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Abstract

A vertex 3-colouring theorem for a suitably triangulated 2-disc, rooting back in
the late years of the nineteenth century, is considered and discussed in careful detail.
A whole string of corollaries are derived, two particular classes of triangulations are
singled out, and the boundary even vertex set is enquired into in further detail.
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1 Introduction

The problem of characterising vertex 3-colourable planar triangulations dates back to [8].
Roughly speaking, the vertices of a triangulation of the 2-sphere are 3-colourable if and
only if they are all even. The first complete proof of this fact, by induction on the num-
ber of vertices, seems to be that in [5]. Since then, several different proofs came out of
various settings [3, 12,16, 18, 19], and the problem triggered a whole string of related topics
[3,6,9,10,15,16].

Our purpose here is to prove and discuss in careful detail a version of the 3-colour
theorem for suitable disc triangulations. Section 2 introduces the setting and includes
a proof by induction on the number of triangles. Several corollaries are then derived,
alternative proofs are included, and related facts and examples are considered.

Sections 3 and 4 single out two classes of triangulations and describe some of their
particular features. Although most statements are corollaries to the 3-colour theorem,
alternative proofs are again included. An outline of an alternative proof of the 3-colour
theorem is sketched at the end of Section 3.

Finally, Section 5 deals with the boundary even vertex set of a suitably triangulated disc.
The combinatorial location of such vertices along the boundary is enquired into.

2 Suitable Triangulations

For the topological and graph theoretic notions and results in the first few paragraphs
below, standard references include [1, 2, 13].

A triangulation of the closed 2-disc consists of a simplicial complex K of dimension 2 and
a homeomorphism of the polyhedron | K| onto the disc. A closed 2-disc with a triangulation
will be referred to as a triangulated 2-disc. The particular homeomorphism involved is
irrelevant here, and so K alone will loosely be referred to as a triangulation of the disc. The
polyhedron |K| will always be assumed embedded in the Euclidean plane or, if need be, in



134 On vertex 3-colourable disc triangulations

the 2-sphere S2, both with an orientation fixed once and for all. The Jordan curve theorem,
the Schoenflies theorem and the ©-space separation theorem are assumed and referred to
more or less explicitly, more or less loosely.

All vertices and all edges on the boundary 0|K| of |K| form a subcomplex 0K of K,
loosely referred to as the boundary of K ; it is, of course, the outer cycle of the 1-skeleton K,
and |0K| = 0|K]| is a simple closed curve in the plane or in S?. Notice that K has at least
three vertices. A chord is an edge in K ~\ 0K with both end points in 0K.

A vertex of K is interior if it lies in the open disc; otherwise, it is a boundary vertex.
The parity of a vertex of K is, of course, the parity of its degree in the 1-skeleton K! (the
number of edges having an end point at that vertex). Similarly, the parity of an edge path
in K! is the parity of its combinatorial length (the number of edges the path consists of).

A set S of vertices of K is k-colourable if each vertex in S may be assigned one of k
colours so that no two K-neighbours in S share colour; alternatively, but equivalently,
the subgraph S induces in K' is k-colourable, i.e., there exists a function f from S to a
k-element set such that two K '-neighbours in S have distinct images under f.

1. Theorem. The vertices of a triangulation of the 2-disc are 3-colourable if and only if
each interior vertex is even, in which case the colouring is unique up to a colour permutation.

Necessity is clear: Simply consider the simplicial neighbourhood of an interior vertex,
i.e., the set of all simplices of the triangulation that contain that vertex. If the latter were
odd, then any valid vertex colouring of its simplicial neighbourhood would require (at least)
four colours.

For convenience, a triangulation satisfying the condition in the above theorem will be
referred to as a suitable triangulation, and the polyhedron it triangulates — as a suit-
ably triangulated polyhedron. A straightforward degree argument shows that a suitable
triangulation has an even number of (boundary) odd vertices.

A suitable triangulation whose boundary vertices are all odd, respectively even, will be
referred to as an ideal, respectively even, triangulation; and the polyhedron it triangulates —
as an ideally, respectively evenly, triangulated polyhedron. Such triangulations will be
considered in Sections 3 and 4, respectively.

