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Abstract

The purpose of this paper is to give new examples of families of free singularities.
We first show that a generic equidimensional subspace arrangement is free. Further-
more, we show that a product of two reduced Cohen-Macaulay subspaces is free if and
only if both subspaces are free.
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1 Introduction

The study of free divisors was initiated with the work of K. Saito in [Sai75] and [Sai80], and
developed in the case of hyperplane arrangements in [OT92]. Known families of free divisors
are for example the discriminant of a deformation of an isolated hypersurface singularity
(see [Sai80]) or reflection arrangements ([OT92]).

A generalization of the notion of free divisors to complete intersections is suggested in
[GS12], which is then extended to Gorenstein spaces in [Sch16] and to Cohen-Macaulay
subspaces and equidimensional subspaces in [Pol16] and [Pol20]. Basic examples of free
singularities are given in [Pol20]: curves and arbitrary unions of equidimensional coordinate
subspaces.

The purpose of this paper is to give new families of free singularities.

We first show that a generic equidimensional subspace arrangement of codimension k in
Cn is free if the number of subspaces is lower than or equal to

(
n
k

)
(see Theorem 1).

We notice that the singular locus of a Thom-Sebastiani sum of non-smooth normal
crossing divisors is free, whereas the divisor itself is not free (see Lemma 2). Since the
singular locus of the aforementioned divisor is the product of the singular locus of the two
individual divisors, the question of investigating the relation between freeness and products
arises. We show that a product of two reduced Cohen-Macaulay subspaces is free if and
only if the two subspaces are free (see Theorem 2). In the particular case of divisors, it
follows that the product of two divisors is a free complete intersection of codimension 2 if
and only if both divisors are free.

All computations have been performed using the computer algebra system SINGULAR
([DGPS19]). In order to compute all mentioned algebraic objects we provide the SINGU-
LAR-library logmodules.lib which can be downloaded under
https://github.com/delphinepol/Free-singularities/blob/main/logmodules.lib.
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2 Preliminaries

Let n ∈ N>1. Throughout this paper, if not stated otherwise, let S be either C[x1, . . . , xn]
or C {x1, . . . , xn}. For the sake of simplicity, we will also write Cn in the local case instead
of (Cn, 0).

We denote by DerCn the S-module of vector fields on Cn, which is a free S-module of
rank n, generated by the vector fields {∂x1

, . . . , ∂xn
}.

For q ∈ N we denote by ΩqCn the module of differential forms of degree q on Cn and we
consider the usual pairing 〈·, ·〉 :

∧q
DerCn × ΩqCn → S.

A generalization of the module of logarithmic vector fields along singular hypersurfaces
(see [Sai80]) is introduced in [GS12] for complete intersections and in [Pol20] for general
equidimensional subspaces. We give here the equivalent definition as stated in [ST18]:

Definition 1 ([ST18, Definition 3.19]). Let X be an equidimensional subspace of codimen-
sion k defined as the vanishing set of the radical ideal IX . The module of multi-logarithmic
k-vector fields along X is defined by

Derk (− logX) =

{
δ ∈

k∧
DerCn | ∀(f1, . . . , fk) ∈ IX , 〈δ, df1 ∧ · · · ∧ dfk〉 ∈ IX

}
.

Remark 1. Let {h1, . . . , hr} be a generating set of IX . Let δ ∈
∧k

DerCn . Then δ ∈
Derk (− logX) if and only if for all (i1 < · · · < ik) ⊆ {1, . . . , r}, 〈δ, dhi1 ∧ · · · ∧ dhik〉 ∈ IX .

A reduced hypersurface D is called free if and only if Der(− logD) := Der1 (− logD)
is a free S-module (see [Sai80]). A generalization of this notion to higher codimensional
subspaces is the following:

Definition 2 ([Pol20, Definition 4.3]). An equidimensional reduced subspace X ⊆ Cn of
codimension k is called free if and only if

projdim
(

Derk (− log X)
)

= k − 1.

