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Abstract

Let R be a commutative Noetherian ring and I be an ideal of R. Then, I has the
strong persistence property if (Ik+1 :R I) = I

k for all k. Also, we say that I has the
symbolic strong persistence property if (I(k+1) :R I

(1)) = I
(k) for all k, where I

(k) de-
notes the k-th symbolic power of I . In this paper, by using some monomial operations,
such as expansion, weighting, monomial multiple, monomial localization, and contrac-
tion, we introduce several methods for constructing new monomial ideals which have
the symbolic strong persistence property based on the monomial ideals which have the
symbolic strong persistence property. We also probe the strong persistence property
of the cover ideal of the union of two finite simple graphs.
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1 Introduction

Let I be an ideal in a commutative Noetherian ring R. A prime ideal p ⊂ R is an associated
prime of I if there exists an element such as c in R such that p = (I :R c). The set of
associated primes of I, denoted by AssR(R/I), is the set of all prime ideals associated to
I. A well-known result of Brodmann [5] showed that the sequence {AssR(R/Ik)}k≥1 of
associated prime ideals is stationary for large k, that is, there exists a positive integer k0
such that AssR(R/Ik) = AssR(R/Ik0) for all integers k ≥ k0. The minimal such k0 is called
the index of stability of I and AssR(R/Ik0) is called the stable set of associated prime ideals
of I, which is denoted by Ass∞(I). In general, studying the stable set and the index of
stability for ideals is complicated, refer to [14, 20, 23] for more details. One can ask many
questions in the context of Brodmann’s theorem. An ideal I of R satisfies the persistence
property if AssR(R/Ik) ⊆ AssR(R/Ik+1) for all positive integers k. Furthermore, an ideal I
of R has the strong persistence property if (Ik+1 :R I) = Ik for all positive integers k. One
can easily prove that the strong persistence property implies the persistence property, see
[18, Proposition 2.9]. Ratliff [25] showed that (Ik+1 :R I) = Ik for all large k. Now, let I
be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a field K and x1, . . . , xn

are indeterminates. Generally speaking, finding classes of monomial ideals which have the
persistence property is intricate. Especially, it has been verified in [12] that there exists a
square-free monomial ideals which does not satisfy the persistence property. However, it has
been proved in [16] that all edge ideals of finite simple graphs have the strong persistence
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property; even, this result is true for every finite graph with loops, see [26]. Also, it
is known by [10] that every polymatroidal ideal has the strong persistence property. In
addition, based on [6], the cover ideals of perfect graphs satisfy the persistence property.
It also has been established in [21] that the cover ideals of some imperfect graphs have the
strong persistence property, that is, cycle graphs of odd orders, wheel graphs of even orders,
and helm graphs of odd orders with greater than or equal to 5. Furthermore, according to
[19], it has been introduced two classes of monomial ideals which have the strong persistence
property, that is, unisplit and separable monomial ideals. Also, an ideal I is called normally
torsion-free if Ass(R/Ik) ⊆ Ass(R/I) for all k, see [13, 27] for more information. Along this
argument, the concept of symbolic strong persistence property was presented in [26]. An
ideal I in a commutative Noetherian ring R has the symbolic strong persistence property
if (I(k+1) :R I(1)) = I(k) for all k, where I(k) =

⋂

p∈Min(I)(I
kRp ∩ R) denotes the k-th

symbolic power of I. It has been shown in [26] that the strong persistence property implies
the symbolic strong persistence property, but little is known for the classes of monomial
ideals which satisfy the symbolic strong persistence property. One of the main purposes
in this paper is to introduce several methods for constructing new monomial ideals which
have the symbolic strong persistence property based on the monomial ideals which have the
symbolic strong persistence property.

This paper is organized as follows. In Section 2, by using the weighting operation, we
first show that a monomial ideal has the symbolic strong persistence property if and only
if its weighted ideal has the symbolic strong persistence property (Theorem 1). Next, by
considering the contraction operation, our goal is to establish that if a monomial ideal has
the symbolic strong persistence property, then its contracted ideal has the symbolic strong
persistence property as well (Theorem 2). Especially, by using the monomial localization of
a monomial ideal with respect to a monomial prime ideal, we prove that if a monomial ideal
I has the symbolic strong persistence property, then I(p) has the strong persistence property
for all p ∈ Min(I), and hence has the symbolic strong persistence property (Theorem 3).
After that, by means of the expansion operation, we verify that a monomial ideal has the
symbolic strong persistence property if and only if its expansion has the symbolic strong
persistence property (Theorem 4).

In Section 3, we give several new results on the strong persistence property and sym-
bolic strong persistence property. For this purpose, we first demonstrate that if I is an
ideal in a commutative Noetherian ring R, then I has the symbolic strong persistence prop-
erty if and only if Ip has the strong persistence property for all p ∈ Min(I), where Ip
denotes the localization of I at p (Theorem 5). Next, we present some calsses of square-
free monomial ideals which have the strong persistence property (Theorems 6), and as an
application, we re-prove that the cover ideal of any odd cycle has the strong persistence
property (Theorem 7). After that, we focus on a useful theorem which tells us that if I is
a monomial ideal in a polynomial ring R = K[x1, . . . , xn] and G(I) = G1 ∪ · · · ∪ Gr such
that {xs : xs|m for some m ∈ Gi} ∩ {xt : xt|m for some m ∈ Gj} = ∅ for all 1 ≤ i 6= j ≤ r,
then (Gi)R has the symbolic strong persistence property for some 1 ≤ i ≤ r if and only if
I has the symbolic strong persistence property (Theorem 9). We finish this section with a
lemma which say that, under certain condition, a monomial ideal has the symbolic strong
persistence property if and only if its monomial multiple has the symbolic strong persistence
property.

Section 4 is concerned with the strong persistence property of the cover ideal of the
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union of two finite simple graphs. To do this, we start with a theorem which examines
the relation between assoicated primes of powers of the cover ideal of the union of two
finite simple graphs with the assoicated primes of powers of the cover ideals of each of
them, under the condition that they have only one common vertex (Theorem 11). We next
concentrate on a theorem which tells us the relation between assoicated primes of powers
of the cover ideal of the union of two finite simple connected graphs with the assoicated
primes of powers of the cover ideals of each of them, under the condition that they have
only one edge in common (Theorem 12). In particular, under the condition of Theorem 11
(respectively, Theorem 12) for two simple finite graphs G and H , if J(G) and J(H) have
the strong persistence property, then J(G ∪ H) has the strong persistence property. We
close this section by expressing two counterexamples which explore the relation between
assoicated primes of powers of the cover ideal of the union of two finite simple connected
graphs with the assoicated primes of powers of the cover ideals of each of them, in a general
case (Questions 2 and 3).

Throughout this paper, we denote the unique minimal set of monomial generators of a
monomial ideal I by G(I). Also, R = K[x1, . . . , xn] is a polynomial ring over a field K and
x1, . . . , xn are indeterminates. The symbol N will always denote the set of positive integers.
A simple graph G means that G has no loop and no multiple edge. All graphs in this paper
are undirected. Moreover, if G is a finite simple graph, then J(G) stands for the cover ideal
of G.

2 Symbolic strong persistence property under some
monomial operations

The aim of this section is to state some methods for constructing new monomial ideals
which have the symbolic strong persistence property based on the monomial ideals which
have the symbolic strong persistence property. To do this, we first show that a monomial
ideal has the symbolic strong persistence property if and only if its weighted ideal has the
symbolic strong persistence property. To see this, one requires to recall the definition of
weighted ideals.

Definition 1. A weight over a polynomial ring R = K[x1, . . . , xn] over a field K is a
function w : {x1, . . . , xn} → N, wi = w(xi). Then wi is called the weight of the variable xi.
Given a monomial m = xα1

1 · · ·xαn
n we denote mw = xw1α1

1 · · ·xwnαn
n . If I is a monomial

ideal and w a weight, the weighted ideal of I is Iw =
(

mw | m ∈ G(I)
)

.

For example, consider the monomial ideal I = (x2
1x2x

6
3, x

3
2x4x

4
5) in the polynomial ring

R = K[x1, x2, x3, x4, x5]. Also, let w : {x1, x2, x3, x4, x5} → N be a weight over R with
w(x1) = 2, w(x2) = 4, w(x3) = 2, w(x4) = 3, and w(x5) = 1. Hence, the weighted ideal Iw
is given by Iw = (x4

1x
4
2x

12
3 , x12

2 x3
4x

4
5).

The following proposition and lemma are necessary for us to prove the subsequent
theorem.

Proposition 1. Let I, J , and L be monomial ideals in a polynomial ring R = K[x1, . . . , xn]
over a field K, and w a weight over R. Then (I :R J) = L if and only if (Iw :R Jw) = Lw.
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Proof. This result is a straightforward consequence of the fact that gcd and lcm of two
monomials behave well with respect to taking weights.

Lemma 1. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a field
K, and w a weight over R. Then (I(k))w = (Iw)

(k) for all k ∈ N.

Proof. It is straightforward, and left to the reader.

We are ready to state one of the main result of this section in the following theorem.

Theorem 1. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K, and w a weight over R. Then I has the symbolic strong persistence property if and
only if Iw has the symbolic strong persistence property.

Proof. We can combine together Proposition 1 and Lemma 1 to obtain the claim.

In what follows, our goal is to establish that if a monomial ideal has the symbolic strong
persistence property, then its contracted ideal has the symbolic strong persistence property
as well. To accomplish this, we first need to prove several auxiliary results as follows.

Notation 1. Given 1 ≤ i ≤ n and a monomial m = xα1

1 · · ·xαn
n in a polynomial ring

R = K[x1, . . . , xn], we set mxi=1 := xα1

1 · · ·xαi−1

i−1 x
αi+1

i+1 · · ·xαn
n .

Definition 2. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K and 1 ≤ i ≤ n. We define the contracted ideal of I, denoted by I\xi

, as the ideal of
R generated by {mxi=1 | m ∈ G(I)}.