Theorem 2.1 may fail for a suitable triangulation whose polyhedron is not a disc. For
instance, subdivide an annulus into three interior disjoint quadrangles by means of three
‘radial’ chords, each of which has an end point on the inner circle and the other on the outer
circle. Drawing both diagonals in each quadrangle then yields a suitable triangulation whose
vertices are not 3-colourable; they are, of course, 4-colourable.

Unless otherwise stated, only triangulated 2-discs are considered in the sequel. One of
the simplest examples of a suitable triangulation is the even spoke umbrella: It is obtained
by joining an interior point ‘radially’ to each of an even number of pairwise distinct points on
the boundary of the disc. This is a chordless ideal triangulation. More elaborate examples
of this kind will be considered and discussed later on. The 1-skeleton of an umbrella is
a wheel.

A less trivial example is the triangulation obtained by barycentric subdivision of a
triangulation of the disc.

Another example is the standard ‘diagonal’ triangulation of a polygon — it has no
interior vertices, so it is suitable; all edges, but those on the boundary, are chords. It can
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be shown that such a triangulation always has at least two even vertices on the boundary;
moreover, only even sided polygons have a diagonal triangulation with exactly two even
vertices on the boundary. For convenience (and for obvious reasons), if all diagonals emanate
from one single vertex a, the triangulation will be referred to as a fan centred at a; it is
the cone of apex a on the chain of edges not containing a.

To complete the proof of Theorem 2.1, we show that suitable triangulations of the 2-disc
are 3-colourable in a rather special way.

2. Theorem. Any vertex 3-colouring of an arbitrarily chosen triangle of a suitable trian-
gulation of the 2-disc extends uniquely to a 3-colouring of all vertices. Consequently, overall
vertex 3-colourings differ from one another by a colour permutation.

Proof. Let K be a suitable triangulation of the 2-disc, and let A be the triangle of K
whose vertex 3-colouring fa is to be extended.

Induct on the number of triangles in K. The base case is clear, so let K contain more
than one triangle.

If K has chords, let ab be one such, and notice that it ‘splits’ K into two ‘interior
disjoint’ suitable non-empty subtriangulations, L and M, whose boundaries share vertices
a and b and the edge ab alone (the two are glued along the chord). Both L and M have
fewer triangles than K, and exactly one of them, say L, contains A. By the induction
hypothesis, fa extends to a vertex 3-colouring in L. Now, let A’ be the unique triangle ab
faces in M. The colours a and b inherit from L then fix a vertex 3-colouring in A’. Refer
again to the induction hypothesis to extend this vertex 3-colouring in A’ to one in M, and
complete thereby a vertex 3-colouring f in K that extends fa.

To prove uniqueness, let g be any extension of fa to K. Since f and g both extend
fa to colourings in L, uniqueness in the induction hypothesis forces the two to agree in L.
Then they both agree in A’, and uniqueness in the induction hypothesis now forces them
both to agree in M as well. Consequently, f and g agree in K.

Henceforth, assume K chordless. Then every triangle in K has at most two vertices
in 0K; and if it has two such, then the edge joining the two is also in JK.

Consider first the case where A has one single edge in 0K, say ab. Let ¢ be the third
vertex of A and let A’ be the other triangle the edge be faces in K. The colours fa(b) and
fa(e) fix a vertex 3-colouring far in A’. Remove A and ab from K to obtain a suitable
subtriangulation K’ containing A’, with the same vertex set as K, but fewer triangles. By
the induction hypothesis, fas extends to a vertex 3-colouring f in K’. Since c is a boundary
even vertex of K’, the colourings f and fa agree at a; and since K and K’ have the same
vertex set, f is an extension of fa to K.

To establish uniqueness, let again g be any extension of fao to K. Since f and g both
extend fas in K’ uniqueness in the induction hypothesis forces the two to agree in K’; and
since K and K’ have the same vertex set, f and g agree in K as well.