In the case of hypersurfaces, the criterion of Terao and Aleksandrov ([Ter80], [Ale88])
gives a characterization of freeness in terms of a property of the singular locus. It is shown
in [Pol20] that this property can be extended to Cohen-Macaulay spaces.

Let X ⊆ Cn be a reduced equidimensional subspace. One can prove that there exists a
regular sequence (f1, . . . , fk) ⊆ IX such that the ideal IC generated by f1, . . . , fk is radical
(see [AT08, Remark 4.3] or [Pol16, Proposition 4.2.1] for a detailed proof of this result).
We fix such a sequence (f1, . . . , fk) and denote by C the complete intersection defined by
the ideal IC = 〈f1, . . . , fk〉.
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Notation 1 ([Pol20, Notation 3.6]). Let X be a reduced equidimensional subspace of codi-
mension k in Cn and C be a reduced complete intersection of codimension k in Cn containing
X. Let JX/C = JC + IX , where JC is the Jacobian ideal of C, that is to say, the ideal of S
generated by the k × k minors of the Jacobian matrix of (f1, . . . , fk).

Remark 2. The vanishing set of the ideal JX/C is the restriction of the singular locus of
C to X. If X is not a complete intersection, it does not describe the singular locus of X.

The following proposition generalizes [GS12, Definition 5.1]:

Proposition 1. [Pol20, Proposition 4.2] Let X ⊆ Cn be a reduced equidimensional sub-
space of codimension k in Cn and C be a reduced complete intersection of codimension k
containing X. Then X is free if and only if S/JX/C = 0 or S/JX/C is Cohen-Macaulay of
dimension n− k − 1.

Remark 3. If C ′ is another reduced complete intersection of codimension k containing X,
the modules S/JX/C and S/JX/C′ are isomorphic as S/IX-modules (see [Pol20, Remark
3.8]).

The module of multi-logarithmic k-vector fields of a union of reduced equidimensional
subspaces of the same codimension satisfies the following property:

Proposition 2 ([Pol20, Proposition 5.1]). Let X be a reduced equidimensional subspace of
codimension k, with irreducible components X1, . . . , Xs. Then:

Derk (− logX) =

s⋂
i=1

Derk (− logXi) .

Before giving some basic motivating examples of free singularities, let us introduce the
following notation:

Notation 2. We denote by K(f) the Koszul complex of a sequence (f1, . . . , fk) in S:

K(f) : 0→
k∧
Sk

dk−→ · · · d2−→
1∧
Sk

d1−→ S → 0. (2.1)

The maps dp are given by

dp(ei1 ∧ · · · ∧ eip) =

p∑
j=1

(−1)j+1fjei1 ∧ · · · ∧ êij ∧ · · · ∧ eip .

We also set K̃(f) the complex obtained from K(f) by removing the last S.

The complex 0→ S → 0 is denoted by C.

Example 1. Let E0 = {i1 < · · · < ik} ⊆ {1, . . . , n} and let X be the vector subspace of Cn
defined by the regular sequence (xi1 , . . . , xik). Then a generating set of Derk (− logX) is

{xj ∧i∈E0 ∂xi | j ∈ E0} ∪ {∧i∈E∂xi | E 6= E0} .
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A minimal free resolution of Derk (− logX) is then given by

K̃ ((xi)i∈E0
)⊕

⊕
16i6(n

k)−1

C.

In particular, projdim
(

Derk (− log X)
)

= k − 1 so that X is free.

More generally, the following holds:

Proposition 3 ([Pol20, Corollary 5.5]). Let X be an equidimensional union of coordinate
subspaces. Then X is free.

Motivations for Section 4 are given by the following lemmas:

Lemma 1. Let (X, 0) be defined by f ∈ m2C {x1, . . . , xn} and (Y, 0) be defined by g ∈
m2C {y1, . . . , ym}. Furthermore, assume that f and g are quasi-homogeneous and reduced.
Then h = f + g is free if and only if f = 0 and g is free or vice-versa.

