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Abstract

We consider the spectral radius of signed graphs without negative even cycles and
its relations with the spectral radius of signed graphs obtained by removing a vertex,
removing an edge or reversing the sign of an edge. As an application, we determine
signed graphs that maximize the spectral radius in the class of unicyclic signed graphs
with fixed order and girth. We also give certain upper bounds on the spectral radius
of unicyclic oriented graphs.
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1 Introduction

For a graph G = (V,E), a signed graph Ġ is a pair (G, σ), where σ is the signature satisfying
σ(ij) ∈ {1,−1}, for every ij ∈ E. We say that G is the underlying graph of Ġ and denote
n = |V |. The edge set of Ġ consists of positive and negative edges, and we interpret a graph
as a signed graph with all edges being positive.

The adjacency matrix AĠ = (aij) is obtained from the standard (0, 1)-adjacency matrix
of G by reversing the sign of all 1s which correspond to negative edges. The eigenvalues and
the spectrum of Ġ are identified as the eigenvalues and the spectrum of AĠ, respectively.
Since AĠ is symmetric, its eigenvalues are real. The largest eigenvalue is called the index

and denoted by λ1. Similarly, the largest modulus of the eigenvalues of Ġ is called the
spectral radius and denoted by ρ. For a graph G, we have λ1(G) = ρ(G).

In this paper we prove that the spectral radius of a connected signed graph without
negative even cycles strictly decreases by either removing a vertex, removing an edge or
reversing the sign of an edge belonging to an even cycle. As an application, we determine
certain upper bounds for the spectral radius of a unicyclic signed graph and also for the
spectral radius of an unicyclic oriented graph. Section 2 contains some preliminaries and
known results. Our results are presented in the remaining sections.

2 Preliminaries

For U ⊆ V (G), let ĠU be the signed graph obtained from Ġ by reversing the sign of each
edge between a vertex in U and a vertex in V (Ġ) \U . We say that Ġ and ĠU are switching
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equivalent. Switching equivalent signed graphs share the same spectrum. Throughout the
paper we do not make any distinction between switching equivalent nor between isomorphic
signed graphs.

A signed cycle with l edges is denoted by Ċl. We say that Ċl is odd (resp. even) if l
is odd (even). A cycle in a signed graph is called positive if it contains an even number of
negative edges, it is said to be negative, otherwise. A signed graph is called balanced if all
its cycles are positive; and unbalanced, otherwise. We know from [10] that every switching
equivalence class is uniquely determined by the set of positive cycles.

The bipartite double bd(Ġ) of a signed graph Ġ with vertex set {i1, i2, . . . , in} has
the vertex set {i11, i12, i21, i22, . . . , in1, in2} and there is a positive (resp. negative) edge
between iuj and ivk if and only if there is a positive (negative) edge between iu and iv and
j 6= k. The adjacency matrix of bd(Ġ) is determined by the Kronecker product Abd(Ġ) =

AĠ ⊗AK2
, where K2 is the complete graph with two vertices. The bipartite double bd(Ġ)

is bipartite and it is connected if and only if Ġ is connected and non-bipartite. Observe
that the spectral radius of a signed graph is equal to the spectral radius of its bipartite
double.

We now proceed by introducing oriented graphs which are considered in Section 5.
There is an obvious analogy between them and signed graphs, and many notions are defined
analogously. So, for a graph G = (V,E), an oriented graph G′ is a pair (G, σ′), where σ′ is
the orientation satisfying σ′(ij) ∈ {i, j}, for every ij ∈ E.

The adjacency matrix (or the skew adjacency matrix ) SG′ = (sij) is the n × n matrix
defined by

sij =

 0 if ij /∈ E,
1 if σ′(ij) = j,
−1 if σ′(ij) = i.

The eigenvalues of G′ are the eigenvalues of SG′ and they form the spectrum of G′, which
consists of purely imaginary numbers which are paired as conjugates. Consequently, the
number of non-zero eigenvalues is even. The spectral radius is defined and denoted as in
the case of signed graphs.

We say that an even oriented cycle C ′2l is oriented uniformly if by traversing the cycle
we pass through an odd (even) number of edges oriented in the route direction for l odd
(even). The bipartite double of an oriented graph is defined and denoted in the same way,
so it is determined by Sbd(G′) = SG′ ⊗AK2 . Again, ρ(G′) = ρ(bd(G′)).