Proposition 2. Let A be a finite set of irreducible monomial ideals whose radicals are
mutually incomparable with respect to inclusion. Then

⋂

Q∈A Q is a minimal primary de-
composition.

Proof. Assume that A := {Q1, . . . , Qr}. Let pi =
√
Qi for all i. If there exists j such that

∩i6=jQi ⊆ Qj, then ∩i6=jpi ⊆ pj , which implies that pi ⊆ pj for some i 6= j, a contradiction.

Lemma 2. Let I and J be monomial ideals in a polynomial ring R = K[x1, . . . , xn] over a
field K, and 1 ≤ i ≤ n. Then

(i) (I ∩ J)\xi
= I\xi

∩ J\xi
.

(ii) (IJ)\xi
= I\xi

J\xi
.

(iii) (Ik)\xi
= (I\xi

)k for all k ∈ N.

(iv) If I = Q1 ∩ · · · ∩Qr is a minimal primary decomposition of I, then

I\xi
=

⋂

xi /∈G(
√

Qj)

Qj and (I\xi
)(1) =

⋂

xi /∈G(
√

Qj),
√

Qj∈Min(I)

Qj.
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(v) (I(k))\xi
= (I\xi

)(k) for all k ∈ N.

Proof. (i) It follows from the fact that lcm(u, v)xi=1 = lcm(uxi=1, vxi=1).
(ii) This claim can be deduced from the fact that (uv)xi=1 = uxi=1vxi=1.
(iii) The desired conclusion follows immediately from (ii).
(iv) If I = Q1 ∩ · · · ∩Qr is a minimal primary decomposition of I, then part (i) implies

that I\xi
= (Q1)\xi

∩ · · · ∩ (Qr)\xi
. In addition, for each j = 1, . . . , r, we have

(Qj)\xi
=

{

R if xi ∈ G(
√

Qj)
Qj if xi /∈ G(

√

Qj).

Accordingly, we get I\xi
=

⋂

xi /∈G(
√

Qj)
Qj . Based on Proposition 2, one can conclude

the minimal primary decomposition of I\xi
. Finally, since p ∈ Min(I\xi

) if and only if
p ∈ Min(I) and xi /∈ G(p), we gain the following equality

(I\xi
)(1) =

⋂

xi /∈G(
√

Qj),
√

Qj∈Min(I)

Qj .

(v) Let Ik = Q1 ∩ · · · ∩ Qr be a minimal primary decomposition of Ik, where
√

Qj is

a minimal prime of I if and only if j ≤ r′′, and xi /∈ G(
√

Qj) if and only if j ≤ r′ ≤ r′′.

We thus have I(k) = Q1 ∩ · · · ∩Qr′′ . By parts (i) and (iii), one can conclude that (I\xi
)k =

(Ik)\xi
= (Q1)\xi

∩ · · · ∩ (Qr)\xi
. Furthermore, part (iv) and the fact that L(k) = (Lk)(1)

for every monomial ideal L, yield that (I\xi
)(k) = Q1 ∩ · · · ∩Qr′ = (I(k))\xi

.

Proposition 3. Let I, J , and L be monomial ideals in a polynomial ring R = K[x1, . . . , xn]
over a field K such that (I :R J) = L, and 1 ≤ i ≤ n. Then (I\xi

:R\xi
J\xi

) = L\xi
.

Proof. Let mxi=1 ∈ G(L\xi
) and axi=1 ∈ G(J\xi

), where m ∈ G(L) an a ∈ G(J). Since
ma ∈ I, this gives that (ma)xi=1 ∈ I\xi

. It follows now from (ma)xi=1 = mxi=1axi=1 ∈
I\xi

that L\xi
⊆ (I\xi

:R\xi
J\xi

).
To conclude our argument, one has to establish the reverse inclusion. To do this, consider

A as the set of exponents of xi in the monomials of G(I) ∪ G(J), and set a := maxA. Take
a monomial m ∈ (I\xi

:R\xi
J\xi

). This implies that mxa
i ∈ (I :R J), and so mxa

i ∈ L.
That is, mxa

i = ℓf , where f ∈ G(L) and ℓ is a monomial in R. We therefore have mxi=1 =
(mxa

i )xi=1 = (ℓf)xi=1 ∈ L\xi
. Because mxi=1 | m, this yields that m ∈ L\xi

, as required.

As an immediate consequence of Proposition 3, we get the corollary below.

Corollary 1. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K, and 1 ≤ i ≤ n. If I has the strong persistence property, then I\xi

has the strong
persistence property.

Proof. Assume I has the strong persistence property, and fix k ≥ 1. On account of (Ik+1 :R
I) = Ik, Proposition 3 implies that ((Ik+1)\xi

:R\xi
I\xi

) = (Ik)\xi
. Here, Lemma 2 (iii)

yields that ((I\xi
)k+1 :R\xi

I\xi
) = (I\xi

)k. This means that I\xi
has the strong persistence

property, as desired.
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We are now in a position to express another main result of this section in Theorem 2.

Theorem 2. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K, and 1 ≤ i ≤ n. If I has the symbolic strong persistence property, then I\xi

has the
symbolic strong persistence property.

Proof. Suppose that I has the symbolic strong persistence property. Fix k ≥ 1. In the light
of (I(k+1) : I(1)) = I(k), it follows from Proposition 3 that ((I(k+1))\xi

:R\xi
(I(1))\xi

) =

(I(k))\xi
. By virtue of Lemma 2 (iv), one can deduce that ((I\xi

)(k+1) :R\xi
(I\xi

)(1)) =

(I\xi
)(k). That is, I\xi

has the symbolic strong persistence property. This completes the
proof.

To understand Theorem 3, one has to recall the definition of the monomial localization
of a monomial ideal with respect to a monomial prime ideal as has been introduced in [10].
Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a field K. We
also denote by V ∗(I) the set of monomial prime ideals containing I. Let p = (xi1 , . . . , xir )
be a monomial prime ideal with p ∈ V ∗(I). The monomial localization of I with respect
to p, denoted by I(p), is the ideal in the polynomial ring R(p) = K[xi1 , . . . , xir ] which is
obtained from I by applying the K-algebra homomorphism R → R(p) with xj 7→ 1 for all
xj /∈ {xi1 , . . . , xir}.

Theorem 3. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K such that I has the symbolic strong persistence property. Then I(p) has the strong
persistence property for all p ∈ Min(I), and hence has the symbolic strong persistence
property.

Proof. Fix k ≥ 1 and p ∈ Min(I). The assumption implies that (I(k+1) :R I(1)) = I(k).
This yields that (I(k+1) :R I(1))(p) = I(k)(p). It follows now from [24, Lemma 4.6 (iv)] that
(I(k+1)(p) :R(p) I(1)(p)) = I(k)(p). Since p ∈ Min(I), by [24, Lemma 4.6 (vii)], we obtain

I(s)(p) = Is(p) for all s. Thus, one can conclude that (Ik+1(p) :R(p) I(p)) = Ik(p). On

account of [24, Lemma 4.6 (ii)], we get ((I(p))k+1 :R(p) I(p)) = (I(p))k. Therefore, I(p) has
the strong persistence property, and hence has the symbolic strong persistence property, as
required.

Definition 3. ([28, Definition 6.1.5]) Let u = xa1

1 · · ·xan
n be a monomial in a polynomial

ring R = K[x1, . . . , xn] over a field K. The support of u is given by supp(u) := {xi| ai > 0}.
In addition, for a monomial ideal I of R with G(I) = {u1, . . . , um}, we define supp(I) :=
⋃m

i=1 supp(ui).

To see an application of Theorem 3, one can consider Question 1. To do this, we begin
with the definition of monomial ideals of clutter type in the following definition.

Definition 4. [22] Let I be a non-square-free monomial ideal in a polynomial ring R =
K[x1, . . . , xn] over a field K with G(I) = {u1, . . . , ur}. We say that I is of clutter type if√
ui ∤

√
uj (or equivalently, supp(ui) * supp(uj)) for each 1 ≤ i 6= j ≤ r.
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Example 1. [22] Let I = (x1x
2
2x3, x2x

2
3x4, x3x

2
4x5, x4x

2
5x1, x5x

2
1x2) be a monomial ideal

in the polynomial ring R = K[x1, x2, x3, x4, x5] over a field K. Then one can rapidly see
that I is of clutter type. Note that I does not satisfy both the persistence property and
strong persistence property since m = (x1, x2, x3, x4, x5) ∈ AssR(R/I) \ AssR(R/I2) and
(I2 :R I) 6= I.

Question 1. Does every non-square-free monomial ideal of clutter type have the symbolic
strong persistence property?

The answer is negative. We provide a counterexample. To accomplish this, con-
sider the monomial ideal I = (x4

1x3, x
3
1x2x4, x1x

3
2x5, x

4
2x6) in the polynomial ring R =

K[x1, x2, x3, x4, x5, x6] over a field K. It is easy to check that I is a non-square-free mono-
mial ideal of clutter type. Furthermore, using Macaulay2 [8] implies that (x1, x2) ∈ Min(I).
On account of Theorem 3, one can deduce that I(p) = (x4

1, x
3
1x2, x1x

3
2, x

4
2) has the symbolic

strong persistence property, whereas the monomial ideal I(p) does not satisfy the symbolic
strong persistence property since (I(p)(2) : I(p)(1)) 6= I(p)(1).

Finally, we want to examine the symbolic strong persistence property under expansion
operation. Indeed, we show that a monomial ideal has the symbolic strong persistence
property if and only if its expansion has the symbolic strong persistence property. To do
this, we recall the definition of the expansion of a monomial ideal, which has been introduced
in [2]. Let K be a field and R = K[x1, . . . , xn] be the polynomial ring over a field K in the
variables x1, . . . , xn. Fix an ordered n-tuple (i1, . . . , in) of positive integers, and consider
the polynomial ring R(i1,...,in) over K in the variables

x11, . . . , x1i1 , x21, . . . , x2i2 , . . . , xn1, . . . , xnin .