Proof. Assume that both f and g are non-zero.
The singular locus of h satisfies (Sing(V (h)), 0) = (Sing(X), 0)× (Sing(Y ), 0).
Thus dim(Sing(V (h)), 0) 6 n+m− 4 and by Proposition 1, h is not free.

Lemma 2. Let f ∈ C {x1, . . . , xn} and g ∈ C {y1, . . . , ym} be the equations of non-smooth
normal crossing divisors. Let (X, 0) = (V (f + g), 0). Then (X, 0) is not free, whereas
(Sing(X), 0) is free.

Proof. The lemma follows from Lemma 1 and Proposition 3.

Remark 4. These lemmas show that a direct sum of normal crossing divisors is not a free
divisor, whereas the corresponding singular locus, which is built as a product of the individual
singular loci, is a free singularity of codimension 4. The question of the behaviour of freeness
with products then naturally arises.

Remark 5. The motivation to consider Lemma 2 arises from the following: in this setup,
using [HM86, Theorem 4], the isomorphy class of the singular locus determines the isomor-
phy class of the divisor, but the property of being free does not transfer from the singular
locus to the divisor.

3 Generic subspace arrangements and freeness

In this section we assume S = C[x1, . . . , xn].

Definition 3. An equidimensional subspace arrangement of codimension k in Cn is a finite
union of pairwise distinct vector subspaces of codimension k in Cn. We denote by IX ⊆ S
the radical ideal of vanishing polynomials on X.

Remark 6. The term subspace arrangement always refers to a union of vector subspaces in
contrast to the previous part, where we allowed the union of any kind of analytic subspaces.
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Definition 4. Let δ ∈
∧k

DerCn . We say that δ is homogeneous of degree p if there exist
homogeneous polynomials (aE)|E|=k,E⊆{1,...,n} of degree p such that

δ =
∑

E⊆{1,...,n}
|E|=k

(
aE
∧
i∈E

∂xi

)
.

Notation 3. Let M be a graded S-module. For p ∈ N we denote by Mp the submodule of
M composed of the homogeneous elements of M of degree p.

Definition 5. Let Λ be a finite index set and let X =
⋃
i∈ΛXi be an equidimensional

subspace arrangement of codimension k. We say that X is generic if for j = min
{
|Λ|,

(
n
k

)}
and for all I ⊆ Λ with |I| = j, it holds that

dimC

(⋂
i∈I

Derk (− logXi)0

)
=

(
n

k

)
− j.

Remark 7. The condition given in Definition 5 generalizes the usual definition of generic
hyperplane arrangement (see [OT92, Definition 5.22]), since for a hyperplane H,
Der1 (− logH)0 is equal to the vector fields tangent to the hyperplane.

Remark 8. If the coefficients of the defining linear equations of the irreducible components
are chosen randomly, the condition of Definition 5 is satisfied. This remark can be used to
create examples in a computer algebra system such as Singular.

Up to a change of coordinates, it is easy to see that a generic hyperplane arrangement
in Cn with at most n hyperplanes is isomorphic to a normal crossing divisor, and thus is
free. The purpose of this section is to prove the following generalization of this result:

Theorem 1. Let X = X1 ∪ . . . ∪Xs be an equidimensional subspace arrangement of codi-
mension k in Cn such that for all i ∈ {1, . . . , s}, Xi is a vector subspace defined by the
regular sequence (hi,1, . . . , hi,k).

If s 6
(
n
k

)
and X is a generic subspace arrangement, then there exists a basis

(
δ1, . . . , δ(n

k)

)
of
∧k

DerCn such that a minimal generating set of Derk (− logX) is given by

{hi,jδi | i ∈ {1, . . . , s} , j ∈ {1, . . . , k}} ∪ {δi | i > s+ 1} . (3.1)

Corollary 1. Let X = X1 ∪ . . . ∪ Xs be an equidimensional subspace arrangement of
codimension k in Cn satisfying the hypothesis of Theorem 1. Then X is free.

In order to prove Theorem 1, we need the following auxiliary lemmas.