We are left with the case where A has no edge in K. Let e be an edge in K, let A’ be
the unique triangle e faces in K, and let a be the vertex of A’ opposite e. Remove A’ and e
from K to obtain a suitable subtriangulation K’ containing A, with the same vertex set
as K, but fewer triangles. By the induction hypothesis, fa extends to a vertex 3-colouring
fin K’. Since K and K’ have the same vertex set, f is an extension of fa to K.
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As before, uniqueness is proved by considering an arbitrary extension g of fa to K.
Since f and g both extend fa in K’, uniqueness in the induction hypothesis forces the two
to agree in K'; and since K and K’ have the same vertex set, f and g agree in K as well.

The following two colour theorem is intimately related to the three colour theorem
above. It can be established mutatis mutandis along the same lines. However, we supply
two more proofs of the fact that such a colouring exists.

3. Theorem. Let K be a suitable triangulation of the 2-disc, and let Ay be a triangle
in K. Assigning Ag one of two colours extends uniquely to a 2-colouring of all triangles
in K, i e., each can be assigned one of those two colours so that no two triangles that share
an edge have the same colour.

As mentioned earlier, the two proofs below deal with existence of such an extension
alone. Uniqueness can then be established inductively as in the proof of Theorem 2.2.
The first proof refers to vertex 3-colouring.

1st Proof. Let f be a vertex 3-colouring in K. Recall the orientation fixed once and for all,
and view f as a simplicial extension f: |K| — A of the identity of Ag. Then deg(f|0A) =
+1 for each triangle A in K, and deg(f|0A) = — deg(f|0A’) whenever triangles A and A’
share an edge. Assigning a triangle A of K the colour of Ay if deg(f|0A) = 1, and the
other colour if deg(f|0A) = —1, defines an overall 2-colour extension satisfying the required
condition.

Remark. The 2-colour extension can equally well be obtained by pulling the overall
orientation along f back to the boundary of each triangle.

The second proof hinges on a duality argument.

2nd Proof. Extend K to a cell decomposition K of the 2-sphere S2 as follows: If K is
even, include the outer disc (Schoenflies); otherwise, draw edges from an extra vertex in
the open outer disc to all odd vertices of K (the latter all lie on the boundary) and include
all resulting cells. In either case, each vertex of K is even. The 2-cells of K are then
2-colourable, by duality: Each can be assigned one of two colours so that no two adjacent
2-cells share colour. (The 2-cocells are all even sided, so 1-cocycles are all even, and hence
the 1-skeleton of the dual is bipartite.) In particular, the triangles in K are 2-colourable.
If necessary, swap colours to let Ay have the preassigned colour.

Before moving on any further, let us take time out for a brief digression into a conse-
quence of Theorem 2.3, that goes, in the 3-colour setting, back to the combinatorial Stokes
formula [4,7,11,14,17]. The 2-colour approach seems, however, a bit easier to deal with.
Let n be the number of boundary even vertices of a suitable triangulation K ; Corollary 2.4
in the sequel rules out the case n = 1. Consider the n pairwise edge disjoint boundary
paths from one even vertex to the next such, and let £ be the number of odd such paths.
Measure path length by the number of inner vertices, and recall that the number of bound-
ary odd vertices of K is even, to infer that k = n (mod 2). By 2.3, the triangles of K are
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2-colourable; let ¢y be the number of triangles of one colour, and let ¢; be the number of tri-
angles of the other colour. Count triangles by simplicial neighbourhoods of vertices to infer
that 3(to+¢1) = n (mod 2), so tg+t1 =n (mod 2). Consequently, toc—t; =to+t1 =n=k
(mod 2). We end this digression by mentioning that, if K is ideal (n = 0), then an overall
3-colouring assigns every other boundary vertex the same colour, and the combinatorial
Stokes formula yields ¢ty = t1, as expected; in this case, colours (colour orientations) of
peripheral triangles alternate along the boundary.

The following corollary can be proved by using an overall vertex 3-colouring or directly,
as in the second proof above. Recall that there are at least three boundary vertices.

4. Corollary. The number of even vertices on the boundary of a suitably triangulated
2-disc is always different from 1.

1st Proof. Suppose, if possible, that some suitable triangulation has one single boundary
even vertex. Then the number of boundary vertices is odd. To reach a contradiction,
consider an overall vertex 3-colouring and notice that vertex colours alternate along the
boundary.

