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Abstract

Several authors studied the system of elasticity with laws of particular behavior
and using various techniques in constant exponents Sobolev spaces. In this article
we consider a Dirichlet problem for nonlinear elasticity system with laws of general
behavior. The coefficients of elasticity depends on x and the density of the volumetric
forces depends on the displacement. We consider this problem as a Leray-Lions op-
erator and the main aim of this paper is to apply Galerkin techniques and monotone
operator theory to prove a theorem of existence and uniqueness.
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1 Introduction

The study of PDE problems with variable exponents is a new and quite interesting topic. It
comes from the theory of nonlinear elasticity, elastic mechanics, fluid dynamics, electrorhe-
ological fluids, and image processing, etc. (see [2], [16], [17]).
First, we introduce the notations needed in this article. Let Ω a connected open bounded
domain of RN (N = 3) with Lipschitz boundary Γ. To a given field of displacement u, we
associate a nonlinear deformation tensor E defined by

E (∇u(x)) =
1

2

(
T∇u+∇u+T ∇u∇u

)
,

whose components are:

Eij (∇u(x)) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+

3∑
m=1

∂um
∂xi

∂um
∂xj

)
, 1 ≤ i, j ≤ 3. (1.1)

The corresponding nonlinear constraints tensor σ(u) = (σij(u(x)))1≤i,j≤3 is then given by:

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)), 1 ≤ i, j ≤ 3, (1.2)
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which describes a nonlinear relation between the stress tensor (σij)i,j=1,2,3 and the deforma-

tion tensor (Eij)i,j=1,2,3. The coefficients of elasticity aijkh satisfy the following symmetry
properties:

aijkh = ajikh = aijhk, for all 1 ≤ i, j, k, h ≤ 3. (1.3)

The aim of this paper is to prove the existence and uniqueness of weak solutions for the
following nonlinear elliptic problem, encountered in the theory of nonlinear elasticity:

−
3∑
j=1

∂

∂xj
σij(u(x)) = fi(x, u(x)) in Ω, 1 ≤ i ≤ 3,

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)) in Ω, 1 ≤ i, j ≤ 3,

Eij (∇u(x)) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
3∑

m=1

∂um
∂xi

∂um
∂xj

)
in Ω, 1 ≤ i, j ≤ 3,

ui = 0 on Γ, 1 ≤ i ≤ 3.

This problem models the behavior of a heterogeneous material with Dirichlet’s condition on
the boundary. The consideration of this general material is in no way restrictive. Indeed,
we can applied this study to the most particular elastic materials, but this particular case
makes it easy, to describe the different stages of this work. The tensor of the constraints
considered here is nonlinear and grouped, as special cases, some models used in Ciarlet [3],
Lions [11] and Dautry-Lions [5]. Let us cite by way of example (see [3],[9]):

1. The problem of pure displacement for a homogeneous or heterogeneous material of St
Vennan-Kirchhoff where:

- the applied volumetric forces f are dead (does not depend on u),

- the tensor of stress is in the form (material of St Vennan-Kirchhoff ):{
σij(u(x)) = λ(trE(∇u(x))) + 2µEij(∇u(x)),

1 ≤ i, j ≤ 3, λ > 0, µ > 0,

2. The coefficients of elasticity have the form:

aijpq = λδijδpq + µ(δipδjq + δiqδjp), 1 ≤ i, j, p, q ≤ 3

with, λ and µ depend on x or not,

3. The applied volumetric forces f have the form f(ξ) = |ξ|p(x)−1
ξ,

4. Some models called “LES”(Large Eddy Simulations) used in fluid mechanics. These
problems are:

−div(ψ(x)a(∇u(x))) = f(x).

For ψ ≡ 1 and a(ξ) = |ξ|p(x)−2
ξ, the above equation may be described by:

− div(|∇u|p(x)−2∇u) = f.

The operator ∆p(x) : u −→ ∆p(x)(u) = div(|∇u|p(x)−2∇u) is called the
p (x) -Laplacian.
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Several authors studied the system of elasticity with laws of particular behavior and using
various techniques in constant exposants Sobolev spaces for example in [3] Ciarlet used the
implicit function theorem to show the existence and uniqueness of a solution, in [5] Dautry-
Lions studied the linear problem in a regular boundary domain, in [12], [13], [14] Merouani
studied the Lamé (elasticity) system in a polygonal boundary domain, in [18] Zoubai and
Merouani studied the existence and uniqueness of the solutions of the nonlinear elasticity
system by topological degree, and in [19] Zoubai and Merouani studied the existence and
uniqueness of the solution of Neumann’s problem, in Sobolev spaces with variable expo-
nents.
The bibliography quoted here does not claim to be exhaustive and the deficiencies it cer-
tainly entails must be attributed to the author’s ignorance and not to the author’s ill will.