Lemma 3. Let h1, . . . , hk be k linear forms defining a vector subspace X of codimension

k. Then for any δ ∈
(∧k

DerCn

)
0
\ Derk (− logX)0 and B a basis of Derk (− logX)0 a

minimal generating set of Derk (− logX) is of the form:

B ∪ {hiδ | i ∈ {1, . . . , k}} .
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Proof. Let N =
(
n
k

)
. By definition the following holds:

Derk (− logX)0 =

{
η ∈

(
k∧

DerCn

)
0

| 〈η,dh1 ∧ · · · ∧ dhk〉 = 0

}
. (3.2)

Since the hi are linear forms, Equation (3.2) is equivalent to saying that Derk (− logX)0 can

be considered as a hyperplane in
(∧k

DerCn

)
0
' CN , hence dimC Derk (− logX)0 = N −1.

Denote by B a basis of Derk (− logX)0 . There exists a δ ∈
(∧k

DerCn

)
0
\Derk (− logX)0 ,

such that 〈δ, dh1 ∧ · · · ∧ dhk〉 =: λ ∈ C \ {0}. Let ν ∈ Derk (− logX) be arbitrary. Then, by
the previous considerations, we can write

ν = aδ +
∑
η∈B

bηη,

where a, bη ∈ S. We obtain

〈ν, dh1 ∧ · · · ∧ dhk〉 = a〈δ, dh1 ∧ · · · ∧ dhk〉+
∑
η∈B

bη〈η,dh1 ∧ · · · ∧ dhk〉 = λ · a ∈ IX .

This implies a ∈ IX , hence Derk (− logX) is minimally generated by

B ∪ {hiδ | i ∈ {1, . . . , k}} .

Notation 4. Let h = (h1, . . . , hk) ∈ Sk. We denote by Jac(h) the Jacobian matrix of h.

Using an explicit coordinate change, one can refine Lemma 3 as follows:

Remark 9. Let h1, . . . , hk be k linear forms defining a vector subspace X of codimension k.
Let {i1 < . . . < ik} ⊆ {1, . . . , n}. We assume that the k × k minor of Jac(h) relative to the
columns indexed by i1, . . . , ik is non-zero. Then a minimal generating set of Derk (− logX)
is of the form: {

hi∂xi1
∧ · · · ∧ ∂xik

| i ∈ {1, . . . , k}
}
∪
{
δ2, . . . , δ(n

k)−1

}
, (3.3)

where for i ∈
{

2, . . . ,
(
n
k

)
− 1
}

, δi is homogeneous of degree 0 and such that{
∂xi1
∧ · · · ∧ ∂xik

, δ2, . . . , δ(n
k)

}
is a basis of

∧k
DerCn .

Lemma 4. Let F = Sn for n ∈ N>0. We consider F as a graded S-module, where S is
endowed with the standard grading. Furthermore, let B = {b1, . . . , bn} and C = {c1, . . . , cn}
be homogeneous bases of F contained in F0 = Cn. For k ∈ {1, . . . , n−1}, let I, I1, . . . , Ik ⊆ S
be homogeneous ideals contained in S>0 = 〈x1, . . . , xn〉.

Define the graded modules V =
⊕k

i=1 Iibi ⊕
⊕n

j=k+1 Sbj and W = Ic1 ⊕
⊕n

i=2 Sci. If
dimC(V0 ∩W0) = n− k − 1, then there exists a basis B′ = {b′1, . . . , b′n} of F, such that:

V ∩W =

k⊕
i=1

Iib
′
i ⊕ Ib′k+1 ⊕

n⊕
j=k+2

Sb′j .
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Proof. Let V ′ = 〈V0〉 and W ′ = 〈W0〉 be S-modules. After renumbering the bi with index
i > k+1, we can assume bk+1 /∈ V0∩W0. Then B = {bk+1} is a basis of F/W ′, which yields
the existence of ai ∈ S and wi ∈W ′, such that bi = aibk+1+wi for i ∈ {1, . . . , k, k+2, . . . , n}
and the existence of a unit ak+1 ∈ S and of wk+1 ∈ W ′ with c1 = ak+1bk+1 + wk+1. This
implies that B′ = {w1, . . . , wk, bk+1, wk+2, . . . , wn} is a basis of F. We obtain

V =

k⊕
i=1

Iiwi ⊕ Sbk+1 ⊕
n⊕

j=k+2

Swj

and

W =

k⊕
i=1

Swi ⊕ Ibk+1 ⊕
n⊕

j=k+2

Swj .