2nd Proof. Suppose again that K is a suitable triangulation with one single boundary
even vertex. Recall the cell extension K in the second proof of Theorem 2.3. In the case
at hand, K has one single non-triangular 2-cell which is quadrangular. Recall that the
2-cells of K are 2-colourable. To reach a contradiction, count edges by 2-cells of each colour
separately, to infer that the total number of edges of K is divisible by 3, on one hand, and
congruent to 1 modulo 3, on the other.

The example below shows that, given any non-negative integer n # 1, there exist suitable
triangulations of the 2-disc with exactly n even vertices on the boundary; existence of odd
vertices on the boundary is not ruled out. This example will also be referred to several
times later on in connection with the location of even vertices along the boundary.

5. Example. The even spoke umbrella settles the case n = 0. If n > 2, write p =
n+ 2|n/2], and let ag, ..., ap—1 be pairwise distinct points on the boundary, labelled in
cyclic order. Draw chords ag;agit2, i = 0,...,[(p — 3)/2]. Consider an interior point x
outside all triangles as;a2;41a2:42 and join it ‘radially’ to all as; and to both a; and ap_;.
Finally, let agas cross xa; at y to obtain a suitable triangulation whose boundary even
vertices are ag and as|(p—1)/2], along with all ag; 1, i =1,...,|[(p—3)/2], if n > 3; a total
score of exactly n boundary even vertices in all cases.

The next corollary is a first hint at the configuration of even vertices on the boundary of
a suitable triangulation. It can be proved with reference to Theorem 2.2 or Corollary 2.4,
or directly, along the lines in the second proof of Corollary 2.4. Recall again that there are
at least three boundary vertices.

6. Corollary. If a suitable triangulation has exactly two boundary even vertices, then the
boundary edge paths joining the two are both even.
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1st Proof. Consider a vertex 3-colouring in a suitable triangulation with exactly two
boundary even vertices. Then vertex colours alternate along each boundary edge path
joining these two vertices. Since the number of boundary vertices is even, if one of those
paths is odd, then so is the other, in which case the boundary neighbours of either boundary
even vertex share colour. This is a contradiction.

2nd Proof. Let K be a suitable triangulation with exactly two boundary even vertices, a
and b. Suppose one of the boundary edge paths joining a and b is odd. Let a = xg, x1, ...,
Tm = b be the vertices this boundary edge path passes through in order; thus, m is odd,
degy zo and degy =, are both even, and degy x; is odd for all other ¢’s. Let ¢ be an extra
vertex inside the outer disc (Schoenflies), and extend K to a triangulation K’ by including c,

along with all edges cx;, i = 0,...,m, and all triangles cx;z;41,4=0,...,m — 1. Thus, K’
has one more boundary vertex at ¢ and m — 1 more interior vertices 1, ..., T,;,_1. Since
degp x; =degrz; +1,i=0,...,m, and degy, ¢ = m + 1, the extension K’ is a suitable

triangulation with exactly one boundary even vertex at ¢. This contradicts Corollary 2.4
and concludes the proof.

The extension in the second proof above is the outcome of glueing two (suitable) trian-
gulations. Let K and K5 be two triangulations. Identifying an edge e; in K7 and an edge
eg in 0K glues K; and K5 together along e; = es to form a new triangulation Kj Ue, =, Ko
in which e; = es is a chord. If K; and K5 are both suitable, then so is Kj Ue, =, K2. This
extends in an obvious way to glueing two suitable triangulations along boundary edge paths
(one from each triangulation) of equal lengths whose corresponding interior vertices are of
like parity. The resulting triangulation is again suitable.

The glueing operation briefly described above turns out to be useful and will be referred
to in the subsequent sections.

3 Ideal Triangulations

Recall that an ideal triangulation is a suitable triangulations whose boundary vertices are all
odd. Alternatively, but equivalently, each vertex whatsoever, interior or on the boundary,
is incident with an even number of triangles. An ideal triangulation has an even number of
vertices on the boundary.

