B) has the weak ideal
property.

(2) If in addition A and B are separable, then A′ ∩ (A ⊗ B) has the weak ideal property
⇔ Z(A) and B have the weak ideal property.

Proof. We first prove (1).

By Theorem 1 of [8] we have that A′ ∩ (A ⊗ B) = Z(A) ⊗ B. Since also Prim(Z(A))
is totally disconnected (since Z(A) has the weak ideal property) and B has the weak ideal
property, Theorem 5.14(iii) of [18] implies that Z(A)⊗B = A′∩ (A⊗B) has the weak ideal
property.

We now prove (2).

The equivalence can be proved combining the relation A′ ∩ (A⊗B) = Z(A)⊗B (men-
tioned in the proof of (1)) with Theorem 5.17(iii) of [18] (we also used that B ̸= 0, A and
B are separable, Prim(Z(A)) is second countable and the fact that the commutative C*-
algebra Z(A) has the weak ideal property if and only if Prim(Z(A)) is totally disconnected.)

Corollary 1. Let A and B be unital separable C*-algebras. The following are equivalent:

(1) A′ ∩ (A⊗B) and B′ ∩ (A⊗B) have the weak ideal property.

(2) A, B and Z(A⊗B) have the weak ideal property.
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Proof. By Corollary 1 of [8] it follows that Z(A ⊗ B) = Z(A) ⊗ Z(B). Also, it is an easy
topology exercise to see that the non-zero commutative C*-algebra Z(A) ⊗ Z(B) has the
weak ideal property if and only if the non-zero commutative C*-algebras Z(A) and Z(B)
have the weak ideal property (since for any commutative C*-algebra D, we have that D
has the weak ideal property if and only if Prim(D) is totally disconnected.) Now, the proof
ends using also Proposition 3(2).

The proof of the next result is inspired by the proof of Theorem 2.24 of [12].

Theorem 1. Let A be a C*-algebra and let B be a non-zero C*-algebra which is not
antiliminary. Suppose that A ⊗ B has the weak ideal property. Then A has the weak ideal
property.

Proof. By Proposition 6.2.7 of [21], B has a largest ideal I of type I and B/I is antiliminary.
Since B ̸= 0 and B is not antiliminary, it follows that I ̸= 0. Since A⊗I�A⊗B, A⊗B has
the weak ideal property and the weak ideal property passes to ideals by Theorem 8.5(5) of
[17], it follows that A⊗ I has the weak ideal property. Now, if π : I → B(H) is a (non-zero)
irreducible representation of I on a Hilbert space H, then Theorem 6.1.5(i) of [21] implies
that:

K(H) ⊆ π(I). (2.1)

Since A⊗ π(I) is isomorphic to a quotient of A⊗ I, A⊗ I has the weak ideal property
and the weak ideal property is preserved under isomorphism and passes to quotients by
Theorem 8.5.(5) of [17], it follows that A ⊗ π(I) has the weak ideal property. Using this,
the fact that A ⊗ K(H) � A ⊗ π(I) (see (2.1)) and the fact that the weak ideal property
passes to ideals (by Theorem 8.5(5) of [17]), it follows that A ⊗ K(H) has the weak ideal
property. Let 0 ̸= e be a minimai projection of K(H). Since K(H) has real rank zero (as
an inductive limit of matrix algebras, which have real rank zero), it follows by Corollary
2.8 of [6] that eK(H)e has real rank zero. In particular, it follows that eK(H)e is the closed
linear span of its projections. But, since 0 ̸= e is a minimal projection of K(H), the only
projections of eK(H)e are e and 0. This implies that eK(H)e = Ce ∼= C. Since eK(H)e
is a hereditary subalgebra of K(H), it follows that A ⊗ eK(H)e is a hereditary subalgebra
of A ⊗ K(H), which was proved to have the weak ideal property. Using this, the fact
that, by Theorem 8.5(3) of [17], the weak ideal property passes to hereditary subalgebras,
and the fact that the weak ideal property is preserved under isomorphism, it follows that
A (∼= A⊗ C ∼= A⊗ eK(H)e) has the weak ideal property.

Theorem 2. Let A and B be non-zero C*-algebras which are not antiliminary (in particu-
lar, A and B could be type I C*-algebras.) Suppose that A⊗B has the weak ideal property.
Then A and B have the weak ideal property.

Proof. The proof uses Theorem 1 and the fact that A⊗B ∼= B ⊗A.

The next result uses the above definition of AF algebras (given before Question 1) and
removes the separability condition in Proposition 7.14 of [18] (using essentially the same
proof as there; see also Remark 2.12 of [13].)
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Proposition 4. Let A be a type I C*-algebra. Then the following are equivalent:

(1) A has topological dimension zero.