Then

V ∩W =

k⊕
i=1

Iiwi ⊕ Ibk+1 ⊕
n⊕

j=k+2

Swj .

Proof of Theorem 1. Let us prove Theorem 1 by induction. The initialization for s = 1 is
given by Lemma 3. Let N =

(
n
k

)
and s ∈ {1, . . . , N − 1}.

We assume that X1, . . . , Xs+1 are linear subspaces of Cn of codimension k which are in
generic position.

Let X =
⋃s
i=1Xi, V = Derk (− logX) ,W = Derk (− logXs+1) and F = SN . By

the induction hypothesis, dimC V0 = N − s and by Lemma 3, dimCW0 = N − 1. Then
dimC V0 ∩W0 = N − s − 1 follows from the genericity of the subspace arrangement. By
Proposition 2 it holds that

Derk

(
− log

(
s+1⋃
i=1

Xi

))
= V ∩W.

Then Lemma 4 yields the result.

Proof of Corollary 1. Let {δ1, . . . , δN} be a basis of
∧k

DerCn such that a minimal gen-
erating set of Derk (− logX) is given by Equation (3.1). Since for all i ∈ {1, . . . , s},
(hi,1, . . . , hi,k) is a regular sequence, a minimal free resolution of the ideal 〈hi,1, . . . , hi,k〉 is

given by the truncated Koszul complex K̃i := K̃(hi,1, . . . , hi,k). Since

Derk (− logX) =

s⊕
i=1

〈hi,1, . . . , hi,k〉 δi ⊕
N⊕

i=s+1

Sδi,

we deduce that a minimal free resolution of Derk (− logX) is

K̃1 ⊕ · · · ⊕ K̃s ⊕
N⊕

i=s+1

C
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where C is defined as in Notation 2. Thus, the projective dimension of Derk (− logX) is
k − 1 and X is free.

The following example shows that there exist subspace arrangements that are not, up
to linear change of coordinates, unions of coordinate subspaces and that the genericity
assumption cannot be dropped in Theorem 1.

Example 2.

1. Let us consider the generic subspace arrangement

X = V (x, y) ∪ V (z, t) ∪ V (x− z, y − t) ∈ C4.

We notice that the intersection of two of the components is always 0-dimensional.
If, up to a linear change of coordinates, the subspace arrangement would be a union
of coordinate subspaces, this could not occur. Using this approach one can construct
further examples of generic subspace arrangements, which are not union of coordinate
subspaces in arbitrary dimensions.

2. Let us consider the subspace arrangement Y defined by the equations h1 = xy(x− y+
z− t) and h2 = zt. It is the union of 6 planes in C4. Computations using Singular
show that Y is not free, since a minimal free resolution is given by:

0→ S → S5 → S10 → Der2 (− log Y )→ 0.

Equation (3.2) in the proof of Lemma 3 gives a correspondence between subspaces

of codimension k in Cn and some hyperplanes in C(n
k). Using this correspondence we can

associate a hyperplane arrangement to any subspace arrangement. In the following example
we investigate if there is a relation between the freeness of a subspace arrangement and the
freeness of its associated hyperplane arrangement.

Example 3.

1. We consider the subspace arrangement

X = V (x, y−z)∪V (y, x+z)∪V (x, y−t)∪V (y, x+t)∪V (x−y, z)∪V (x, z−t)∪V (x+t, z) ⊆ C4.

By Equation (3.2) we associate the hyperplane arrangement

Y = V (x1−x2)∪V (x1−x3)∪V (x1−x4)∪V (x1−x5)∪V (x2−x3)∪V (x2−x4)∪V (x2−x6) ⊆ C6.

Using Singular we can show that both X and Y are free.