The first proof of Corollary 2.4 shows that a suitable triangulation is ideal if and only if an
overall vertex 3-colouring (and hence any such) assigns alternate boundary vertices the same
colour. The boundary vertex set of an ideal triangulation is hence 2-colourable. However,
a suitable triangulation whose boundary vertex set is 2-colourable is not necessarily ideal.
For n = 2, Example 2.5 exhibits a four boundary vertex suitable triangulation that is not
ideal. Since it is chordless, the four vertices on the boundary are 2-colourable. Yet, a
2-colouring of the boundary vertex set requires two more colours, one for each of the two
interior vertices, to complete an overall vertex colouring that be valid.

The following proposition is part of an alternative proof of vertex 3-colourability of
suitable triangulations — see the outline at the end of this section.

1. Proposition. Any suitable triangulation extends to an ideal triangulation.
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Proof. Let K be a suitable triangulation that is not ideal and recall the construction in the
second proof of Corollary 2.6: It extends K to a suitable triangulation with fewer boundary
even vertices by glueing an extra cone (a fan centred at an extra vertex) along a boundary
edge path from one even vertex on to the next such — the number of boundary even vertices
drops by 1 if that path is odd, and by 2 otherwise. Iteration eventually embeds K into an
ideal triangulation.

Remark. Here is a more effective way of dropping the number n of boundary even vertices
of a suitable triangulation. Consider |n/2] alternate boundary edge paths, each from
one even vertex on to the next such. Glueing extra cones with pairwise distinct apices
simultaneously, one along each of these vertex disjoint paths, almost halves the number of
boundary even vertices at a stroke: The resulting suitable triangulation has at most [n/2]
even vertices on the boundary. For instance, if those paths are all even, then so is n, by
Corollary 2.4, and the resulting triangulation is ideal.

Glueing two ideal triangulations along an edge yields an ideal triangulation with a chord
along that edge. The next corollary to Theorem 2.2 shows that, for every chord e in an
ideal triangulation K, the configuration (K, e) is the outcome of glueing the copies of two
ideal subtriangulations of K along e.

2. Corollary. Let K be an ideal triangulation of the 2-disc.

(a) No three pairwise distinct boundary vertices span a triangle in K. Alternatively, but
equivalently, a triangle in K has at most two vertices in 0K, and so K has at least one
interior vertex.

(b) The two suitable (non-empty) subtriangulations a chord splits K into are both ideal.
Consequently, the two edge paths the end points of a chord split 0K into are both odd.

Proof. Recall that a suitable triangulation is ideal if and only if an overall vertex 3-colouring
assigns alternate boundary vertices the same colour.

To prove (a), consider a vertex 3-colouring f in K. Since K is ideal, f restricts to a
2-colouring of the boundary vertex set, and the conclusion follows.

To establish (b), let L be one of the subtriangulations and let f be a vertex 3-colouring
in L. By Theorem 2.2, f extends (uniquely) to a vertex 3-colouring f in K. Since K is
ideal, f assigns alternate vertices along 0K the same colour. Then so does f along L.
Consequently, L is ideal. In particular, 0L has an even number of edges, one of which is
the chord. The remaining edges are all in 0K and form an odd path joining the end points
of the chord.

2nd Proof of (b). Let ab be a chord in K, and let L be one of the subtriangulations ab
splits K into. Suppose, if possible, L is not ideal. Corollary 2.4 then forces a and b to be
the only boundary even vertices of L. Since ab is a boundary edge of L, this contradicts
Corollary 2.6. The second part follows as before.

We end this section by outlining an alternative proof of vertex 3-colourability of suitable
triangulations. Recall that Corollaries 2.4, 2.6 and 3.2(b) can be proved with no reference
to vertex 3-colouring whatsoever. Using these facts alone, it is not hard to show that, if
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K is an ideal triangulation, then the third vertex of the unique triangle a boundary edge
faces in K is an interior vertex, and the boundary vertex set is 2-colourable. Induction
on the number of triangles then shows that a 2-colouring of the boundary vertices extends
uniquely to a vertex 3-colouring in K. Proposition 3.1 then completes an alternative proof
of vertex 3-colourability of suitable triangulations.

4 Even Triangulations

Recall that an even triangulation is one whose vertices are all even; it is a suitable triangu-
lation whose boundary vertices are all even. Alternatively, but equivalently, each interior
vertex is incident with an even number of triangles, while each boundary vertex is incident
with an odd number of triangles.