(2) A has the weak ideal property.

(3) A has the ideal property.

(4) A has the projection property (every ideal in A has an increasing approximate identity
consisting of projections; Definition 1 of [11]).

(5) A has real rank zero.

(6) A is an AF algebra.

Proof. It is clear that any condition on the above list implies the previous one. We need
only to show that (1) implies (6). If A has topological dimension zero, Prim(A) has a base
for its topology consisting of compact open sets. Then, the proof ends using the fact that
the theorem in Section 7 of [4] remains true without the separability condition, but using
the above definition of the AF algebras, where separability is not required (see the comment
at the end of the proof of the theorem in Section 7 of [4].)

Theorem 3. Let (P ) be any of the following properties: being an AF algebra, the real rank
zero, the projection property, the ideal property, the weak ideal property, and the topological
dimension zero. Let A and B be non-zero type I C*-algebras. The following are equivalent:

(1) A and B have (P ).

(2) A⊗B has (P ).

Proof. Note that since A and B are type I C*-algebras, it follows that A ⊗ B is a type
I C*-algebra (see [24].)

We first prove that (1) ⇒ (2).
Assume that A and B have (P ). Then, by Proposition 4 it follows that A and B are

AF algebras, and hence A and B are locally approximated by the families of their finite
dimensional sub-C*-algebras. Therefore, A ⊗ B is locally approximated by a family of
finite dimensional sub-C*-algebras (namely, the tensor product of the families of the finite
dimensional sub-C*-algebras of A and B), i.e., A⊗B is an AF algebra. Then (using again
Proposition 4), it easily follows that A⊗B has (P ).

We now prove that (2) ⇒ (1).
Assume that A⊗B has (P ). Then, Proposition 4 implies that A⊗B has the weak ideal

property. Using now Theorem 2, we deduce that A and B have the weak ideal property.
Finally, using again Proposition 4, it follows that A and B have (P ).

We recall a definition from [19].

Definition 2. (see Definition 1.1 of [19]) Let (P ) be a property that a C*-algebra may or
may not have (such as real rank zero, satisfying the Universal Coefficient Theorem, or the
weak ideal property.) Then, we make the following definitions:
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(1) We say that (P ) is isomorphism invariant if whenever A and B are C*-algebras, A
has the property (P ), and B ∼= A, then B has the property (P ).

(2) We say that (P ) is (separably) stable if whenever A and B are (separable) C*-
algebras, A has the property (P ), and K ⊗B ∼= K ⊗A, then B has the property (P ).

(3) We say that (P ) (separably) passes to ideals if whenever A is a (separable) C*-algebra
with (P ) and I �A, then I has the property (P ).

(4) We say that (P ) (separably) admits largest ideals if for every (separable) C*-algebra A
there is a largest ideal in A which has the property (P ).

We give now a definition, which together with Definition 2, will be used in Theorem 4:

Definition 3. Let (P ) be a property that a C*-algebra may or may not have.

(1) We say that (P ) is separably isomorphism invariant if whenever A and B are separable
C*-algebras, A has (P ), and B ∼= A, then B has (P ).

(2) We say that (P ) separably passes to finite direct sums if whenever n ∈ N and
A1, A2, . . . , An are separable C*-algebras with (P ), then A1 ⊕A2 ⊕ · · · ⊕An has (P ).

(3) We say that (P ) separably passes to quotients if whenever A is a separable C*-algebra
with (P ) and I �A, then A/I has (P ).

For each C*-algebra A let l∞(A) denote the C*-algebra of all bounded functions from
N to A with entry-wise algebraic operations, and let c0(A) be the ideal in l∞(A) consisting
of those sequences (an) for which lim ∥an∥ = 0.

We now state the main result of this paper:

Theorem 4. Let (P ) be a property that a C*-algebra may or may not have. Assume that
(P ) is separably stable, separably passes to ideals, separably admits largest ideals, separably
passes to finite direct sums, and separably passes to quotients (see Definition 2 and Defini-
tion 3.) Let A be a separable unital C*-algebra with unit 1A, and assume that there exist
0 ≠ ei ∈ P(A), 1 5 i 5 n, such that

∑n
i=1 ei = 1A. The following are equivalent:

(1) A has (P ).

(2) eiAei has (P ) for every 1 5 i 5 n.

(3) c0(A) has (P ).

Proof. Let B be the sub-C*-algebra of A generated (as a C*-algebra) by ei, 1 5 i 5 n. Note
that since ei,

∑n
j=1 ej ∈ P(A) for every 1 5 i 5 n, it follows that eiej = 0 (= ejei), for

every i ̸= j, 1 5 i, j 5 n. Hence:

B = Ce1 + Ce2 + · · ·+ Cen.

