Bull. Math. Soc. Sci. Math. Roumanie Tome 64 (112), No. 1, 2021, 97–100

A note on UN-rings by YIQIANG ZHOU

Abstract

A ring is called a UN-ring if each nonunit is the product of a unit and a nilpotent. In this short note, answers are provided in response to two questions on UN-rings raised by Călugăreanu in [1].

Key Words: Nilpotent, unit, UN-ring, matrix ring.2010 Mathematics Subject Classification: Primary 16U99; Secondary 16S50.

1 Introduction

Throughout, rings are associative with identity. Recall from [2] that a nonzero element in a ring is called fine if it is the sum of a unit and a nilpotent and a ring is a fine ring if every nonzero element is fine. Fine rings form a proper class of simple rings and were the topic of the paper [2]. As the multiplicative duals of these notions, an element in a ring is called UN if it is the product of a unit and a nilpotent and a ring is a UN-ring if every nonunit is UN. UN-rings were introduced by Călugăreanu in [1] and have been discussed in depth in [1] and [6]. This short note is written in response to two questions on UN-rings raised by Călugăreanu in [1]. An element in a ring is 2-good if it is the sum of two units, and a ring is 2-good if each of its elements is 2-good. In [1], among others, it was observed that every UN-ring whose identity is 2-good is a 2-good ring, and it was asked to refine the inclusion $\{UN$ -rings with 2-good identity $\} \subset \{2\text{-good rings}\}, \text{ that is, to find classes } C \text{ of rings such }$ that $\{UN$ -rings with 2-good identity $\} \subset C \subset \{2\text{-good rings}\}$. As observed here, this can be fufilled by letting $C = \{ \text{rings } R: R/J(R) \text{ is } UN \text{ with 2-good identity} \}$. It is a known result in [4] that matrix rings over elementary divisor rings are 2-good. The author in [1] was motivated to ask whether matrix rings over elementary divisor UN-rings are UN. Here we prove that matrix rings over right Hermite UN-rings are UN. Consequently, matrix rings over elementary divisor UN-rings are UN.

For a ring R, we denote by C(R), J(R), U(R) and nil(R) the center, the Jacobson radical, the unit group and the set of nilpotents of R, respectively. We write $\mathbb{M}_n(R)$ for the ring of $n \times n$ matrices over R whose identity is denoted by I_n .

2 The results

Lemma 1. Let I be a nil ideal of a ring R and $a \in R$. Then $a \in R$ is UN iff $a + I \in R/I$ is UN.

Proof. The necessity is clear. For the sufficiency, write $\bar{x} = x + I$ for $x \in R$. Write $\bar{a} = \bar{u}\bar{b}$ where \bar{u} is a unit in R/I and \bar{b} is nilpotent in R/I. As I is nil, $u \in U(R)$ and $b \in \operatorname{nil}(R)$. Moreover, a = ub + c for some $c \in I$. Thus, $a = u(b + u^{-1}c)$ with $b + u^{-1}c \in \operatorname{nil}(R)$.

Lemma 2. Let $a \in R$ be a UN-element. If a power of a is central, then a is nilpotent.

Proof. Write a = ub where $u \in U(R)$ and $b \in nil(R)$. Suppose a^n is central for some $n \ge 1$. Then $a^n a = a^n ub = ua^n b = (ua^{n-1})ab = (ua^{n-1})ub^2$ and, similarly, $(a^n)^k a = (ua^{n-1})^k ub^{k+1}$ for any $k \ge 1$. Hence a is nilpotent.

Corollary 1. [6, Proposition 0(b)] Let R be a UN-ring. Then C(R) is a local ring with nil Jacobson radical.

Corollary 2. Let R be a commutative ring and $n \ge 1$. Then $\mathbb{M}_n(R)$ is a UN-ring iff R is a local ring with J(R) nil.