To solve our problem, we will consider an operator: u→ A(u) = −
3∑
j=1

∂
∂xj

σij(u(x)) as oper-

ator of Leray-Lions [10], with Dirichlet’s condition on Γ, and we prove a theorem of existence
and uniqueness of solution using Galerkin techniques and monotone operator theory.

The appropriate Sobolev space to consider for this problem is the space(
W

1,p(x)
0 (Ω)

)3

∩
(
W 2,p(x) (Ω)

)3
, where p(x) needs to satisfy the log-Hölder condition (see

[6],[8]) to obtain suitable properties.
This paper is organized as follows:
- Notations and properties of variable exponent Lebesgue-Sobolev spaces,
- Some properties of the operator Eij ,
- Hypotheses and main result,
- Proof of theorem,
- Conclusion and bibliography.

2 Properties of variable exponent Lebesgue-Sobolev
spaces

In this section, we recall some definitions and basic properties of the generalized Lebesgue–

Sobolev spaces Lp(x) (Ω), W 1,p(x) (Ω) and W
1,p(x)
0 (Ω), when Ω is a bounded open set of

RN (N ≥ 1) with a smooth boundary.

Let p : Ω → [1,+∞) be a continuous, real-valued function. Denote by p− = min
x∈Ω

p(x)

and p+ = max
x∈Ω

p(x).

We introduce the variable exponent Lebesgue space

Lp(x) (Ω) =

{
u : Ω→ R;u is measurable with

∫
Ω

|u (x)|p(x)
dx <∞

}
,

endowed with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.
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The following inequality will be used later

min
{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
≤
∫

Ω

|u (x)|p(x)
dx ≤ max

{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
for any u ∈ Lp(x) (Ω) .

Lemma 1. [4], [6], [7], [8]

• The space
(
Lp(x) (Ω) , ‖.‖Lp(x)(Ω)

)
is a Banach space.

• If p− > 1, then Lp(x) (Ω) is reflexive and its conjugate space can be identified with
Lp
′(x) (Ω) where, 1

p(x) + 1
p′(x) = 1. Moreover, for any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω) ,

we have the Hölder inequality∫
Ω

|uv| dx ≤
(

1

p−
+

1

p′−

)
‖u‖Lp(x)(Ω) ‖v‖Lp′(x)(Ω) ≤ 2 ‖u‖Lp(x)(Ω) ‖v‖Lp′(x)(Ω) .

• If p+ < +∞, then Lp(x) (Ω) is separable.

• Some embedding stay true, for example, if 0 < |Ω| <∞ and p1, p2 are variable expo-
nent such that p1 (x) ≤ p2 (x) almost everywhere in Ω, then we have the continuous
injection.

Now, we define also the variable Sobolev space by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

}
,

endowed with the following norm

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) .

Definition 1. The variable exponent p : Ω → [1,+∞) is said to satisfy the log-Hölder
continuous condition if

∀x, y ∈ Ω, |x− y| < 1, |p (x)− p (y)| < w (|x− y|) ,

where w : (0,∞)→ R is a nondecreasing function with lim
α→0

supw (α) ln
(

1
α

)
<∞.

Lemma 2. [4], [6], [7], [8]

• If 1 < p− ≤ p+ < ∞, then the space
(
W 1,p(x) (Ω) , ‖.‖W 1,p(x)(Ω)

)
is a separable and

reflexive Banach space.

• If p(x) satisfies the log-Hölder continuous condition, then C∞ (Ω) is dense in
W 1,p(x) (Ω) . Moreover, we can define the Sobolev space with zero boundary values,

W
1,p(x)
0 (Ω) as the completion of C∞0 (Ω) with respect to the norm ‖.‖W 1,p(x)(Ω) .
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• For all u ∈W 1,p(x)
0 (Ω), the Poincaré inequality

‖u‖Lp(x)(Ω) ≤ C ‖∇u‖Lp(x)(Ω)

holds. Moreover, ‖u‖
W

1,p(x)
0 (Ω)

= ‖∇u‖Lp(x)(Ω) is a norm in W
1,p(x)
0 (Ω) .