One can show that for example the hyperplane V (x1−x6) cannot be associated to a subspace
of codimension 2 in C4, hence not all hyperplane arrangements in C6 can arise from subspace
arrangements in this way.

2. We consider the subspace arrangement

X = V (x, y) ∪ V (x, z) ∪ V (y, z) ∪ V (x− z, y + z) ⊆ C3.

By Equation (3.2) we associate the hyperplane arrangement

Y = V (x) ∪ V (y) ∪ V (z) ∪ V (x + y + z) ⊆ C3.

Since dim(X) = 1, we obtain that X is free, but a Singular computation shows that Y is
not free.
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Remark 10. The condition on the number of subspaces in Theorem 1 cannot be dropped,
as we observed by considering randomly generated examples with more than

(
n
k

)
subspaces

with Singular.

4 Constructing free singularities via products

In this section we describe two ways of constructing new free singularities from known free
singularities via two kinds of products: scheme-theoretic products and a generalization of
the product in the sense of hyperplane arrangements.

Notation 5. Let S1 = C {x1, . . . , xn1
} and S2 = C {y1, . . . , yn2

}. For the sake of simplicity,
a germ of analytic space (X, 0) will be denoted by X.

We set S = S1⊗̂S2 ' C {x1, . . . , xn1
, y1, . . . , yn2

} .

Notation 6. The following notations are fixed in this section.
For i ∈ {1, 2} let Xi ⊆ Cni be a reduced Cohen-Macaulay subspace of codimension ki and

(fi,1, . . . , fi,ki) ⊆ Si be the equations of a reduced complete intersection Ci of codimension
ki containing Xi.

The next lemma recalls basic properties of analytic tensor products which will be used
after.

Lemma 5 ([GR71, Kapitel III §5 Satz 10, Satz 17, Satz 19]). Let R1 and R2 be two analytic
C-algebras and R = R1⊗̂R2. Let Mi be an Ri-module for i ∈ {1, 2}. Then

1. depthR(M1 ⊗M2) = depthR1
(M1) + depthR2

(M2),

2. dimR(M1 ⊗M2) = dimR1
(M1) + dimR2

(M2).

3. R1 and R2 are reduced if and only if R is reduced.

It follows that:

Corollary 2. With the hypothesis of Notation 6, the product X1 × X2 ⊆ Cn1 × Cn2 is a
reduced Cohen-Macaulay subspace.

Remark 11. Let X ⊆ Cn be a reduced Cohen-Macaulay subspace. The freeness of X is
independent of the embedding in the following sense:
Let p ∈ N. If X is free, then Lemma 5 and Proposition 1 implies that Y = X × (0, . . . , 0) ⊆
Cn × Cp is free.

Notation 7. We define X := X1 × X2. A reduced complete intersection C containing
X is defined by the regular sequence (f1,1, . . . , f1,k1 , f2,1, . . . , f2,k2) ⊆ S. In particular,
codim(X) = codim(C) = k1 + k2.

The main result of this section is:

Theorem 2. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be reduced Cohen-Macaulay subspaces and
X = X1 ×X2 ⊆ Cn1 × Cn2 . Then X1 and X2 are free if and only if X is free.

Remark 12. In particular, if X1 and X2 are hypersurfaces, then X1 and X2 are free
divisors if and only if X1 ×X2 is a free complete intersection of codimension 2.
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We will need the following results.

Lemma 6 ([dJP00, Lemma 6.5.18]). Let R be a local Noetherian ring and consider a short
exact sequence of R-modules :

0→M1 →M2 →M3 → 0.

Then
depth(M2) > min (depth(M1),depth(M3)) .

In case this inequality is strict, we have depth(M1) = depth(M3) + 1.

Lemma 7. Let R1 and R2 be two analytic C-algebras and R = R1⊗̂R2. Let I ⊆ R1

and J ⊆ R2 be ideals. We assume that depth (R1/I) < depth(R1) and depth (R2/J) <
depth(R2). Then:

1. depth (R/(RI +RJ)) = depth (R1/I) + depth (R2/J),

2. depth (R/(RI ∩RJ)) = depth (R1/I) + depth (R2/J) + 1.