Proof. Let $T = \mathbb{M}_n(R)$. As $R \cong C(T)$, the necessity follows from Corollary 1. For the sufficiency, J(R) being nil implies that $\mathbb{M}_n(J(R)) = J(T)$ is nil. Since R/J(R) is a field, $T/J(T) \cong \mathbb{M}_n(R/J(R))$ is UN by [1, Corollary 8]. So T is UN by Lemma 1.

Lemma 3. If $a \in R$ is a UN-element, then uav is UN for any $u, v \in U(R)$.

Proof. Write a = wb where $w \in U(R)$ and $b \in nil(R)$. Then $uav = (uwv)(v^{-1}bv)$ is UN.

An $m \times n$ matrix A admits diagonal reduction if A is equivalent to a diagonal matrix $\operatorname{diag}(d_1, d_2, \cdots)$ with the property that every Rd_iR is contained in $Rd_{i+1} \cap d_{i+1}R$. A ring R is called right Hermite if every 1×2 matrix over R admits diagonal reduction. If every 2×1 matrice over R admits diagonal reduction, R is a left Hermite ring, and if both, R is an Hermite ring.

Theorem 1. Matrix rings over a right Hermite UN-ring are UN.

Proof. Let R be a right Hermite UN-ring and $n \ge 1$. We show that $\mathbb{M}_n(R)$ is UN by induction on n. This is certainly true for n = 1. Assume that n > 1 and that $\mathbb{M}_m(R)$ is UN for every 0 < m < n. We next show that every non-invertible matrix $A \in \mathbb{M}_n(R)$ is UN. By [5, Theorem 3.5], there exists an invertible matrix $U \in \mathbb{M}_n(R)$ such that AU is lower triangular. Hence we can assume that $A = (a_{ij})$ is lower triangular. If every entry a_{ii} is a nonunit, then $a_{ii} = u_{ii}b_{ii}$ where $u_{ii} \in U(R)$ and $b_{ii} \in \operatorname{nil}(R)$. Thus, $(u_{ii}^{-1} = 0)$

$$U := \begin{pmatrix} u_{11} & 0 \\ & \ddots & \\ 0 & u_{nn}^{-1} \end{pmatrix}$$
 is invertible and $UA = \begin{pmatrix} b_{11} & 0 \\ & \ddots & \\ * & b_{nn} \end{pmatrix}$ is nilpotent; so A is UN .

Hence, we can assume that some a_{ii} is a unit. As A is not invertible, some a_{jj} is a nonunit. Thus, we can write $\{1, 2, ..., n\}$ as a disjoint union of two nonempty subsets I and J such that a_{ii} is a unit for all $i \in I$ and a_{jj} is a nonunit for all $j \in J$. For each $j \in J$, write $a_{jj} = v_{jj}d_j$ where $v_{jj} \in U(R)$ and $d_j \in \operatorname{nil}(R)$. Applying the following elementary row operations to A: multiplying row i by a_{ii}^{-1} (for all $i \in I$) and multiplying row j by v_{jj}^{-1} (for all $j \in J$). These operations bring A to a lower triangular matrix A_1 whose (i, i)-entry is 1 (for all $i \in I$) and whose (j, j)-entry is d_j (for all $j \in J$). By adding a certain multiple of row i of A_1 to row l ($l = i + 1, \ldots, n$) and adding a certain multiple of column i of A_1 to column l ($l = 1, \ldots, i - 1$) can bring A_1 to a lower triangular matrix A_2 whose (i, i)-entry, which is 1, is the only nonzero entry in row i and in column i (for all $i \in I$) and whose (j, j)-entry is d_j , which is nilpotent, (for all $j \in J$). Finally, A_2 can be carried to the block $(t_{in}, k, \ldots, 0)$

matrix
$$A_3 := \begin{pmatrix} I_k & 0 \\ 0 & T \end{pmatrix}$$
, where $k = |I|$ and $T = \begin{pmatrix} \cdot & \cdot & \cdot \\ & \cdot & \cdot \\ & * & t_1 \end{pmatrix}$ is a lower triangular