A disc with three pairwise distinct points on the boundary is clearly evenly triangulated.
The following example exhibits a less trivial even triangulation with three boundary vertices:
Let ag, a1, as be pairwise distinct points on the boundary of the disc. For each ¢ modulo 3,
draw the chord a;a;4+1 and let z;12 be an interior point of this chord. Joining each x; to
x;4+1 yields a triangulation each vertex of which has degree 4.

Here is a consequence of the three colour theorem for even triangulations.

1. Corollary. Given a positive integer n, there exists an even triangulation of the 2-disc
with exactly n boundary vertices if and only if n is divisible by 3, in which case the minimal
number of triangles is n — 2.

Proof. Sufficiency and minimality are easily established. Leaving the trivial case n = 3
aside, let n > 6, and let ag, ..., a,—1 be pairwise distinct points on the boundary of the disc,
labelled in cyclic order. Drawing chords agas;+1 and as;—1as;4+1 for all positive i <n/3—1,
yields an evenly triangulated disc with exactly n boundary vertices; the number of triangles
is n — 2, and hence minimal.

To prove necessity, simply notice that an overall vertex 3-colouring assigns every third
vertex on the boundary the same colour. Tracing the boundary completely then shows n
divisible by 3.

2nd Proof of Necessity. Recall the cell extension in the second proof of Theorem 2.3
whose 2-cells are 2-colourable. Counting edges by 2-cells of each colour separately, the total
number of edges is divisible by 3, on one hand, and congruent to n modulo 3, on the other.
Consequently, n is divisible by 3.

As a by-product of 4.1, the number of inner edges, and hence the number of edges, of
an even triangulation are both divisible by 3. Indeed, let ej,, and ey, be the numbers of
inner and outer (boundary) edges, respectively, and let ¢ be the number of triangles, to
write 2ein, + eouy = 3t and settle the case by 4.1.

The following corollary is a slight extension of 4.1. It can be proved directly, along the
lines in either argument above, or derived from Corollary 4.1. Let us opt for the latter.

2. Corollary. Let by, ..., by—1, n > 2, be the pairwise distinct boundary even vertices of
a suitable triangulation, labelled in cyclic order. If the n pairwise edge disjoint boundary



C. Popescu 141

paths b; ... b;41 are all odd, then n is divisible by 3. Consequently, if n is not divisible by 3,
then at least two of these paths are even.

Proof. To prove the first statement, glue n extra cones with pairwise distinct apices, one
along each boundary path b;...b;11, to obtain a 2n boundary vertex even triangulation.
Applied to this latter, Corollary 4.1 then shows that n is indeed divisible by 3.

To establish the second statement, recall that the total number of odd vertices is even
(they all lie on the boundary), and notice that the length of each boundary path b; ...b;41
exceeds by 1 the number of odd vertices it passes through. Consequently, the total number
of even paths b; ...b;y1 is even. If n is not divisible by 3, then the first statement forces at
least one such, and the conclusion follows.

The boundary even vertex set and the boundary edge paths considered above are dealt
with in further detail in the next section.

5 The Boundary Even Vertex Set

Corollaries 2.4 and 2.6, the Remark following Proposition 3.1, and Corollaries 4.1 and 4.2
are first glimpses into what the boundary even vertex set of a suitable triangulation may
look like. It seems reasonable to enquire further into the number of even vertices a suitably
triangulated disc may have on the boundary and the way they are located. Recall that
existence of odd vertices on the boundary is not ruled out, and the total number of such
vertices is even.

Parity of edge disjoint boundary paths from one even vertex to the next such is of
particular interest in locating even vertices along the boundary of a suitably triangulated
disc.

A suitably triangulated disc with exactly n even vertices on the boundary will be re-
ferred to as a suitably triangulated n-gon; its sides are the edge disjoint boundary paths
just mentioned. In the setting of Corollary 4.2, the b; are the vertices of the n-gon, and
the b;...b;41 are its sides. The length and parity of a side are, of course, those of the
corresponding boundary edge path.