Let pj be the monomial prime ideal (xj1, xj2, . . . , xjij ) ⊆ R(i1,...,in) for all j = 1, . . . , n.
Attached to each monomial ideal I ⊂ R a set of monomial generators {xa1 , . . . ,xam},
where xai = x1

ai(1) · · ·xn
ai(n) and ai(j) denotes the jth component of the vector ai =

(ai(1), . . . , ai(n)) for all i = 1, . . . ,m. We define the expansion of I with respect to the
n-tuple (i1, . . . , in), denoted by I(i1,...,in), to be the monomial ideal

I(i1,...,in) =

m
∑

i=1

p
ai(1)
1 · · · pai(n)

n ⊆ R(i1,...,in).

We simply write R∗ and I∗, respectively, rather than R(i1,...,in) and I(i1,...,in). Note that
the expansion operation is applied to the unique set of minimal monomial generators of the
monomial ideal I.

For example, consider the polynomial ring R = K[x1, x2, x3, x4] and the ordered 4-
tuple (1, 2, 2, 3). Then we have p1 = (x11), p2 = (x21, x22), p3 = (x31, x32), and p4 =
(x41, x42, x43). Hence, for the monomial ideal I = (x1x3, x2x4, x

2
3), the ideal

I∗ ⊆ K[x11, x21, x22, x31, x32, x41, x42, x43]

is p1p3 + p2p4 + p23, namely

I∗ = (x11x31, x11x32, x21x41, x21x42, x21x43, x22x41, x22x42, x22x43, x
2
31, x31x32, x

2
32).
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Let us provide the other main result of this section in the subsequent theorem.

Theorem 4. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a field
K. Then I has the symbolic strong persistence property if and only if I∗ has the symbolic
strong persistence property.

Proof. We first note that I = J if and only if I∗ = J∗. To prove the forward implication,
let I have the symbolic strong persistence property. Fix k ≥ 1. The assumption yields that
(I(k+1) :R I(1)) = I(k). In view of [2, Lemma 1.1 and Corollary 1.4], one has the following
equalities

((I∗)(k+1) :R∗ (I∗)(1)) = ((I(k+1))∗ :R∗ (I(1))∗)

= (I(k+1) :R I(1))∗

= (I(k))∗

= (I∗)(k).

This means that I∗ has the symbolic strong persistence property. Conversely, assume that I∗

has the symbolic strong persistence property. Accordingly, we have ((I∗)(k+1) :R∗ (I∗)(1)) =
(I∗)(k). On account of [2, Lemma 1.1 and Corollary 1.5], we get ((I∗)(k+1) :R∗ (I∗)(1)) =
(I(k+1) :R I(1))∗ and (I∗)(k) = (I(k))∗. This implies that (I(k+1) :R I(1))∗ = (I(k))∗, and so
(I(k+1) :R I(1)) = (I(k)). That is, I has the symbolic strong persistence property.

3 Some results on the (symbolic) strong persistence

property

In this section, we give several results on the strong persistence property and symbolic
strong persistence property. For this purpose, we begin with Theorem 5. To achieve this,
one has to recall the following proposition.

Proposition 4. ([22]) Let I be an ideal in a commutative Noetherian ring R. Also, let
I = Q1∩ · · · ∩Qt ∩Qt+1 ∩ · · · ∩Qr be a minimal primary decomposition of I with pi =

√
Qi

for each i = 1, . . . , r, and Min(I) = {p1, . . . , pt}. Then Ipi
= (Qi)pi

for each i = 1, . . . , t.

Theorem 5. Let I be an ideal in a commutative Noetherian ring R. Then I has the
symbolic strong persistence property if and only if Ip has the strong persistence property for
all p ∈ Min(I), where Ip denotes the localization of I at p.

Proof. (⇒) Assume that I has the symbolic strong persistence property. Let Min(I) =
{p1, . . . , pt}. Without loss of generality, it is enough to show that (Ik+1

p1
:Rp1

Ip1
) = Ikp1

for
all k ≥ 1. Fix k ≥ 1. Also, for all s, suppose that

Is = Qs,1 ∩ · · · ∩Qs,t ∩Qs,t+1 ∩ · · · ∩Qs,rs ,

is a minimal primary decomposition of Is with
√

Qs,i = pi for each i = 1, . . . , t, and
√

Qs,i

is not minimal for each i = t+ 1, . . . , rs. We therefore have

I(1) =

t
⋂

i=1

Q1,i, I(k) =

t
⋂

i=1

Qk,i, and I(k+1) =

t
⋂

i=1

Qk+1,i.
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Since I has the symbolic strong persistence property, one has (I(k+1) :R I(1)) = I(k),

and hence (I
(k+1)
p1

:Rp1
I
(1)
p1

) = I
(k)
p1

. It follows also from Proposition 4 that, for all s,

(Is)p1
= (Qs,1)p1

and (I(s))p1
= (Qs,1)p1

. We thus gain (Ik+1
p1

:Rp1
Ip1

) = Ikp1
, as required.

(⇐) Assume that Ip has the strong persistence property for all p ∈ Min(I). Want to
show that (I(k+1) :R I(1)) = I(k) for all k ≥ 1. To accomplish this, fix k ≥ 1. Our strategy

is to use [17, Exercise 6.4]. For this purpose, one has to prove that (I
(k+1)
q :Rq

I
(1)
q ) = I

(k)
q

for all q ∈ AssR(R/I(k)). With the notation which has been used in the proof of the forward
implication, and by considering the fact that AssR(R/I(s)) = Min(Is) = Min(I) for all s,
one can deduce that AssR(R/I(k)) = {p1, . . . , pt}. Without loss of generality, we need only

demonstrate that (I
(k+1)
p1

:Rp1
I
(1)
p1

) = I
(k)
p1

. Since Ip1
has the strong persistence property,

we obtain that (Ik+1
p1

:Rp1
Ip1

) = Ikp1
. As (Is)p1

= (Qs,1)p1
and (I(s))p1

= (Qs,1)p1
for all s,

one derives that (I
(k+1)
p1

:Rp1
I
(1)
p1

) = I
(k)
p1

. This completes the proof.

To show the next corollary, one needs the following proposition.

Proposition 5. Every irreducible primary monomial ideal has the strong persistence prop-
erty. Especially, every prime monomial ideal has the strong persistence property.

Proof. Fix k ≥ 1, and assume that Q = (xα1

i1
, . . . , xαt

it
) is an irreducible primary monomial

ideal in a polynomial ring R = K[x1, . . . , xn] over a field K with α1, . . . , αt are positive
integers and {xi1 , . . . , xit} ⊆ {x1, . . . , xn}. We prove that (Qk+1 :R Q) = Qk for all
positive integers k. Fix k ≥ 1. Because Qk ⊆ (Qk+1 :R Q), it remains to show that
(Qk+1 :R Q) ⊆ Qk. To do this, one needs to verify that (Qk+1 :R (xα1

i1
)) ⊆ Qk. Here,

inspired by [19, Remark 2.5], one can deduce the following equalities,

Qk+1 :R (xα1

i1
) =

(

∑

θ1+···+θt=k+1

((xα1

i1
)θ1 · · · (xαt

it
)θt)

)

:R (xα1

i1
)

=
∑

θ1+···+θt=k+1

((xα1

i1
)θ1 · · · (xαt

it
)θt) :R (xα1

i1
)

=
∑

θ1=0, θ2+···+θt=k+1

((xα2

i2
)θ2 · · · (xαt

it
)θt)

+
∑

θ1≥1, θ1+···+θt=k+1

((xα1

i1
)θ1−1 · · · (xαt

it
)θt).

As ((xα2

i2
)θ2 · · · (xαt

it
)θt) ⊆ Qk with θ2 + · · · + θt = k + 1 and ((xα1

i1
)θ1−1 · · · (xαt

it
)θt) ⊆ Qk

with θ1 ≥ 1, θ1 + · · ·+ θt = k+1, we conclude that (Qk+1 :R (xα1

i1
)) ⊆ Qk, as required.

Corollary 2. Let I be an ideal in a commutative Noetherian ring R. Let I = Q1∩· · ·∩Qm∩
Qm+1∩· · ·∩Qr be a minimal primary decomposition of I such that Min(I) = {p1, . . . , pm},
where pi =

√
Qi for each i = 1, . . . ,m. If Qi has the strong persistence property for each

i = 1, . . . ,m, then I has the symbolic strong persistence property. In particular, every
square-free monomial ideal has the symbolic strong persistence property.
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Proof. Fix k ≥ 1. By virtue of Proposition 4, we get Ipi
= (Qi)pi

for each i = 1, . . . ,m.
Since Qi has the strong persistence property for each i = 1, . . . ,m, one has (Qk+1

i :R Qi) =
Qk

i for each i = 1, . . . ,m. Thus, ((Qi)
k+1
pi

:Rpi
(Qi)pi

) = (Qi)
k
pi

for each i = 1, . . . ,m. This
implies that Ipi

has the strong persistence property for each i = 1, . . . ,m. Now, the claim
follows from Theorem 5. The last assertion is a direct consequence from Proposition 5,
which says that every prime monomial ideal has the strong persistence property.

Along [21, Question 3.7], we present the following theorem.

Theorem 6. Suppose that I is a square-free monomial ideal in a polynomial ring R =
K[x1, . . . , xn] over a field K. Also, for all s ≥ 2, suppose that AssR(R/Is) = AssR(R/I) ∪
{q} such that qst is the primary component of the embedded prime q, where

t := min{|{xj1 , . . . , xjℓ}| : xj1 · · ·xjℓ ∈ I}.

Then I has the strong persistence property.