Remark 1. [1] Let a ≥ 0, b ≥ 0 and let 1 ≤ p− ≤ p+ < +∞, then

(a+ b)p(x) ≤ 2p+−1(ap(x) + bp(x)).

Throughout this paper, we shall assume that the variable exponent p(x) satisfy the log-
Hölder condition, and N < p− ≤ p+ <∞ because if p (x) > N then W 1,p(x) (Ω) ⊂ C (Ω) for
every x ∈ Ω.

3 Some properties of the operator Eij

For the rest of this work, we will need some properties of the deformation tensor (1.1).
For this, we have the following lemma:

Theorem 1. (Some properties of the operator Eij)

For u ∈Wp(x)(Ω) =
(
W

1,p(x)
0 (Ω)

)3

∩
(
W 2,p(x)(Ω)

)3
, with 3 < p(x) < +∞, the components

Ekh of the deformation tensor of St. Venant E verify the following properties:
1. (Continuity) Ekh is a continuous function, k, h = 1 to 3,

2. (Coercivity) ∃α > 0; such as Ekh (ξ) ξij ≥ α |ξ|p(x)
,∀i, j, k, h = 1 to 3,

3. Ekh (∇u) ∂vi∂xj
∈ L1(Ω),∀i, j, k, h = 1 to 3,

4. (Monotony) Let the functions ∂ui

∂xj
: Ω −→

]
−∞, 1

3

]
, x −→ ∂ui

∂xj
(x) and

∂uj

∂xi
: Ω −→]

−∞, 1
3

]
, x −→ ∂uj

∂xi
(x), i, j = 1 to 3; then the operators

Eij(.) of Wp(x)(Ω) in
(
Wp(x)(Ω)

)′
, i, j = 1 to 3,

are monotonous.

Proof of theorem 1:

1. The continuity of Ekh :
for p(x) > 3, the space W 1,p(x)(Ω) is an algebra, that is to say

u, v ∈W 1,p(x)(Ω)⇒ uv ∈W 1,p(x)(Ω).

So we have for u ∈Wp(x)(Ω) =
(
W

1,p(x)
0 (Ω)

)3

∩
(
W 2,p(x)(Ω)

)3
:

∂uk
∂xh

,
∂uh
∂xk

and

3∑
m=1

∂um
∂xk

∂um
∂xh

∈W 1,p(x)(Ω),
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and therefore Ekh(∇u) ∈ W 1,p(x)(Ω). In addition, for p(x) > 3, we have the continuous
injection W 1,p(x)(Ω) ↪→ C(Ω), so the continuity of Ekh, k, h = 1 to 3 are fulfilled.
2. The Coercivity:
for the coercivity of the components Ekh see [15].
3. Ekh (∇u) ∂vi∂xj

∈ L1(Ω),∀i, j, k, h = 1 à 3,

by exploiting the remark 1, we arrive at

|Ekh (∇u)|p(x)
=
(

1
2

)p(x)
∣∣∣∣(∂uk

∂xh
+ ∂uh

∂xk
+

3∑
m=1

∂um

∂xk

∂um

∂xh

)∣∣∣∣p(x)

,

≤
(

1
2

)p(x)

× 2p
+−1

[∣∣∣∂uk

∂xh
+ ∂uh

∂xk

∣∣∣p(x)

+

(∣∣∣∣ 3∑
m=1

∂um

∂xk

∂um

∂xh

∣∣∣∣)p(x)
]

,

≤
(

1
2

)p(x)

× 2p
+−1

[
2p

+−1

(∣∣∣∂uk

∂xh

∣∣∣p(x)

+
∣∣∣∂uh

∂xk

∣∣∣p(x))
+

(∣∣∣∣ 3∑
m=1

∂um

∂xk

∂um

∂xh

∣∣∣∣)p(x)
]

,

hence

Ekh (∇u) ∈ Lp(x)(Ω), k, h = 1 to 3,

and as p(x) > p′(x) as soon as p(x) > 3 and Ω bounded, we have:

Ekh (∇u) ∈ Lp
′(x)(Ω), k, h = 1 to 3.