Here are a few examples: An ideally triangulated disc is a suitably triangulated 0-gon.
Corollary 2.4 states that there are no suitably triangulated 1-gons. Example 2.5 exhibits
suitably triangulated n-gons for every integer n > 2: If n = 2, then both sides are even,
as required by Corollary 2.6; if n is even, n > 4, there are exactly two odd sides, agasz of
length 3 and ag,_3a2,—2 of unit length; and if n is odd, there are exactly three odd sides:
apag of length 3, and asy,_3a2,_2 and as,_2ag, both of unit length. Corollary 2.6 states
that the sides of a suitably triangulated 2-gon are both even. Proposition 3.1 states that
every suitably triangulated n-gon extends to a suitably triangulated 0-gon; and the Remark
that follows 3.1 shows that, if [n/2] alternate sides are even, then so is n. Corollary 4.1
states that evenly triangulated n-gons exist if and only if n is divisible by 3. Corollary 4.2
states that, if the sides of a suitably triangulated n-gon are all odd, then n is divisible by 3;
thus, if n is not divisible by 3, then at least two sides are even.

Consider a suitably triangulated n-gon, n > 2. The length of a side exceeds by one the
number of odd vertices it contains. Since the total number of odd vertices is even, so is the
number of even sides. Consequently, the number of odd sides and n share parity. Thus, if
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there are no odd sides, then n is even. For such an n, glueing n caps with pairwise distinct
apices, one along each boundary edge of an n spoke umbrella, yields a suitably triangulated
n-gon whose sides are all even (each of length 2). For convenience, this configuration will
be referred to later on as the n spoke ruffled umbrella.

The following proposition is intimately related and similar to Corollary 2.4.

1. Proposition. No suitably triangulated n-gon has exactly one odd side. Consequently,
if n is odd, then any suitably triangulated n-gon has at least three odd sides; in particular,
the sides of a suitably triangulated triangle are all odd.

Proof. Suppose, if possible, that some suitably triangulated n-gon has exactly one odd
side. Then n is odd, and glueing (n — 1)/2 cones with pairwise distinct apices, one along
every other even side, yields a suitably triangulated 1-gon. This contradicts Corollary 2.4
and proves the first statement; the next two then follow at once.

Remark. Example 2.5 shows that the lower bound in the second statement above is
achieved for every odd n.

By the preceding, a suitably triangulated n-gon whose sides are not all even, has at least
two odd sides (and n > 3, by 2.6). The (possibly empty) stretch of consecutive even sides
between two successive odd sides will be referred to as a separating chain; if there are no
odd sides, there are no separating chains either — as mentioned earlier, this may very well
be the case for every even n. The length of a separating chain is, of course, the number of
consecutive even sides it consists of; and its parity is the parity of its length. Separating
empty chains are, of course, even.

Let n > 3 and refer again to Example 2.5. If n is even, there are exactly two separating
chains and they are both odd: agas ... as,—3 has length n — 3, and as,_2a¢ has unit length.
If n is odd, there are exactly three separating chains and they are all even: two are empty,
and the third, asas ... as,—3, has length n — 3.

The separating chains of an evenly triangulated n-gon (Corollary 4.1) are all empty;
the same holds, of course, for any suitably triangulated n-gon whose sides are all odd, e. g.,
if n = 3, by 5.1. Corollary 4.2 shows that, if n is not divisible by 3, then any suitably
triangulated n-gon has at least one separating non-empty chain.

Suitably triangulated 0-gons and 2-gons have no separating chains; neither has the 2m
spoke ruffled umbrella.

Clearly, there are as many separating chains (empty ones, inclusive) as odd sides. Since
the parity of a separating chain and the parity of the number of odd vertices it contains are
the same, the number of separating odd chains is even, so the number of separating even
chains and n share parity.

The proposition below completes Proposition 5.1.

2. Proposition. No suitably triangulated n-gon has exactly one separating even chain.
Consequently, if n is odd, then any suitably triangulated n-gon has at least three separating
even chains; in particular, if it has exactly three odd sides, then the three separating chains
are all even.
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Proof. Clearly, only the first statement is to be dealt with. Suppose, if possible, that some
suitably triangulated n-gon has exactly one separating even chain. Then n is odd, and, by
Proposition 5.1, the total number & of odd sides is at least 3. Obviously, k is odd, and there
are exactly k — 1 separating odd chains. For every possible integer m and every separating
chain of length 2m — 1, glueing m cones with pairwise distinct apices, one along every other
side in the chain, then yields a suitably triangulated n’-gon, for some (odd) n’ < n, with
exactly one odd side (since k is odd). This contradicts Proposition 5.1 and concludes the
proof.