Proof. To show the claim, it is sufficient to verify that (Ik+1 :R I) ⊆ Ik for all k. Fix k ≥ 1.
Let Min(I) = {p1, . . . , pr}. Since AssR(R/Is) = AssR(R/I)∪{q} and Min(I) = AssR(R/I),
we deduce from [28, Definition 4.3.22 and Proposition 4.3.25] and the assumption that Is =
ps1 ∩ · · · ∩ psr ∩ qst is a minimal primary decomposition of Is for all s ≥ 2. Pick an arbitrary
monomial u in (Ik+1 :R I). Fix 1 ≤ j ≤ r. Since pi * pj for 1 ≤ i 6= j ≤ r, this implies that
one can choose an element such as vi ∈ pi \ ∪j 6=ipj . Let λ be an element in pj. Because
u ∈ (Ik+1 :R I), we have uI ⊆ Ik+1, and by v1 · · · vj−1λvj+1 · · · vr ∈ ⋂r

i=1 pi, one derives

that uλv1 · · · vj−1vj+1 · · · vr ∈ ⋂r
i=1 p

k+1
i ∩q(k+1)t. This yields that uλv1 · · · vj−1vj+1 · · · vr ∈

p
k+1
j . Due to vi /∈ pj for 1 ≤ i 6= j ≤ r, we obtain that v1 · · · vj−1vj+1 · · · vr /∈ pj . Thanks

to p
k+1
j is primary, one has uλ ∈ p

k+1
j , and hence u ∈ (pk+1

j :R pj). It follows from

Proposition 5 that pj has the strong persistence property, and so u ∈ pkj . Accordingly, we

have u ∈ ⋂r
i=1 p

k
i . To finish the proof, one requires to establish u ∈ qkt. Without loss

of generality, let x1 · · ·xt ∈ ⋂r
i=1 pi. This implies that ux1 · · ·xt ∈ Ik+1. We thus have

ux1 · · ·xt ∈ q(k+1)t, and therefore there exists some monomial h ∈ G(q(k+1)t) such that

h|ux1 · · ·xt. Assume that h = xα1

1 · · ·xαn
n and u = xβ1

1 · · ·xβn
n with αi ≥ 0 and βi ≥ 0

for each i. Since h ∈ G(q(k+1)t), this means that h is a minimal generator of q(k+1)t,
and by considering the assumption that q is a prime monomial ideal, one can conclude that
α1+· · ·+αn = (k+1)t. On account of h|ux1 · · ·xt, this yields that (k+1)t ≤ β1+· · ·+βn+t,
and hence kt ≤ β1 + · · · + βn. Consequently, one can conclude that u ∈ qkt. This implies
that u ∈ Ik, and the proof is complete.

It has already been proved that the cover ideal of any odd cycle graph satsfies the strong
persistence property, see [21, Theorem 3.3]. As an application of Theorem 6, we re-prove
this fact in Theorem 7. To do this, we need the following auxiliary lemma. Indeed, in
Lemma 3, we give a minimal primary decomposition of the powers of the cover ideal of any
odd cycle graph.
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Lemma 3. Let C2n+1 be an odd cycle graph with V (C2n+1) = {1, . . . , 2n+1} and E(C) =
{{i, i+ 1} : i = 1, . . . , 2n+ 1}, where 2n+ 2 = 1. Then, for all s ≥ 2,

J(C2n+1)
s =

2n+1
⋂

i=1

(xi, xi+1)
s ∩m

s(n+1),

where m = (x1, . . . , x2n+1) is the unique homogeneous maximal ideal in the polynomial ring
R = K[x1, . . . , x2n+1] over a field K.

Proof. Since J(C2n+1) =
⋂2n+1

i=1 (xi, xi+1), it is sufficient for us to prove that

(

2n+1
⋂

i=1

(xi, xi+1))
s =

2n+1
⋂

i=1

(xi, xi+1)
s ∩m

s(n+1). (3.1)

Let A (respectively, B) denote the ideal on the left-hand (respectively, right-hand) side of

(3.1). Fix s ≥ 2. We first show that A ⊆ B. As
⋂2n+1

i=1 (xi, xi+1) ⊆ (xi, xi+1) for each

i = 1, . . . , 2n+1, this implies that (
⋂2n+1

i=1 (xi, xi+1))
s ⊆ ⋂2n+1

i=1 (xi, xi+1)
s. To complete the

argument, it suffices to prove that (
⋂2n+1

i=1 (xi, xi+1))
s ⊆ ms(n+1). To see this, consider a

minimal generator u in (
⋂2n+1

i=1 (xi, xi+1))
s. We thus have u =

∏s
i=1 gi, where each gi is

a minimal generator of
⋂2n+1

i=1 (xi, xi+1). By virtue of
⋂2n+1

i=1 (xi, xi+1) is exactly the cover
ideal of the odd cycle C2n+1 and because of any minimal geneator of J(C2n+1) corresponds
to a minimal vertex cover of C2n+1, and also by considering the fact that any minimal vertex
cover of C2n+1 has at least n+1 elements, we can deduce that degu =

∑s
i=1 deggi ≥ s(n+1).

This implies that u ∈ ms(n+1). Accordingly, one has A ⊆ B.
We now verify that B ⊆ A. For this purpose, select a minimal generator u in B. Let

u := xℓ1
1 · · ·xℓ2n+1

2n+1 with ℓi ≥ 0 for each i = 1, . . . , 2n+1. Our strategy is to use [21, Lemma
3.2]. To accomplish this, one has to demonstrate that ℓi+ℓi+1 ≥ s for eech i = 1, . . . , 2n+1

and
∑2n+1

i=1 [(ℓi+ℓi+1)−s] ≥ s. Fix 1 ≤ i ≤ 2n+1. It follows from u ∈ B that u ∈ (xi, xi+1)
s,

and so xαi

i xs−αi

i+1 |u for some 0 ≤ αi ≤ s. This implies that ℓi + ℓi+1 ≥ s. To finish the

proof, we establish
∑2n+1

i=1 [(ℓi + ℓi+1) − s] ≥ s. Since u ∈ B, one has u ∈ ms(n+1), and so

xθ1
1 · · ·xθ2n+1

2n+1 |u with
∑2n+1

i=1 θi = s(n+ 1). This gives that

2n+1
∑

i=1

[(ℓi + ℓi+1)− s] =

2n+1
∑

i=1

(ℓi + ℓi+1)− s(2n+ 1)

=2

2n+1
∑

i=1

ℓi − s(2n+ 1)

≥2

2n+1
∑

i=1

θi − s(2n+ 1)

=s.

We therefore have u ∈ A, and thus B ⊆ A, as required.

Theorem 7. The cover ideal of any odd cycle graph satsfies the strong persistence property.
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Proof. Let C2n+1 be an odd cycle graph with V (C2n+1) = {1, . . . , 2n + 1} and E(C) =
{{i, i+1} : i = 1, . . . , 2n+1}, where 2n+2 = 1. Fis s ≥ 2. It follows from Lemma 3 that

J(C2n+1)
s = (

2n+1
⋂

i=1

(xi, xi+1))
s =

2n+1
⋂

i=1

(xi, xi+1)
s ∩m

s(n+1), (3.2)

where m = (x1, . . . , x2n+1) is the unique homogeneous maximal ideal in the polynomial
ring R = K[x1, . . . , x2n+1] over a field K. In other words, (3.2) is a minimal primary
decomposition of J(C2n+1)

s. This gives rise to the following equality

AssR(R/J(C2n+1)
s) = AssR(R/J(C2n+1)) ∪ {m}.

In the light of any minimal geneator of J(C2n+1) corresponds to a minimal vertex cover of
C2n+1, and by remembering the fact that any minimal vertex cover of C2n+1 has at least
n+ 1 elements, and also J(C2n+1) =

⋂

p∈AssR(R/J(C2n+1))
p, one can derive

t = min{|{xj1 , . . . , xjℓ}| : xj1 · · ·xjℓ ∈ J(C2n+1)} = n+ 1.

Now, Theorem 6 gives that J(C2n+1) satisfes the strong persistence property, as claimed.

To establish Lemma 4, we require to know the following proposition.

Proposition 6. Suppose that I1 and I2 are two monomial ideals in a polynomial ring
R = K[x1, . . . , xn] over a field K such that G(I1) ⊆ R1 = K[x1, . . . , xm] and G(I2) ⊆ R2 =

K[xm+1, . . . , xn] for some positive integer m, 1 ≤ m < n. Then (I1I2)
(k) = I

(k)
1 I

(k)
2 for all

k ≥ 1.

Proof. Fix k ≥ 1. Since I1 and I2 are generated by disjoint sets of variables, [11, Lemma
1.1] implies that I1I2 = I1 ∩ I2. In particular, we have Min(I1 ∩ I2) = Min(I1) ∪Min(I2).
Hence, one can conclude the following equalities

(I1 ∩ I2)
(k) =

⋂

p∈Min(I1∩I2)

((I1 ∩ I2)
kRp ∩R)

=
⋂

p∈Min(I1)

((I1)
kRp ∩R) ∩

⋂

p∈Min(I2)

((I2)
kRp ∩R)

= I
(k)
1 ∩ I

(k)
2 .

We therefore obtain the following equalities

(I1I2)
(k) = (I1 ∩ I2)

(k) = I
(k)
1 ∩ I

(k)
2 = I

(k)
1 I

(k)
2 .

This completes our argument.

The theorem below is crucial for us to show Lemma 4.
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Theorem 8. ([9, Theorem 3.4]) (I + J)(n) =
∑

i+j=n I(i)J (j).

In order to establish Theorem 9, one needs to prove the following lemma.

Lemma 4. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K such that I = I1R + I2R, where G(I1) ⊆ R1 = K[x1, . . . , xm] and G(I2) ⊆ R2 =

K[xm+1, . . . , xn] for some positive integer 1 ≤ m < n. Then I(s) =
⋂s

i=1(I
(i)
1 + I

(s+1−i)
2 )

for all s ∈ N.