Denote by G the unitary group of the C*-algebra B, with the induced norm topology.
Then G = Te1+Te2+ · · ·+Ten (∼= Tn) is a second countable compact abelian group (here,
of course, T is the torus, i.e., T := {z ∈ C : |z| = 1}.) We define now an action α : G →
Aut(A) of G on A by:

αg(a) := gag∗, ∀ g ∈ G, ∀ a ∈ A.
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Then, by Theorem 3.2 of [19] it follows that:

Aα has (P ) ⇔ C∗(G,A, α) has (P ). (2.2)

But:

Aα = A ∩B′ =

n∑
i=1

eiAei ∼= ⊕n
i=1eiAei (2.3)

where, of course, A ∩ B′ denotes the relative commutant of B in A. To prove the second
equality in (2.3), fix an arbitrary x ∈ A. Then x =

∑n
k,l=1 ekxel and hence: x ∈ A ∩B′ ⇔

(
∑n

k,l=1 ekxel)ei = ei(
∑n

k,l=1 ekxel),∀ 1 5 i 5 n ⇔
∑n

k=1 ekxei =
∑n

l=1 eixel,∀ 1 5 i 5
n ⇔ (ekxei = 0,∀ k ̸= i, 1 5 k, i 5 n) and (eixel = 0,∀ l ̸= i, 1 5 l, i 5 n) ⇔ x =∑n

i=1 eixei.
Observe that (2.3), the fact that (P ) separably passes to ideals, the fact that (P )

is separably isomorphism invariant (since (P ) is separably stable) and the fact that (P )
separably passes to finite direct sums imply that:

Aα has (P ) ⇔ ⊕n
i=1eiAei has (P ) ⇔ eiAei has (P ), ∀ 1 5 i 5 n. (2.4)

On the other hand, we have:

C∗(G,A, α) ∼= C∗(G)⊗A ∼= C0(Ĝ, A) ∼= c0(A) (2.5)

since α is an inner action of G on A, G is abelian and compact and hence Ĝ is discrete,
Ĝ ∼= (Tn)ˆ ∼= Zn (isomorphisms of topological groups), and hence the infinite countable
discrete topological spaces Ĝ and N are homeomorphic.

Using (2.2), (2.4), (2.5), and the fact that (P ) is separably isomorphism invariant (since
(P ) is separably stable), we obtain that:

eiAei has (P ), ∀ 1 5 i 5 n ⇔ c0(A) has (P )

which means that we proved the equivalence (2) ⇔ (3).
We now prove that (1) ⇒ (2).
Assume that A has (P ). Fix some arbitrary 1 ≤ i ≤ n. Let I be the ideal of A generated

by eiAei. Since A is separable, Theorem 2.8 of [5] implies that eiAei is stably isomorphic
to I. Since A has (P ), I �A, (P ) separably passes to ideals and (P ) is separably stable, it
follows that eiAei has (P ). Since 1 ≤ i ≤ n was arbitrary, this ends the proof of (1) ⇒ (2).

We finally prove that (3) ⇒ (1).
Assume that c0(A) has (P ). Fix some k ∈ N and denote by ev : c0(A) → A the evaluation

at k. Then ev is a surjective ∗-homomorphism, and hence A is isomorphic to a quotient of
c0(A). Since (P ) is separably isomorphism invariant (since (P ) is separably stable) and (P )
separably passes to quotients, it follows that A has (P ). This ends the proof of (3) ⇒ (1).

The proof of the theorem is over.

Remark 2. (1) If n = 1 in the hypothesis of Theorem 4 (case in which the corresponding
condition for the projections ei is automatically satisfied, because A is unital with unit
1A), then Theorem 4(1) and Theorem 4(2) become identical, and the requirements
that (P ) separably passes to finite direct sums and separably passes to quotients need
not be mentioned in Theorem 4.
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(2) We recall from Definition 5.1 of [17] that a class C of C*-algebras is upwards directed
if whenever A is a C*-algebra which contains a subalgebra isomorphic to an algebra
in C, then A ∈ C, and from Definition 5.2 of [17] that a C*-algebra A is residually
hereditarily in such a class C if, for every I � A and every non-zero hereditary sub-
algebra B ⊆ A/I, we have B ∈ C. Note that the weak ideal property, residual (SP),
the combination of pure infiniteness for non-simple C*-algebras and the ideal prop-
erty, and, for separable C*-algebras, the topological dimension zero are examples of
properties of this form (see [17] and [18].)