Proof.

1. The statement follows from Lemma 5 noticing that R/(RI +RJ) ' (R1/I)⊗̂(R2/J).

2. Let us consider the exact sequence

0→ R/(RI ∩RJ)→ (R/RI)⊕ (R/RJ)→ R/(RI +RJ)→ 0. (4.1)

Applying Lemma 5 to R/RI = (R1/I)⊗̂R2 yields

depth(R/RI) = depth(R1/I) + depth(R2).

By assumption depth(R2) > depth(R2/J), hence (1) and Lemma 5 imply

depth(R/RI) > depth(R/(RI +RJ)).

Analogously we obtain

depth(R/RJ) > depth(R/(RI +RJ)).

Since depth((R/RI)⊕ (R/RJ)) = min(depth(R/RI),depth(R/RJ)), we get

depth((R/RI)⊕ (R/RJ)) > depth(R/(RI +RJ)).

In this case the inequality in Lemma 6 is strict, hence

depth(R/(RI ∩RJ)) = depth(R/(RI +RJ)) + 1.

Proposition 4. Let R1 and R2 be two analytic C-algebras and R = R1⊗̂R2. Let I ⊆ R1

and J ⊆ R2. We assume that depth (R1/I) < depth(R1) and depth (R2/J) < depth(R2).
Then the following are equivalent:
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1. R/(RI ∩RJ) is Cohen-Macaulay,

2. R1, R2, R1/I and R2/J are Cohen-Macaulay, dim(R1/I) = dim(R1)− 1 and
dim(R2/J) = dim(R2)− 1.

Proof. By Lemma 7, we have:

depth (R/(RI ∩RJ)) = depth (R1/I) + depth (R2/J) + 1. (4.2)

Furthermore, Lemma 5 and our assumptions imply the following inequalities:

dim(R/(RI ∩RJ)) = max (dim(R/RI),dim(R/RJ))

= max (dim(R1/I) + dim(R2),dim(R1) + dim(R2/J))

> min (dim(R1/I) + dim(R2),dim(R1) + dim(R2/J))

> min (depth(R1/I) + depth(R2),depth(R1) + depth(R2/J))

> depth(R1/I) + depth(R2/J) + 1. (4.3)

Assume first that the hypothesis of the second statement is satisfied. In this case In-
equality (4.3) becomes an equality. Then the first statement follows by using Equation (4.2).
Next we assume that R/(RI∩RJ) is Cohen-Macaulay. Due to Equation (4.2) and Inequality
(4.3) we obtain:

depth (R/(RI ∩RJ)) = depth (R1/I) + depth (R2/J) + 1

6 dim(R/(RI ∩RJ))

Since R/(RI∩RJ) is Cohen-Macaulay, equality holds everywhere, which yields that R1, R2,
R1/I and R2/J are Cohen-Macaulay and dim(R2/J) = dim(R2) − 1 and dim(R1/I) =
dim(R1)− 1.

Lemma 8 ([GR71, Kapitel III, §5 Korollar zu Satz 5]). Let R1 and R2 be two analytic
C-algebras and R = R1⊗̂R2. Let I ⊆ R1 and J ⊆ R2 be ideals. Then the following equality
holds in the ring R:

RI ·RJ = RI ∩RJ.

Proof of Theorem 2. We set for i ∈ {1, 2}, Ri = Si/IXi
and

R = S/IX = S1/IX1⊗̂S2/IX2 .
For i ∈ {1, 2}, let JXi/Ci

⊆ Si and JX/C ⊆ S be defined as in Notation 1. We denote by
π : S → R, respectively πi : Si → Ri the canonical surjections. Then JC = SJC1

·SJC2
⊆ S,

hence Lemma 8 implies

π(JX/C) = π(JC)

= Rπ1(JC1
) ·Rπ2(JC2

)

= Rπ1(JX1/C1
) ·Rπ2(JX2/C2

)

= Rπ1(JX1/C1
) ∩Rπ2(JX2/C2

) (4.4)