Proof. Fix s ∈ N, and set Lt := I
(t)
1 +

∑t−1
i=0 I

(i)
1 ∩ I

(s−i)
2 with 1 ≤ t ≤ s. In what follows,

want to prove that Lt =
⋂t

i=1(I
(i)
1 + I

(s+1−i)
2 ). To achieve this, we proceed by induction on

t. One can easily see that the assertion is true for the case in which t = 1. Now, suppose,
inductively, that t > 1 and that the result has been proved for all r less than t with t ≤ s.

It follows also from the inductive hypothesis that Lt−1 =
⋂t−1

i=1(I
(i)
1 + I

(s+1−i)
2 ). It is well-

known that if α ≤ β, then I(β) ⊆ I(α). Hence, I
(t)
1 ⊆ I

(t−1)
1 , and so I

(t)
1 ∩ I

(t−1)
1 = I

(t)
1 . In

addition, if 0 ≤ i ≤ t−2 ≤ s, then s+1− t ≤ s− i, and thus I
(s−i)
2 ⊆ I

(s+1−t)
2 . This implies

∑t−2
i=0 I

(i)
1 ∩I

(s−i)
2 ⊆ I

(s+1−t)
2 , and so I

(s+1−t)
2 ∩∑t−2

i=0 I
(i)
1 ∩I

(s−i)
2 =

∑t−2
i=0 I

(i)
1 ∩I

(s−i)
2 . Now,

by considering the fact that I
(t)
1 ∩∑t−2

i=0 I
(i)
1 ∩ I

(s−i)
2 ⊆ ∑t−2

i=0 I
(i)
1 ∩ I

(s−i)
2 , we get

I
(t)
1 ∩ I

(t−1)
1 + I

(t−1)
1 ∩ I

(s−t+1)
2 + I

(t)
1 ∩

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2 + I

(s+1−t)
2 ∩

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2

= I
(t)
1 + I

(t−1)
1 ∩ I

(s−t+1)
2 +

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2 .

Hence, one can derive the following equalities

Lt = I
(t)
1 +

t−1
∑

i=0

I
(i)
1 ∩ I

(s−i)
2

= I
(t)
1 + I

(t−1)
1 ∩ I

(s−t+1)
2 +

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2

= I
(t)
1 ∩ I

(t−1)
1 + I

(t−1)
1 ∩ I

(s−t+1)
2

+ I
(t)
1 ∩

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2 + I

(s+1−t)
2 ∩

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2

= (I
(t)
1 + I

(s+1−t)
2 ) ∩ (I

(t−1)
1 +

t−2
∑

i=0

I
(i)
1 ∩ I

(s−i)
2 )

= (I
(t)
1 + I

(s+1−t)
2 ) ∩ Lt−1

= (I
(t)
1 + I

(s+1−t)
2 ) ∩

t−1
⋂

i=1

(I
(i)
1 + I

(s+1−i)
2 )

=

t
⋂

i=1

(I
(i)
1 + I

(s+1−i)
2 ).
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This completes the inductive step, and so the claim has been proved by induction. Espe-

cially, one can conclude that Ls =
⋂s

i=1(I
(i)
1 + I

(s+1−i)
2 ), and hence

s
⋂

i=1

(I
(i)
1 + I

(s+1−i)
2 ) = I

(s)
1 +

s−1
∑

i=0

I
(i)
1 ∩ I

(s−i)
2 =

s
∑

i=0

I
(i)
1 ∩ I

(s−i)
2 .

On account of G(I1) ⊆ R1 = K[x1, . . . , xm] and G(I2) ⊆ R2 = K[xm+1, . . . , xn], Proposition

6 yields that I
(i)
1 ∩ I

(s−i)
2 = I

(i)
1 I

(s−i)
2 for each i = 0, . . . , s. Therefore, we get

⋂s
i=1(I

(i)
1 +

I
(s+1−i)
2 ) =

∑s
i=0 I

(i)
1 I

(s−i)
2 . Finally, it follows from Theorem 8 that

⋂s
i=1(I

(i)
1 +I

(s+1−i)
2 ) =

(I1 + I2)
(s) = I(s), as required.

We are now ready to express and prove Theorem 9.

Theorem 9. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a
field K and G(I) = G1 ∪ · · · ∪Gr such that

{xs : xs|m for some m ∈ Gi} ∩ {xt : xt|m for some m ∈ Gj} = ∅,

for all 1 ≤ i 6= j ≤ r. Then (Gi)R has the symbolic strong persistence property for some
1 ≤ i ≤ r if and only if I has the symbolic strong persistence property.

Proof. It is enough to show our claim only for r = 2. To accomplish this, let I be a monomial
ideal in R = K[x1, . . . , xn] such that I = I1R + I2R, where G(I1) ⊆ R1 = K[x1, . . . , xm]
and G(I2) ⊆ R2 = K[xm+1, . . . , xn] for some positive integer 1 ≤ m < n. We first show
the forward implication. Without loss of generality, assume that I1 has the symbolic strong

persistence property. Also, let G(I(1)1 ) = {v1, . . . , vt}. Our main aim is to prove that
(I(k+1) :R I(1)) = I(k) for all k. Now, fix k ∈ N. By virtue of the assumption, one has
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(I
(i)
1 :R I

(1)
1 ) = I

(i−1)
1 for all i. By applying Lemma 4, we have the following equalities

(I(k+1) :R I
(1)
1 ) = (

k+1
⋂

i=1

(I
(i)
1 + I

(k+2−i)
2 ) :R I

(1)
1 )

=
k+1
⋂

i=1

t
⋂

j=1

((I
(i)
1 :R vj) + (I

(k+2−i)
2 :R vj))

=

k+1
⋂

i=1

t
⋂

j=1

((I
(i)
1 :R vj) + I

(k+2−i)
2 )

=

k+1
⋂

i=1

(I
(k+2−i)
2 + ∩t

j=1(I
(i)
1 :R vj))

=

k+1
⋂

i=1

(I
(k+2−i)
2 + (I

(i)
1 :R I

(1)
1 ))

=

k+1
⋂

i=2

(I
(k+2−i)
2 + I

(i−1)
1 )

=

k
⋂

ℓ=1

(I
(k+1−ℓ)
2 + I

(ℓ)
1 )

= I(k).

Thanks to I(k) ⊆ (I(k+1) :R I(1)) and (I(k+1) :R I(1)) ⊆ (I(k+1) :R I
(1)
1 ), one can conclude

that (I(k+1) :R I(1)) = I(k). This completes the proof.
To establish the converse implication, suppose, on the contrary, that I1 and I2 do not

satisfy the symbolic strong persistence property. This implies that there exist a posi-
tive integer k1 (respectively, k2) and a monomial m1 (respectively, m2) such that m1 ∈
G(I(k1+1)

1 :R I
(1)
1 ) \ G(I(k1)

1 ) (respectively, m2 ∈ G(I(k2+1)
2 :R I

(1)
2 ) \ G(I(k2)

2 )). Note that, in
general, if α ≤ β, then I(β) ⊆ I(α). Take the nonnegative integer a1 (respectively, a2) such

that m1 ∈ I
(a1)
1 \ I(a1+1)

1 (respectively, m2 ∈ I
(a2)
2 \ I(a2+1)

2 ). This gives that a1 ≤ k1 − 1
(respectively, a2 ≤ k2 − 1). Put m := m1m2 and b := a1 + a2. Thus, one has m ∈ I(b).
We claim that m /∈ I(b+1). Suppose, on the contrary, that m ∈ I(b+1). Since, by Theorem

8, I(b+1) =
∑b+1

ℓ=0 I
(ℓ)
1 I

(b+1−ℓ)
2 , one obtains that m ∈ I

(ℓ)
1 I

(b+1−ℓ)
2 for some 0 ≤ ℓ ≤ b + 1.

We thus have there exist u1 ∈ G(I(ℓ)1 ) and u2 ∈ G(I(b+1−ℓ)
2 ) such that u1u2|m1m2. Con-

sequently, u1|m1m2 and u2|m1m2. Because gcd(u1,m2) = 1 and gcd(u2,m1) = 1, one

has u1|m1 and u2|m2. This implies that m1 ∈ I
(ℓ)
1 and m2 ∈ I

(b+1−ℓ)
2 . It follows from

m1 ∈ I
(a1)
1 \ I

(a1+1)
1 and m2 ∈ I

(a2)
2 \ I

(a2+1)
2 that a1 ≥ ℓ and a2 ≥ b + 1 − ℓ. This gives

that a1 + a2 ≥ b+ 1, which contradicts the fact that b = a1 + a2. Accordingly, m /∈ I(b+1).
By setting s1 := k1 + 1+ a2 and s2 := a1 + k2 + 1, one can easily see that si ≥ a1 + a2 + 2
for each i = 1, 2. Hence, s := min{s1, s2} ≥ a1 + a2 + 2. In addition, it is routine to check

that if u ∈ G(I(1)1 ) (respectively, u ∈ G(I(1)2 )), then mu ∈ I(s1) (respectively, mu ∈ I(s2)).
Therefore, we get m ∈ (I(s) :R I(1)) \ I(s−1), which contradicts the assumption that I has
the symbolic strong persistence property. This finishes the proof.
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The following lemma says that, under certain condition, a monomial ideal has the sym-
bolic strong persistence property if and only if its monomial multiple has the symbolic
strong persistence property.

Lemma 5. Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a field
K, and h be a monomial in R. Also, let gcd(h, u) = 1 for all u ∈ G(I). Then I has the
symbolic strong persistence property if and only if hI has the symbolic strong persistence
property.

Proof. To simplify notation, set L := hI. We first assume that I has the symbolic strong
persistence property. This means that (I(k+1) :R I(1)) = I(k) for all k. In order to complete
the argument, one has to show that (L(k+1) :R L(1)) = L(k) for all k. Fix k ≥ 1. It follows
readily from Proposition 6 that (hI)(k) = hkI(k). In view of (L(k+1) :R h) = (hk+1I(k+1) :R
h) = hkI(k+1), one can conclude that (L(k+1) :R L(1)) = (hkI(k+1) :R I(1)). By virtue of
gcd(h, u) = 1 for all u ∈ G(I), we get gcd(h, v) = 1 for all v ∈ G(I(1)). The assumption
yields that (L(k+1) :R L(1)) = hkI(k) = (hI)(k). Therefore, (L(k+1) :R L(1)) = L(k), and the
proof is over.