Corollary 2. Let (P ) be any of the following properties:

(1) Being residually hereditarily in a fixed upwards directed class of C*-algebras (e.g., the
weak ideal property, the combination of pure infiniteness for non-simple C*-algebras
and the ideal property, and residual (SP) (see Remark 2 and [17]).)

(2) Topological dimension zero.

(3) D-stability for a separable unital strongly self-absorbing C*-algebra D (see [22] and
[23].)

(4) Pure infiniteness for non-simple C*-algebras.

(5) Strong pure infiniteness for non-simple C*-algebras, provided that the zero C*-algebra
is included (see [10].)

Let A be a separable unital C*-algebra with unit 1A, and assume that there exist 0 ̸= ei ∈
P(A), 1 5 i 5 n, such that

∑n
i=1 ei = 1A. The following are equivalent:

(a) A has (P ).

(b) eiAei has (P ) for every 1 5 i 5 n.

(c) c0(A) has (P ).

Proof. The proof follows from Theorem 4, using Proposition 2.1 of [19], Remark 2.2 of [19],
Lemma 2.9 of [19], Remark 2(2), [23], Lemma 5.7 of [17], Proposition 5.8 of [17], Corollary
3.3 of [22], Theorem 4.19 of [9], and Proposition 5.11(i) of [10]. (The other verifications
follow immediately from definitions.)

References

[1] E. Blanchard, E. Kirchberg, Non-simple purely infinite C*-algebras: the Haus-
dorff case, J. Funct. Anal., 207, 461-513 (2004).

[2] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math.
Soc., 171, 195-234 (1972).

[3] O. Bratteli, The center of approximately finite-dimensional C*-algebras, J. Func-
tional Analysis, 21, 195-202 (1976).



156 On the weak ideal property

[4] O. Bratteli, G. A. Elliott, Structure spaces of approximately finite-dimensional
C*-algebras. II, J. Functional Analysis, 30, 74-82 (1978).

[5] L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific
J. Math., 71, 335-348 (1977).

[6] L. G. Brown, G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal., 99,
131-149 (1991).

[7] L. G. Brown, G. K. Pedersen, Limits and C*-algebras of low rank or dimension,
J. Operator Theory, 61, 381-417 (2009).

[8] R. Haydon, S. Wassermann, A commutation result for tensor products of C*-
algebras, Bull. London Math. Soc., 5, 283-287 (1973).

[9] E. Kirchberg, M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math.,
122, 637-666 (2000).

[10] E. Kirchberg, M. Rørdam, Infinite non-simple C*-algebras: absorbing the Cuntz
algebra O∞, Adv. Math., 167, 195-264 (2002).

[11] C. Pasnicu, The projection property, Glasg. Math. J., 44, 293-300 (2002).

[12] C. Pasnicu, The ideal property and tensor products of C*-algebras, Rev. Roumaine
Math. Pures Appl., 49, 153-162 (2004).

[13] C. Pasnicu, The ideal property, the projection property, continuous fields and crossed
products, J. Math. Anal. Appl., 323, 1213-1224 (2006).

[14] C. Pasnicu, On and around the weak ideal property, Bull. Math. Soc. Sci. Math.
Roumanie, 63 (111), 199-204 (2020).

[15] C. Pasnicu, Ideals in tensor products, topological dimension zero and the weak ideal
property, J. Math. Anal. Appl., 501, 125210, (2021).

[16] C. Pasnicu, N. C. Phillips, Permanence properties for crossed products and fixed
point algebras of finite groups, Trans. Amer. Math. Soc., 366, 4625-4648 (2014).

[17] C. Pasnicu, N. C. Phillips, Crossed products by spectrally free actions, J. Funct.
Anal., 269, 915-967 (2015).

[18] C. Pasnicu, N. C. Phillips, The weak ideal property and topological dimension
zero, Canad. J. Math., 69, 1385-1421 (2017).

[19] C. Pasnicu, N. C. Phillips, Relating properties of crossed products to those of fixed
point algebras, Indiana Univ. Math. J., 68, 1885-1901 (2019).

[20] C. Pasnicu, M. Rørdam, Purely infinite C*-algebras of real rank zero, J. reine
angew. Math., 613, 51-73 (2007).

[21] G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, Lon-
don, New York, San Francisco, (1979).



C. Pasnicu 157

[22] A. S. Toms, W. Winter, Strongly self-absorbing C*-algebras, Trans. Amer. Math.
Soc., 359, 3999-4029 (2007).

[23] W. Winter, Strongly self-absorbing C*-algebras are Z-stable, J. Noncommut. Geom.,
5, 253-264 (2011).

[24] A. Wulfsohn, Le produit tensoriel de certaines C*-algèbres, C. R. Acad. Sci. Paris,
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