For an oriented graph G′ = (G, σ′) and a signed graph Ġ = (G, σ), we say that the
signature σ is associated with the orientation σ′ if

σ(ik)σ(jk) = siksjk holds for every pair of edges ik and jk. (2.1)

This association is a symmetric relation.

We know from [8] that, for a graph G and an orientation σ′, there exists a signature σ
associated with σ′ if and only if G is bipartite. The orientation σ′ and the signature σ are
associated in the sense that σ′ induces two switching equivalent signed graphs, one with
signature σ and the other with signature −σ, and the signature σ induces two oriented
graphs, one with orientation σ′ and the other obtained by reversing the orientation of every
edge of the first one.
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Clearly, the orientation of an even cycle induces (in the sense of (2.1)) the signature
with an even number of negative edges if and only if the cycle is oriented uniformly.

We conclude this section by a recently established relation between the spectrum of an
oriented graph and the spectrum of the corresponding signed graph. The exponent stands
for the multiplicity of the corresponding eigenvalue.

Theorem 1. [8] For a bipartite graph G and an orientation σ′, if rank(SG′) = 2k and σ
is associated with σ′, then

±iλ1,±iλ2, . . . ,±iλk, 0n−2k

are the eigenvalues of G′ = (G, σ′) if and only if

±λ1,±λ2, . . . ,±λk, 0n−2k

are the eigenvalues of Ġ = (G, σ).

Theorem 2. [8] Given a graph G and an orientation which determines G′ such that
rank(SG′) = 2k, let H ′ = (H,σ′) denote the bipartite double of G′ and Ḣ = (H,σ) de-
note the signed graph whose signature is associated with σ′. Then

±iλ1,±iλ2, . . . ,±iλk, 0n−2k

are the eigenvalues of G′ if and only if

(±λ1)2, (±λ2)2, . . . , (±λk)2, 02(n−2k)

are the eigenvalues of Ḣ.

Both results are proved on the basis of the fact that if σ is associated with σ′, then
−S2

G′ = A2
Ġ

, whose proof relies on the following chain of equalities

−(sij)
2 = −

n∑
k=1

sikskj =

n∑
k=1

siksjk =

n∑
k=1

σ(ik)σ(jk) =

n∑
k=1

aikakj = (aij)
2,

where the last but one equality follows by the symmetry of AĠ. For more details, see the
corresponding reference.

3 The spectral radius of signed graphs without negative
even cycles

We start with the following lemma.

Lemma 1. Let Ċl be a cycle of length l in a signed graph Ġ.

(i) If l is odd, then Ċl produces a positive cycle of length 2l in bd(Ġ).

(ii) If l is even, then Ċl produces its two edge-disjoint copies in bd(Ġ).

Conversely, let Ċ2l be a cycle in bd(Ġ).
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Figure 1: A sketch of the signed cycle Ċ2l for the proof of Lemma 1(i).

(i’) If l is odd, then either Ċ2l is positive and arises from a cycle of length l of Ġ or there
exists its edge-disjoint copy in bd(Ġ) and both of them arise from the isomorphic cycle
of Ġ.

(ii’) If l is even, then there exists its edge-disjoint copy in bd(Ġ) and both of them arise
from the isomorphic cycle of Ġ.

Proof. For (i), if the vertices of Ċl are labelled by i1, i2, . . . , il and indexed in the natural
order, then the edge iuiv of this signed cycle gives its two copies, iu1iv2 and iu2iv1, in the
corresponding cycle of Ċ2l as sketched in Figure 1. In other words, a negative edge of Ċl

gives rise to two negative edges of Ċ2l, which means that the latter cycle is positive.
Cases (ii) and (ii’) follow by definition of a bipartite double, while (i’) follows by the

same definition and (i) of this lemma.

We now obtain the relation between the spectral radius of signed graphs without negative
even cycles and the spectral radius of their vertex-deleted or edge-deleted subgraphs.

Theorem 3. Let Ġ be a connected signed graph without negative even cycles.

(i) For v ∈ V (Ġ), ρ(Ġ− v) < ρ(Ġ);

(ii) For e ∈ E(Ġ), ρ(Ġ− e) < ρ(Ġ).