To establish the converse implication, suppose that L has the symbolic strong persistence
property. Want to prove that (I(k+1) :R I(1)) = I(k) for all k. To do this, fix k ≥ 1.
Because of L has the symbolic strong persistence property, we get (L(k+1) :R L(1)) = L(k),
and hence (hk+1I(k+1) :R hI(1)) = hkI(k). This yields that (hkI(k+1) :R I(1)) = hkI(k).
Moreover, a similar argument gives that (hkI(k+1) :R I(1)) = hk(I(k+1) :R I(1)), and so
hk(I(k+1) :R I(1)) = hkI(k). This implies that (I(k+1) :R I(1)) = I(k), that is, I has the
symbolic strong persistence property, as claimed.

4 Strong persistence property of the cover ideals

The main aim of this section is to explore the strong persistence property of the cover ideal
of the union of two finite simple graphs. To accomplish this, we have to recall the following
results.

The following lemma examines the relation between assoicated primes of powers of the
cover ideal of the union of a finite simple connected graph and a tree with the assoicated
primes of powers of the cover ideals of each of them, under the condition that they have
only one common vertex.

A repeated application of [21, Theorem 2.5] yields the following lemma:

Lemma 6. ([22]) Let G = (V (G), E(G)) be a finite simple connected graph and T be a tree
such that |V (G) ∩ V (T )| = 1. Let L = (V (L), E(L)) be the finite simple graph such that
V (L) := V (G) ∪ V (T ) and E(L) := E(G) ∪ E(T ). Then

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪AssR2

(R2/J(T )
s),

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (T )], and R = K[xα : α ∈
V (L)] over a field K.

The next lemma explores the relation between assoicated primes of powers of the cover
ideal of the union of a finite simple connected graph and a tree with the assoicated primes
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of powers of the cover ideals of each of them, under the condition that they have only a
path in common. In fact, a repeated application of Lemma 6 gives the following lemma:

Lemma 7. ([22]) Let G = (V (G), E(G)) be a finite simple connected graph, T1, . . . , Tr be
some trees with V (G)∩V (Ti) = {vi} for each i = 1, . . . , r, and P = (V (P ), E(P )) be a path
with V (P ) = {v1, . . . , vr, vr+1, . . . , vm} ⊆ V (G), and

E(P ) = {{vi, vi+1} : for i = 1, . . . ,m− 1} ⊆ E(G).

Let T = (V (T ), E(T )) be the tree with

V (T ) =
(

r
⋃

i=1

V (Ti)
)

∪ V (P ) and E(T ) =
(

r
⋃

i=1

E(Ti)
)

∪ E(P ).

Also, let L = (V (L), E(L)) be the finite simple graph such that

V (L) := V (G) ∪ V (T ) and E(L) := E(G) ∪ E(T ).

Then
AssR(R/J(L)s) = AssR′(R′/J(G)s) ∪ AssR′′ (R′′/J(T )s),

for all s, where R′ = K[xα : α ∈ V (G)], R′′ = K[xα : α ∈ V (T )], and R = K[xα : α ∈
V (L)] over a field K.

In the next theorem, we turn our attention to study the strong persistence property of
the cover ideal of the union of two finite simple connected graphs.

Theorem 10. ([22]) Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite simple
connected graphs such that J(G) and J(H) have the strong persistence property. Also, let
L = (V (L), E(L)) be the finite simple graph such that V (L) := V (G) ∪ V (H), E(L) :=
E(G) ∪ E(H), and

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s),

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)], and R = K[xα :
α ∈ V (L)] over a field K. Then, under each of the following cases, J(L) has the strong
persistence property.

(i) V (G) ∩ V (H) = {v}.

(ii) V (G) ∩ V (H) = {v, w} and E(G) ∩ E(H) = {{v, w}}.

(iii) V (G) ∩ V (H) = {v, w, z} and E(G) ∩E(H) = {{v, w}, {w, z}}.
To verify Theorem 11, one needs to know the following auxiliary propositions as well.

Proposition 7. ([22]) Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn]
over a field K with G(I) = {u1, . . . , um} and AssR(R/I) = {p1, . . . , ps}. Then, the following
statements hold.

(i) If xi|ut for some i, 1 ≤ i ≤ n, and for some t, 1 ≤ t ≤ m, then there exists some j,
1 ≤ j ≤ s, such that xi ∈ pj.
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(ii) If xi ∈ pj for some i, 1 ≤ i ≤ n, and for some j, 1 ≤ j ≤ s, then there exists some t,
1 ≤ t ≤ m, such that xi|ut.

Especially,
⋃s

j=1 supp(pj) =
⋃m

t=1 supp(ut).

Proposition 8. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite simple
connected graphs. Let L = (V (L), E(L)) be the finite simple graph such that V (L) :=
V (G) ∪ V (H) and E(L) := E(G) ∪ E(H). Then

AssR1
(R1/J(G)s) ∪AssR2

(R2/J(H)s) ⊆ AssR(R/J(L)s).

Proof. To simplify our notation, put I1 := J(G), I2 := J(H), and I := J(L). Take an arbi-
trary element p = (xi1 , . . . , xir ) in AssR1

(R1/I
s
1) ∪ AssR2

(R2/I
s
2 ) with {i1, . . . , ir} ⊆ V (L).

Let p ∈ AssR1
(R1/I

s
1). In view of Proposition 7, one has supp(p) ⊆ ⋃

u∈G(I1)
supp(u). This

leads to {i1, . . . , ir} ⊆ V (G). It follows from [6, Lemma 2.11] that p ∈ Ass(K[p]/J(Gp)
s),

where K[p] = K[xi1 , . . . , xir ] and Gp is the induced subgraph of G on the vertex set
{i1, . . . , ir} ⊆ V (G). Thanks to Gp = Lp, we get p ∈ Ass(K[p]/J(Lp)

s). Once again,
using [6, Lemma 2.11] yields that p ∈ AssR(R/Is). A similar discussion shows that if
p ∈ AssR2

(R2/I
s
2), then p ∈ AssR(R/Is). Therefore, one can conclude that

AssR1
(R1/I

s
1) ∪ AssR2

(R2/I
s
2) ⊆ AssR(R/Is),

as claimed.

The following theorem examines the relation between assoicated primes of powers of the
cover ideal of the union of two finite simple graphs with the assoicated primes of powers
of the cover ideals of each of them, under the condition that they have only one common
vertex.

Theorem 11. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite simple con-
nected graphs such that |V (G)∩V (H)| = 1. Let L = (V (L), E(L)) be the finite simple graph
such that V (L) := V (G) ∪ V (H) and E(L) := E(G) ∪E(H). Then

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s),

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)], and R = K[xα : α ∈
V (L)]. In particular, if J(G) and J(H) have the strong persistence property, then J(L) has
the strong persistence property.

Proof. Fix s ≥ 1, and let V (G) ∩ V (H) = {v}. If G or H is a tree, then the claim follows
rapidly from Lemma 6 and Theorem 10. Hence, we can assume that neither G nor H is a
tree. On account of Proposition 8, we gain the following containment

AssR1
(R1/J(G)s) ∪AssR2

(R2/J(H)s) ⊆ AssR(R/J(L)s).

In order to complete the proof, it is sufficient to verify the reverse inclusion. To achieve
this, pick an arbitrary element p = (xi1 , . . . , xir ) in AssR(R/J(L)s). Based on Proposition
7, we have {i1, . . . , ir} ⊆ V (L). Moreover, it follows from [6, Lemma 2.11] that p ∈
Ass(K[p]/J(Lp)

s), where K[p] = K[xi1 , . . . , xir ] and Lp is the induced subgraph of L
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on the vertex set {i1, . . . , ir}. Hereafter, we assume that p is the maximal ideal in the
polynomial ring R = K[p]. To simplify the notation, put Γ := {xc : c ∈ V (G) \ {v}} and
Λ := {xc : c ∈ V (H) \ {v}}. Take an arbitrary element u in G(J(L)). Because of neither
G nor H is a tree, one can conclude that neither G nor H is a star graph or an edge, and
so supp(u) ∩ Γ 6= ∅ and supp(u) ∩ Λ 6= ∅. Since J(L) = J(G) ∩ J(H), this implies that
u = ab/gcd(a, b) for some a ∈ G(J(G)) and b ∈ G(J(H)). Hence, one may consider the
following cases:

Case 1. a = f and b = g, where f (respectively, g) is a square-free monomial in the
variables Γ (respectively, Λ). Hence, one has u = fg.

Case 2. a = xvf and b = g, where f (respectively, g) is a square-free monomial in the
variables Γ (respectively, Λ). We thus have u = xvfg.

Case 3. a = f and b = xvg, where f (respectively, g) is a square-free monomial in the
variables Γ (respectively, Λ). Therefore, one obtains that u = xvfg.

Case 4. a = xvf and b = xvg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). Due to gcd(a, b) = xv, one can conclude that u = xvfg.