Remark. Example 2.5 shows again that the lower bound in the second statement above
is achieved for every odd n: There are exactly three odd sides, two separating chains are
empty, and the third has length n — 3, whence non-empty if n > 5. Let us just mention
that, for every odd n > 7, there exist suitably triangulated n-gons with exactly three odd
sides and only one separating empty chain; and for every odd n > 11, there exist suitably
triangulated n-gons with exactly three odd sides whose separating chains are all non-empty.
Such examples are obtained by suitable ‘widening’ surgery and triangulated disc insertion
to replace a separating empty chain by a non-empty one.

The next proposition completes Corollary 4.2 and, along with this latter, settles the case
for suitably triangulated quadrangles whose sides are not all even: Side parities alternate
along the boundary — letting n = 4 in Example 2.5 illustrates this configuration.

3. Proposition. If the separating chains of a suitably triangulated n-gon are all even,
then the total number k of odd sides is divisible by 3. Consequently, if k is not divisible
by 3, then at least two separating chains are odd; in particular, if k = 2, in which case n is
necessarily even, the separating chains are both odd.

Proof. As before, only the first statement requires proof. Consider a suitably triangulated
n-gon whose separating chains are all even. For every possible integer m and every sepa-
rating chain of length 2m, glue m cones with pairwise distinct apices, one along every other
side in the chain, to end up with a suitably triangulated k-gon whose sides are all odd.
Applied to this latter, Corollary 4.2 then shows k divisible by 3.

Propositions 5.2 and 5.3 settle the case for suitably triangulated pentagons: Three sides
are odd, two separating chains are empty, and the third has length 2 — letting n = 5 in
Example 2.5 illustrates this configuration.

The lower bound in the second statement in 5.3 is achieved for every even n > 4, as
Example 2.5 shows; in this case, k = 2. In fact, this lower bound is achieved for every n > 6,
regardless of the class of £ modulo 3. More precisely, for every n > 6, there exists a suitably
triangulated n-gon with exactly two even sides that are not adjacent — hence, exactly two
separating odd chains, each of unit length. This is just the special case £ = 2 of part (a) in
the last proposition below.

Before stating and proving this proposition, notice the following simple trick: The length
of a side can be increased by 2, and indeed by any even number, without changing any parity
whatsoever: Choose any edge ab along that side, consider the vertex ¢ opposite ab in the
unique triangle ab faces, and subdivide this triangle by joining ¢ to two extra vertices on ab.
We may and will therefore assume that the length of some even side, if any, is at least 4.
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4. Proposition. (a) If there exists a suitably triangulated n-gon with exactly ¢ even sides,
£ > 2, then there exists a suitably triangulated (n+ 2)-gon with exactly £ even sides, at least
one of which is flanked by odd sides.

(b) For every even n > 2 and every positive even £ < n, there exists a suitably triangulated
n-gon with exactly ¢ even sides.

(c) For every oddn > 5 and every positive even £ < n—3, there exists a suitably triangulated
n-gon with exactly ¢ even sides.

Proof. (a) To obtain the desired configuration from one whose existence is assumed,
consider an even side of length at least 4, and glue a cone along the path formed by all
inner edges of that side. This latter is thus replaced in the new configuration by a side of
length 2 flanked by two sides of unit length. There are no other changes whatsoever along
the remaining part of the boundary, and the interior vertices of the new configuration are
all even. The conclusion follows.

(b) Induct on n. Corollary 2.6 settles the base case n = 2. For an even n > 4, the
above argument and the induction hypothesis imply the conclusion for every positive even
¢ < n — 2. The n spoke ruffled umbrella settles the case ¢ = n.

(¢) Induct on n again. The paragraph following the proof of 5.3 settles the base case
n = 5. As in the proof of part (b), for an odd n > 7, the conclusion holds for every positive
even £ < n — 5. Finally, Example 2.5 settles the case { =n — 3.
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