Proof. For (i), if Ġ is bipartite, then since all the cycles are positive, Ġ and Ġ − v are
switching equivalent to their underlying graphs, and therefore ρ(Ġ − v) < ρ(Ġ) is a con-
sequence of the Perron-Frobenius theory for simple graphs. If Ġ is non-bipartite, then its
spectral radius is equal to the index of its bipartite double. Since, by Lemma 1, all the
cycles of bd(Ġ) are positive, we get that bd(Ġ) is switching equivalent to its underlying
graph. Since bd(Ġ − v) is obtained by removing the two copies of v in bd(Ġ), the result
follows in the same way as before.

The proof of (ii) is a slight modification of that of (i).

Let Ġ ∗ e denote the signed graph obtained by reversing the sign of the edge e of Ġ.

Theorem 4. Let Ġ be a connected signed graph without negative even cycles. If e is an
edge that belongs to at least one even cycle, then ρ(Ġ ∗ e) < ρ(Ġ).
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Proof. If Ġ is bipartite, then it is switching equivalent to G, and the result follows imme-
diately.

If Ġ is non-bipartite, we recall from [7] that the index of a connected signed graph is
less than or equal to the index of its underlying graph, with equality if and only if they
are switching equivalent. Now, by the assumption of this theorem and Lemma 1(i)&(ii),
bd(Ġ) is switching equivalent to its underlying graph, since it does not contain a negative
cycle. Similarly, bd(Ġ ∗ e) is not switching equivalent to its underlying graph, since by
Lemma 1(ii), every cycle that arises from an even cycle of Ġ which contains e is negative.
As bd(Ġ) and bd(Ġ ∗ e) share the same underlying graph (that is bd(G)), we get

ρ(Ġ ∗ e) = λ1(bd(Ġ ∗ e)) < λ1(bd(G)) = λ1(bd(Ġ)) = ρ(Ġ),

which completes the proof.

4 The spectral radius of unicyclic signed graphs

A connected signed graph is called unicyclic if the number of its vertices is equal to the
number of its edges. The length of the unique cycle is called a girth and denoted by g.

Let Cg
n denote the unicyclic graph obtained by attaching n − g pendant vertices at a

fixed vertex of a cycle Cg. We know from [2, 5] that the maximum index in the class
of unicyclic graphs with fixed number of vertices and fixed girth is attained for Cg

n, and
this extremal graph is unique. By the same references, the maximum index in the class
of unicyclic graphs with fixed number of vertices is attained uniquely for C3

n. Using the
Schwenk formula [3, Theorem 2.3.4], we get that λ1(Cg

n) is equal to the largest root of

(x2 − (n− g))ΦPg−1
(x)− 2x(ΦPg−2

(x)− 1),

where ΦPg−1
stands for the characteristic polynomial of the path with g − 1 vertices. We

denote this root by ζ = ζ(n, g); it can be approximated by means of numerical mathematics.
In particular, ζ(n, 3) is the largest root of x4 − nx2 − 2x+ n− 3, while

ζ(n, 4) =

√
n+
√
n2 − 8n+ 32

2
. (4.1)

Theorem 5. Let Ġ denote a unicyclic signed graph with n vertices and girth g.

(i) If Ġ is balanced, then ρ(Ġ) ≤ ζ(n, g), with equality if and only if Ġ is switching
equivalent to Cg

n.

(ii.a) If Ġ is unbalanced and g is even, then ρ(Ġ) < ρ(Cg
n) = ζ(n, g).

(ii.b) If Ġ is unbalanced and g is odd, then ρ(Ġ) < ρ(Cg
n) = ζ(n, g) and also ρ(Ġ) ≤

ζ(2n, 2g), with equality if and only if n = g.

Proof. Since if Ġ is balanced, then it is switching equivalent to its underlying graph, we
deduce that case (i) follows by the discussion that precedes this theorem (including the
mentioned result of [2]).
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Case (ii.a) and the first inequality of (ii.b) follow by the same discussion and Theorem 4
since, in both situations, ρ(Ġ) < ρ(G).

For the second inequality of (ii.b), by definition of a bipartite double, we have that bd(Ġ)
is also unicyclic with 2n vertices and girth 2g, while by Lemma 1(i) we have that it is
balanced. Thus, ρ(Ġ) = λ1(bd(Ġ)) = λ1(bd(G)) ≤ ζ(2n, 2g). Equality holds if and only
if bd(G) ∼= C2g

2n, where ∼= stands between isomorphic (signed) graphs, which, again by
definition of a bipartite double, holds if and only if G is a cycle, and we are done.