The argument above gives that if u ∈ G(J(L)), then u = Afg, where A|xv and f
(respectively, g) is a square-free monomial in the variables Γ (respectively, Λ) such that
Af ∈ J(G) (respectively, Ag ∈ J(H)). Since p ∈ AssR(R/J(L)s), we get there exists some
monomial h in R such that p = (J(L)s :R h). Assume that h = h1h2x

ρ
v with h1 (respec-

tively, h2) is a monomial in the variables Γ (respectively, Λ), and ρ is a nonnegative integer.
It follows readily from [15, Lemma 2.1] that (J(G)s :R h1h2x

ρ
v) = (J(G)s :R h1x

ρ
v) and

(J(H)s :R h1h2x
ρ
v) = (J(H)s :R h2x

ρ
v). Since (J(L)s :R h) ⊆ (J(G)s :R h) (respectively,

(J(L)s :R h) ⊆ (J(H)s :R h)), one can conclude that p ⊆ (J(G)s :R h1x
ρ
v) (respectively,

p ⊆ (J(H)s :R h2x
ρ
v)). Our aim is to demonstrate that h1x

ρ
v /∈ J(G) or h2x

ρ
v /∈ J(H). Sup-

pose, on the contrary, that h1x
ρ
v ∈ J(G) and h2x

ρ
v ∈ J(H). It follows from h1x

ρ
v ∈ J(G)s

(respectively, h2x
ρ
v ∈ J(H)s) that there exist square-free monomials M1, f1, . . . , fs (re-

spectively, M2, g1, . . . , gs) in the variables Γ (respectively, Λ), and A1, . . . , As (respectively,
A′

1, . . . , A
′
s) with Ai|xv (respectively, A′

i|xv) and Aifi ∈ J(G) (respectively, A′
igi ∈ J(H))

for each i = 1, . . . , s, such that

h1x
ρ
v = (

s
∏

i=1

Aifi)M1x
θ
v (respectively, h2x

ρ
v = (

s
∏

i=1

A′
igi)M2x

λ
v ),

for some nonnegative integer θ (respectively, λ). We thus have h1 = (
∏s

i=1 fi)M1, h2 =
(
∏s

i=1 gi)M2, and (
∏s

i=1 Ai)x
θ
v = xρ

v = (
∏s

i=1 A
′
i)x

λ
v . Accordingly, one has

h1h2x
ρ
v = (

s
∏

i=1

fi)M1(

s
∏

i=1

gi)M2x
ρ
v = (

s
∏

i=1

figi)M1M2x
ρ
v.

Since (
∏s

i=1 Ai)x
θ
v = xρ

v = (
∏s

i=1 A
′
i)x

λ
v , we get h1h2x

ρ
v ∈ J(L)s, and so h ∈ J(L)s; this

contradicts the fact that p = (J(L)s :R h). We therefore gain h1x
ρ
v /∈ J(G) or h2x

ρ
v /∈ J(H).

As p is the maximal ideal, one has p ∈ AssR1
(R1/J(G)s) or p ∈ AssR2

(R2/J(H)s), and so
we have the following equality

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s), (4.1)
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as required. The last claim is an immediate consequence of Theorem 10 and (4.1).

To demonstrate Theorem 12, one needs to apply the following lemma.

Lemma 8. Let G = (V (G), E(G)) be a finite simple connected graph and H be a triangle
graph such that |V (G) ∩ V (H)| = 2 and |E(G) ∩ E(H)| = 1. Let L = (V (L), E(L)) be the
finite simple graph such that V (L) := V (G) ∪ V (H) and E(L) := E(G) ∪E(H). Then

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s),

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)], and R = K[xα : α ∈
V (L)] over a field K. In particular, if J(G) has the strong persistence property, then J(L)
has the strong persistence property.

Proof. Let V (H) = {v, w, z}, V (G) ∩ V (H) = {v, w}, and E(G) ∩E(H) = {{v, w}}. Since
the claim is true for the case s = 1, we only argue for all s ≥ 2. Fix s ≥ 2. It follows at
once from Proposition 8 the containment below

AssR1
(R1/J(G)s) ∪AssR2

(R2/J(H)s) ⊆ AssR(R/J(L)s).

For completing the proof, it is enough for us to prove the reverse inclusion. To accomplish
this, select an arbitrary element p = (xi1 , . . . , xir ) in AssR(R/J(L)s). One can conclude
from Proposition 7 that {i1, . . . , ir} ⊆ V (L). If z /∈ {i1, . . . , ir}, then {i1, . . . , ir} ⊆ V (G),
and [6, Lemma 2.11] implies that p ∈ AssR1

(R1/J(G)s). We thus let z ∈ {i1, . . . , ir}. In
view of [3, Lemma 2.4], Lp is a connected graph, where Lp denotes the induced graph on
{i1, . . . , ir}. This leads to the following cases:

Case 1. v ∈ {i1, . . . , ir} but w /∈ {i1, . . . , ir} (or w ∈ {i1, . . . , ir} but v /∈ {i1, . . . , ir}).
We only consider the case v ∈ {i1, . . . , ir} but w /∈ {i1, . . . , ir}, while the other case
is proved similarly. Because p ∈ AssR(R/J(L)s), [6, Lemma 2.11] concludes that p ∈
AssR(R/J(Lp)

s). Since w /∈ {i1, . . . , ir}, one derives that V (Lp) = V (Gp) ∪ {v, z} and
E(Lp) = E(Gp) ∪ {{v, z}}. By [21, Theorem 2.5], we have Ass(J(Lp)

s) = Ass(J(Gp)
s) ∪

{(xv, xz)}. If p = (xv, xz), then p ∈ Min(J(H)), and hence p ∈ AssR2
(R2/J(H)s).

If p ∈ Ass(J(Gp)
s), then [6, Lemma 2.11] yields that p ∈ AssR1

(R1/J(G)s), and so
p ∈ AssR1

(R1/J(G)s) ∪ AssR2
(R2/J(H)s).

Case 2. v, w ∈ {i1, . . . , ir}. Without loss of generality, one may assume that i1 = v,
i2 = w, and i3 = z. Based on [6, Corollary 4.5], the associated primes of J(L)s will
correspond to critical chromatic subgraphs of size s + 1 in the s-th expansion of L. This
means that one can take the induced subgraph on the vertex set {i1, . . . , ir}, and then
form the s-th expansion on this induced subgraph, and within this new graph find a critical
(s + 1)-chromatic graph. Thanks to z is only connected to v and w in the graph L, and
since this induced subgraph is critical, if we remove the vertex z, we can color the resulting
graph with s colors. Also, by virtue of [4, Theorem 14.6], the vertex z has to be adjacent
to at least s vertices. But the only things z is adjacent to are the shadows of z and the
shadows of v and w, and hence one has a clique among these vertices. We thus gain that z
and its neighbors will form a clique of size s+1. On account of a clique is a critical graph,
this gives that we do not need any element of {i4, . . . , ir} or their shadows when making the
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critical (s+1)-chromatic graph. This implies that p = (xv, xw, xz). Due to [21, Proposition
3.6], one can conclude that (xv , xw, xz) ∈ AssR2

(R2/J(H)s).
Accordingly, we have the following equality

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s). (4.2)

Since the cover ideal of any triangle has the strong persistence property, the last assertion
is a straightforward consequence of Theorem 10 and (4.2).

The next theorem probes the relation between assoicated primes of powers of the cover
ideal of the union of two finite simple connected graphs with the assoicated primes of powers
of the cover ideals of each of them, under the condition that they have only one edge in
common.

Theorem 12. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite simple con-
nected graphs such that |V (G) ∩ V (H)| = 2 and |E(G) ∩E(H)| = 1. Let L = (V (L), E(L))
be the finite simple graph such that V (L) := V (G) ∪ V (H) and E(L) := E(G) ∪ E(H).
Then

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s),

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)], and R = K[xα : α ∈
V (L)]. In particular, if J(G) and J(H) have the strong persistence property, then J(L) has
the strong persistence property.

Proof. Fix s ≥ 1. Suppose that V (G)∩ V (H) = {v, w} and E(G)∩E(H) = {{v, w}}. If G
or H is a tree or triangle, then the assertion is true by virtue of Lemma 7 and Theorem 8.
We therefore can assume that neither G nor H is a tree or triangle. As a direct consequence
of Proposition 8, we have the following containment

AssR1
(R1/J(G)s) ∪AssR2

(R2/J(H)s) ⊆ AssR(R/J(L)s).

To finish the argument, one has to establish the reverse inclusion. To do this, choose an arbi-
trary element p = (xi1 , . . . , xir ) in AssR(R/J(L)s). By Proposition 7, one has {i1, . . . , ir} ⊆
V (L). On account of [6, Lemma 2.11], one can derive that p ∈ Ass(K[p]/J(Lp)

s), where
K[p] = K[xi1 , . . . , xir ] and Lp is the induced subgraph of L on the vertex set {i1, . . . , ir}.
We thus assume that p is the maximal ideal in the polynomial ring R = K[p]. To simplify
the notation, set

Γ := {xc : c ∈ V (G) \ {v, w}} and Λ := {xc : c ∈ V (H) \ {v, w}}.

Pick an arbitrary element u in G(J(L)). Due to neither G nor H is a tree or triangle, we can
deduce that supp(u)∩Γ 6= ∅ and supp(u)∩Λ 6= ∅. It follows also from J(L) = J(G)∩J(H)
that u = ab/gcd(a, b) for some a ∈ G(J(G)) and b ∈ G(J(H)). Consequently, one of the
following cases occurs:

Case 1. a = xvf and b = xvg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). Because gcd(a, b) = xv, we have u = xvfg.

Case 2. a = xvf and b = xwg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). Since gcd(f, g) = 1, this implies that u = xvxwfg.



126 Symbolic strong persistence property of monomial ideals

Case 3. a = xvf and b = xvxwg, where f (respectively, g) is a square-free monomial
in the variables Γ (respectively, Λ). By gcd(a, b) = xv, this yields that u = xvxwfg.

Case 4. a = xwf and b = xvg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). Similarly to Case 2, one has u = xvxwfg.

Case 5. a = xwf and b = xwg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). It follows form gcd(a, b) = xw that u = xwfg.

Case 6. a = xwf and b = xvxwg, where f (respectively, g) is a square-free monomial
in the variables Γ (respectively, Λ). Since gcd(a, b) = xw, we thus have u = xvxwfg.

Case 7. a = xvxwf and b = xvg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). Similarly to Case 6, one can conclude that u = xvxwfg.

Case 8. a = xvxwf and b = xwg, where f (respectively, g) is a square-free monomial in
the variables Γ (respectively, Λ). On account of gcd(a, b) = xw, this gives that u = xvxwfg.