First we assume JXi/Ci
6= Si for i ∈ {1, 2}. Then, by Proposition 1, X is free if and only

if R/π(JX/C) is Cohen-Macaulay of R-codimension 1. By Equation (4.4) and Proposition 4
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we obtain that R/π(JX/C) is Cohen-Macaulay if and only if for i ∈ {1, 2} it holds that Ri
and Ri/πi(JXi/Ci

) are Cohen-Macaulay and dim(Ri) = dim(Ri/πi(JXi/Ci
)) + 1. This is,

again by Proposition 1, equivalent to the fact that X1 and X2 are free. Next we consider
the case JXi/Ci

= Si for at least one i ∈ {1, 2}. In case JX/C = S the statement is
obvious, hence we assume without loss of generality JX/C = SJX1/C1

. Then R/π(JX/C) ∼=
R1/π1(JX1/C1

)⊗̂R2. In this setup the statement follows from Lemma 5.

Remark 13. As a consequence, if X1 and X2 are free Cohen-Macaulay subspaces, we have

projdim
(

Derk1+k2 (− log X1 ×X2)
)

=

projdim
(

Derk1 (− log X1)
)

+ projdim
(

Derk2 (− log X2)
)

+ 1

A different notion of product for hyperplane arrangements is considered in [OT92, Def-
inition 2.13]. It can be generalized to subspaces of higher codimension as follows:

Definition 6. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be two equidimensional subspaces, both of the
same codimension k. We set X1 ∗X2 = X1 × Cm ∪ Cn ×X2.

Notation 8. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be two reduced equidimensional subspaces, both
of the same codimension k. Let X ′1 = X1 × Cn2 and X ′2 = Cn1 ×X2.

For i ∈ {1, 2} let ιi :
∧k

DerCni →
∧k

DerCn1+n2 be the canonical maps. We identify

Derk (− logXi) with the submodule of
∧k

DerCn1+n2 generated by ιi

(
Derk (− logXi)

)
.

Consider the decomposition:

k∧
DerCn1+n2 = D1 ⊕D2 ⊕D1,2

where Di is the submodule generated by the image of
∧k

DerCni in
∧k

DerCn1+n2 and D1,2

is the free submodule of
∧k

DerCn+m generated by the elements of the form ∂xi1
∧· · ·∧∂xip

∧
∂yj1 ∧ · · · ∧ ∂yjk−p

where p ∈ {1, . . . , k − 1}.

A similar result as Theorem 2 is satisfied, which generalizes [OT92, Proposition 4.28]:

Proposition 5. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be two reduced equidimensional subspaces,
both of the same codimension k. Then, with Notation 8:

Derk (− logX1 ∗X2) = Derk (− logX1)⊕Derk (− logX2)⊕D1,2.

In particular, X1 ∗X2 is free if and only if both X1 and X2 are free.

Proof. We have:
Derk (− logX ′1) = Derk (− logX1)⊕D2 ⊕D1,2,

Derk (− logX ′2) = D1 ⊕Derk (− logX2)⊕D1,2.

By Proposition 2, Derk (− logX1 ∗X2) = Derk (− logX ′1) ∩ Derk (− logX ′2). We thus
have the decomposition:

Derk (− logX1 ∗X2) = Derk (− logX1)⊕Derk (− logX2)⊕D1,2
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A minimal free resolution of Derk (− logX1 ∗X2) is thus given as the direct sum of
minimal free resolutions of Derk (− logX1) ,Derk (− logX2) and D1,2. Since D1,2 is free,

the projective dimension of Derk (− logX1 ∗X2) is

max
{

projdim
(

Derk (− log X1)
)
,projdim

(
Derk (− log X2)

)}
.

Since by [Pol20, Proposition 4.2], projdim
(

Derk (− log Xi)
)

> k − 1, we have

projdim
(

Derk (− log X1 ∗X2)
)

= k − 1 if and only if

projdim
(

Derk (− log X1)
)

= projdim
(

Derk (− log X2)
)

= k − 1.
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