There is a similar recent result obtained in [1] which states that among all unbalanced
unicyclic signed graphs the maximum index is attained for the unbalanced triangle with all
remaining vertices being attached at the same vertex of the triangle.

We have the following corollary.

Corollary 1. Let Ġ be a unicyclic signed graph with odd (resp. even) girth. Then ρ(Ġ) ≤
ζ(n, 3) (ρ(Ġ) ≤ ζ(n, 4)), with equality if and only if Ġ is switching equivalent to C3

n (C4
n).

Proof. The first inequality follows by the previous theorem. The other one follows since,
for g even, we have ζ(n, g) ≤ ζ(n, 4), with equality if and only if g = 4, which is a direct
consequence of the result obtained by Hoffman and Smith concerning the spectral radius
of a graph with an internal path [4]; the ’signed‘ version of this result is given in [2].

5 An upper bound for the spectral radius of a unicyclic
oriented graph

Here is an upper bound for ρ(G′) expressed in terms of ζ(n, g).

Theorem 6. For an oriented unicyclic graph G′ with n vertices and girth g,

ρ(G′)

{
< ζ(n, g) if g is odd
≤ ζ(n, g) if g is even,

with equality (for g even) if and only if G ∼= Cg
n and the cycle of G′ is oriented uniformly.

Proof. If g is even, then G′ is bipartite, and then by Theorem 1, its spectral radius is equal
to the spectral radius of the associated signed graph. The result follows by Theorem 5(i).

If g is odd, then we make a tour from G′ to Cg
n realized in the following way and

visualized in Figure 2. Let Ḣ be the (bipartite) signed graph associated with bd(G′), and
let H be the underlying graph of Ḣ. It can be easily verified that H is also a bipartite
double of G (the underlying graph of G′), and so we have

ρ(G′) = ρ(bd(G′)) = ρ(Ḣ) < ρ(H) = λ1(G) ≤ λ1(Cg
n) = ζ(n, g),

where all the equalities and the inequalities in the above chain are clear, except possibly
the strict inequality, which follows by the following arguments. By definition of a bipartite
double, we easily conclude that the unique cycle of bd(G′) is not oriented uniformly as it
contains an even number of edges oriented in the route direction, which means that the
corresponding cycle of Ḣ is negative, which implies the strict inequality.
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G′ bd(G′) Ḣ

H G Cg
n

Figure 2: A visualization of a tour from G′ to Cg
n via bd(G′), Ḣ, H and G, for the proof of

Theorem 6. Negative edges of Ḣ are dashed.

Here is an immediate consequence.

Corollary 2. For an oriented unicyclic graph G′ with n vertices and girth g,

ρ(G′)

{
< ζ(n, 3) if g is odd
≤ ζ(n, 4) if g is even,

(5.1)

with equality (for g even) if and only if G ∼= C4
n and the cycle of G′ is oriented uniformly.

Proof. The strict inequality follows since ζ(n, g) < ζ(n, 3), while the other one follows as in
the proof of Corollary 1.

In [9], Xu obtained a sharp upper bound for the spectral radius of a unicyclic oriented
graph G′ stating that

ρ(G′) ≤

√
n+
√
n2 − 4n+ 12

2
(5.2)

with equality if and only if G ∼= C3
n. In fact, the right-hand side is identified with the

spectral radius of an oriented graph obtained by defining an arbitrary orientation on C3
n.

Since ζ(n, 3) is greater than the right-hand side of (5.2), we deduce that (5.2) gives a better
estimate than (5.1), whenever g is odd, but one may observe that ζ(n, 3) is asymptotically
the upper bound of (5.2). On the other hand, for g even, by comparing (4.1) and (5.2), we
get that the bounds of (5.1) and (5.2) are equal for (n, g) = (5, 4), while in any other case
the former one is finer.
Acknowledgement. Research of the first author is partially supported by Serbian Ministry
of Education, Science and Technological Development via University of Belgrade.



96 On spectral radius of signed graphs without negative even cycles

References

[1] S. Akbari, F. Belardo, F. Haydari, M. Maghasedi, M. Souri, On the largest
eigenvalue of signed unicyclic graphs, Linear Algebra Appl., 581, 145–162 (2019).

[2] F. Belardo, E.M. Li Marzi, S.K. Simić, Some results on the index of unicyclic
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