Case 9. a = xvxwf and b = xvxwg, where f (respectively, g) is a square-free monomial
in the variables Γ (respectively, Λ). According to gcd(a, b) = xvxw, we get u = xvxwfg.

It follows from the discussion above that if u ∈ G(J(L)), then u = Afg, where A 6= 1,
A|xvxw, and f (respectively, g) is a square-free monomial in the variables Γ (respectively,
Λ) such that Af ∈ J(G) (respectively, Ag ∈ J(H)). Since p ∈ AssR(R/J(L)s), we obtain
that p = (J(L)s :R h) for some monomial h in R. Suppose that h = h1h2x

ρ
vx

δ
w with h1

(respectively, h2) is a monomial in the variables Γ (respectively, Λ), and ρ (respectively,
δ) is a nonnegative integer. One can concludes from [15, Lemma 2.1] that (J(G)s :R
h1h2x

ρ
vx

δ
w) = (J(G)s :R h1x

ρ
vx

δ
w) and (J(H)s :R h1h2x

ρ
vx

δ
w) = (J(H)s :R h2x

ρ
vx

δ
w). Thanks

to
(J(L)s :R h) ⊆ (J(G)s :R h) (respectively, (J(L)s :R h) ⊆ (J(H)s :R h)),

this implies that p ⊆ (J(G)s :R h1x
ρ
vx

δ
w) (respectively, p ⊆ (J(H)s :R h2x

ρ
vx

δ
w)). Our pur-

pose is to verify h1x
ρ
vx

δ
w /∈ J(G) or h2x

ρ
vx

δ
w /∈ J(H). Assume to the contrary that h1x

ρ
vx

δ
w ∈

J(G) and h2x
ρ
vx

δ
w ∈ J(H). Because of h1x

ρ
vx

δ
w ∈ J(G)s (respectively, h2x

ρ
vx

δ
w ∈ J(H)s),

we have there exist square-free monomials M1, f1, . . . , fs (respectively, M2, g1, . . . , gs) in
the variables Γ (respectively, Λ), and A1, . . . , As (respectively, A′

1, . . . , A
′
s) with Ai 6= 1

(respectively, A′
i 6= 1), Ai|xvxw (respectively, A′

i|xvxw), and Aifi ∈ J(G) (respectively,
A′

igi ∈ J(H)) for each i = 1, . . . , s, such that

h1x
ρ
vx

δ
w = (

s
∏

i=1

Aifi)M1x
θ1
v xθ2

w (respectively, h2x
ρ
vx

δ
w = (

s
∏

i=1

A′
igi)M2x

λ1

v xλ2

w ),

for some nonnegative integer θ1 and θ2 (respectively, λ1 and λ2). Hence, one has

(

s
∏

i=1

Ai)x
θ1
v xθ2

w = xρ
vx

δ
w = (

s
∏

i=1

A′
i)x

λ1

v xλ2

w ,

h1 = (
∏s

i=1 fi)M1, and h2 = (
∏s

i=1 gi)M2. This gives rise to the following equalities

h1h2x
ρ
vx

δ
w = (

s
∏

i=1

fi)M1(

s
∏

i=1

gi)M2x
ρ
vx

δ
w = (

s
∏

i=1

figi)M1M2x
ρ
vx

δ
w.
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Due to (
∏s

i=1 Ai)x
θ1
v xθ2

w = xρ
vx

δ
w = (

∏s
i=1 A

′
i)x

λ1
v xλ2

w , we get h1h2x
ρ
vx

δ
w ∈ J(L)s. Hence,

h ∈ J(L)s, which contradicts the fact that p = (J(L)s :R h). Accordingly, one can derive
h1x

ρ
vx

δ
w /∈ J(G) or h2x

ρ
vx

δ
w /∈ J(H). On account of p is the maximal ideal, this implies that

p ∈ AssR1
(R1/J(G)s) or p ∈ AssR2

(R2/J(H)s), and so we get the following equality

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s). (4.3)

We can now combine together Theorem 10 and (4.3) to obtain the last claim.

As an application of Theorem 12, we present the following proposition.

Proposition 9. (i) The cover ideal of every cycle graph has the strong persistence prop-
erty.

(ii) The cover ideal of every cycle graph with one chord has the strong persistence property.

Proof. (i) Let Cn denote the cycle graph of order n. If n is an even number, then Cn is a
bipartitle graph, and by virtue of [7, Corollary 2.6], J(Cn) is a normally torsion-free square-
free monomial ideal, and [24, Theorem 6.10] implies that J(Cn) has the strong persistence
property. If n is an odd number, then the claim follows immediately from [21, Theorem
3.3].

(ii) The assertion can be deduced from Theorem 12 and part (i).

The next question examines the relation between assoicated primes of powers of the
cover ideal of the union of two finite simple connected graphs with the assoicated primes of
powers of the cover ideals of each of them, in a general case.

Question 2. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two finite simple connected
graphs. Let L = (V (L), E(L)) be the finite simple graph such that V (L) := V (G)∪V (H) and
E(L) := E(G)∪E(H). Then can we deduce that, for all s, one of the following statements
holds?

(i) AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s).

(ii) AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(H)s) ∪ {m},

where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (H)], R = K[xα : α ∈ V (L)] over a field
K, and m = (xα : α ∈ V (L)) is the unique homogeneous maximal ideal of R.

The answer is negative. We provide a counterexample. Let G := K4 be the complete
graph with V (G) = {1, 2, 3, 4} and

E(G) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},

and H := S4 be the star graph with V (H) = {1, 2, 3, 4, 5} and

E(H) = {{1, 5}, {2, 5}, {3, 5}, {4, 5}}.
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Let L = (V (L), E(L)) be the finite simple graph such that V (L) := V (G) ∪ V (H) and
E(L) := E(G) ∪ E(H). By using Macaulay2 [8], we obtain that

(x2, x3, x4, x5) ∈ Ass(J(L)3) \ (Ass(J(G)3) ∪ Ass(J(H)3)),

and
(x1, x2, x4, x5) ∈ Ass(J(L)4) \ (Ass(J(G)4) ∪Ass(J(H)4) ∪m),

where m = (x1, x2, x3, x4, x5). In view of [7, Corollary 2.6] and [24, Theorem 6.10], we get
the cover ideal of every tree has the strong persistence property, and so J(H) has the strong
persistence property. On the other hand, note that the graph L is exactly the complete
graph K5. It follows also from [1, Corollary 1.7] that the cover ideal of every complete graph
is normal, and by virtue of [24, Theorem 6.2], one can cnclude that J(G) and J(L) have
the strong persistence property.

In the subsequent question, our aim is to investigate the relation between assoicated
primes of powers of the cover ideal of the union of a finite simple connected graph and a
complete graph with the assoicated primes of powers of the cover ideals of each of them,
under the condition that they are common in a path with length 2.

Question 3. Let G = (V (G), E(G)) be a finite simple connected graph and Kn the com-
plete graph of order n such that |V (G) ∩ V (Kn)| = 3 and |E(G) ∩ E(Kn)| = 2. Let
L = (V (L), E(L)) be the finite simple graph such that V (L) := V (G)∪V (Kn) and E(L) :=
E(G) ∪ E(Kn). Then can we conclude that

AssR(R/J(L)s) = AssR1
(R1/J(G)s) ∪ AssR2

(R2/J(Kn)
s),

for all s, where R1 = K[xα : α ∈ V (G)], R2 = K[xα : α ∈ V (Kn)], and R = K[xα : α ∈
V (L)] over a field K? In particular, if J(G) has the strong persistence property, then does
J(L) have the strong persistence property?

By giving a counterexample, we show that the answer is negative. To do this, consider
the graphG = (V (G), E(G)), the left graph in the figure below, with V (G) = {1, 2, 3, 4, 5, 6}
and

E(G) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {5, 2}, {4, 6}, {5, 6}},
and also the graph L = G∪K3, the right graph in the figure below, with V (K3) = {1, 6, 5},
E(K3) = {{5, 6}, {1, 6}, {1, 5}}, V (L) = {1, 2, 3, 4, 5, 6}, and

V (L) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {5, 2}, {1, 6}, {5, 6}, {4, 6}}.

b

b

b

b

b

b

L

1

2

3

4

5

6

b

b

b

b

b

b

1

2

3

4

5

6

G
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It is routine to check that

J(G) =(x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x5) ∩ (x5, x1) ∩ (x5, x2)

∩(x4, x6) ∩ (x5, x6)

=(x2x4x5, x2x3x5x6, x1x3x5x6, x1x2x4x6, x1x3x4x5),

and

J(L) =(x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x5) ∩ (x5, x1) ∩ (x5, x2)

∩(x1, x6) ∩ (x5, x6) ∩ (x4, x6)

=(x2x4x5x6, x2x3x5x6, x1x3x5x6, x1x2x4x6, x1x3x4x5,

x1x2x4x5).

Using Macaulay2 [8] yields that

(x1, x2, x3, x4, x5, x6) ∈ Ass(J(L)3) \ (Ass(J(G)3) ∪Ass(J(K3)
3)).

On the other hand, since the graph G is the union of a cycle graph with one chord and
a triangle, Proposition 9 (ii) and Lemma 8 imply that J(G) has the strong persistence
property. Furthermore, one can write

J(L) = x5(x2x4x6, x2x3x6, x1x3x6, x1x3x4, x1x2x4) + (x1x2x4x6).

Because F := (x2x4x6, x2x3x6, x1x3x6, x1x3x4, x1x2x4) is the cover ideal of the odd cycle
H with V (H) = {1, 2, 3, 4, 6} and E(H) = {{1, 2}, {2, 3}, {3, 4}, {4, 6}, {6, 1}}, Proposition
9 (i) gives that F has the strong persistence property, and by virtue of x1x2x4x6 ∈ F , it
follows from [21, Lemma 2.1] that J(L) = x5F + (x1x2x4x6) has the strong persistence
property.
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