nilpotent matrix. If n - k = 1, then $A_3 = \begin{pmatrix} I_k & 0 \\ 0 & t_1 \end{pmatrix}$. Let P be the $n \times n$ permutation matrix corresponding to the *n*-cycle $(1, 2, \ldots, n)$. Then PA_3 is nilpotent by [1, Lemma 6], so A_3 is UN. If n - k > 1, write $A_3 = \begin{pmatrix} B & 0 \\ X & t_1 \end{pmatrix}$ where B is non-invertible. By induction hypothesis, B is UN, so $B = U_1T_1$ where U_1 is an invertible mtraix in $\mathbb{M}_{n-1}(R)$ and T_1 is nilpotent in $\mathbb{M}_{n-1}(R)$. Then $V := \begin{pmatrix} U_1^{-1} & 0 \\ 0 & 1 \end{pmatrix}$ is invertible and $VA_3 = \begin{pmatrix} T_1 & 0 \\ X & t_1 \end{pmatrix}$ is nilpotent, so A_3 is UN. Therefore, by Lemma 3, A is UN.

Following [4], a ring R is called an elementary divisor ring if, for every $n \geq 1$, every matrix in $\mathbb{M}_n(R)$ is equivalent to a diagonal matrix. Every elementary divisor ring is both a left and a right Hermite ring, and an example is given in [3, Example 4.11] of a commutative Hermite ring that is not an elementary divisor ring. In [1], Călugăreanu asks whether matrix rings over elementary divisor UN-rings are also UN-rings. The answer is yes by the next result which is an immediate consequence of Theorem 1.

Corollary 3. Matrix rings over an elementary divisor UN-ring are UN.

By [1, Corollary 5], UN-rings whose identity is the sum of two units are 2-good. A question there asks to refine the inclusion $\{UN\text{-rings with 2-good identity}\} \subset \{2\text{-good rings}\}$, that is, to find classes C of rings such that $\{UN\text{-rings with 2-good identity}\} \subset C \subset \{2\text{-good rings}\}$. Here we have a natural pick of C to full this.

Example 1. Let C be the class of rings R such that R/J(R) is a UN-ring with 2-good identity. It is clear that $\{UN\text{-rings with 2-good identity}\} \subseteq C \subseteq \{2\text{-good rings}\}$. To see the inclusions are proper, note that $S := \mathbb{M}_n(\mathbb{Z}) \ (n \ge 2)$ is 2-good by [4, Theorem 11], but S is not contained in C by Corollary 2. Moreover, $\mathbb{Q}[[t]] \in C$, but $\mathbb{Q}[[t]]$ is not UN by Lemma 2 (as the central element t is not nilpotent).

Acknowledgement. This work was partially supported by a Discovery Grant (RGPIN-2016-04706) from NSERC of Canada. The author thanks the referee for the valuable comments.

References

- [1] G. CĂLUGĂREANU, UN-rings, J. Alg. Appl., 15, 1650182 (2016).
- [2] G. CĂLUGĂREANU AND T.Y. LAM, Fine rings: A new class of simple rings, J. Alg. Appl., 15, 1650173 (2016).
- [3] L. GILLMAN AND M. HENRIKSEN, Rings of continuous functions in which finitely generated ideals are principal, *Trans. AMS.*, **82**, 366-391 (1956).
- [4] M. HENRIKSEN, Two classes of rings generated by their units, J. Algebra, 31, 182-193 (1974).
- [5] I. KAPLANSKY, Elementary divisors and modules, Trans. AMS., 66, 464-491 (1949).
- [6] P. VÁMOS, On rings whose nonunits are a unit multiple of a nilpotent, J. Algebra Appl., 16, 1750140 (2017).

Received: 09.06.2020 Revised: 02.02.2021 Accepted: 19.02.2021

> Department of Mathematics and Statistics Memorial University of Newfoundland St.John's, NL A1C 5S7, Canada E-mail: zhou@mu.ca