Take then v ∈ Wp(x)(Ω), we have ∂vi
∂xj
∈ Lp(x)(Ω), ∀ 1 ≤ i, j ≤ 3. We therefore have by

Hölder’s inequality:

Ekh (∇u)
∂vi
∂xj
∈ L1(Ω), i, j, k, h = 1 to 3.

4. The monotony:
using the rule 1

2 (a2 + b2) ≥ −ab, with a = ∂um

∂xi
and b = ∂um

∂xj
, we have

Eij(u) ≥ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

4

3∑
m=1

((
∂um

∂xi

)2

+
(
∂um

∂xj

)2
)

=

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

4

(
3∑

m=1

(
∂um

∂xi

)2

+
3∑

m=1

(
∂um

∂xj

)2
)
, i, j = 1 to 3,

and consequently, ∀i, j = 1 to 3:

〈Eij(u)− Eij(v), u− v〉 ≥ 1
2

〈(
∂ui

∂xj
+

∂uj

∂xi

)
−
(
∂vi
∂xj

+
∂vj
∂xi

)
, u− v

〉
− 1

4

〈(
3∑

m=1

(
∂um

∂xi

)2

+
3∑

m=1

(
∂um

∂xj

)2
)
−
(

3∑
m=1

(
∂vm
∂xi

)2

+
3∑

m=1

(
∂vm
∂xj

)2
)
, u− v

〉
.

(3.1)

To conclude, we must prove that the second member of (3.1) is ≥ 0. For that, we separate
the second member of (3.1) in linear and nonlinear part.

Let the linear function Ω
Jx−→ R3 × R3 Aij−→ R, defined by

(Aij ◦ Jx)(x) = Aij

(
∂u

∂xi
(x),

∂u

∂xj
(x)

)
=

1

2

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)
, i, j = 1 to 3,
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and the nonlinear function Ω
Jx−→ R3 × R3 Bij−→ R, defined by

(Bij◦Jx)(x) = Bij

(
∂u

∂xi
(x),

∂u

∂xj
(x)

)
= −1

4

 3∑
j=1

(
∂uj
∂xi

(x)

)2

+

3∑
i=1

(
∂ui
∂xj

(x)

)2
 , i, j = 1 to 3.

The functions Aij and Bij are continuous for p(x) > 3. It remains to show that, ∀i, j = 1
to 3, the Aij are increasing on R, the Bij increasing on R− and the Aij +Bij increasing on]
−∞, 1

3

]
.

1. Let us show that the Aij are increasing: let the function

Ω
Jx−→ R

∂ui
∂xj−→ R,defined by (

∂ui
∂xj
◦ Jx)(x) =

∂ui
∂xj

(x), i, j = 1 to 3.

We note
∂u

∂xj
(x) = tj and

∂u

∂xi
(x) = τi,

and
∂ui
∂xj

(x) = tij and
∂uj
∂xi

(x) = τji.

The function t 7−→ 1
2 t of R −→ R, being increasing on R, we have:

1
2

〈
∂ui

∂xj
− ∂vi

∂xj
, ∂ui

∂xj
− ∂vi

∂xj

〉
= 1

2

∫
Ω

(
∂ui

∂xj
− ∂vi

∂xj

)(
∂ui

∂xj
− ∂vi

∂xj

)
dx =

1
2

∥∥∥ ∂ui

∂xj
− ∂vi

∂xj

∥∥∥2

L2(Ω)
≥ 0.

Therefore, the Aij are increasing.
2. Let us show that the Bij are increasing: let the function

Ω
Jx−→ R3 × R3 Bij→ R,

defined by

(Bij ◦ Jx)(x) = Bij (tj , τi) = −1

4

 3∑
j=1

(
∂uj
∂xi

(x)

)2

+

3∑
i=1

(
∂ui
∂xj

(x)

)2
 , i, j = 1 to 3.

As in point 1., we note

tij =
∂ui
∂xj

(x), τji =
∂uj
∂xi

(x),∀i, j = 1 to 3,

Bij (tj , τi) = −1

4

 3∑
j=1

(
∂uj
∂xi

(x)

)2

+

3∑
i=1

(
∂ui
∂xj

(x)

)2

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so

Bij (tj , τi) = −1

4

 3∑
i=1

t2ij +

3∑
j=1

τ2
ji


≥ −1

4

(
6× Max

1 ≤i , j≤ 3

(
t2ij , τ

2
ji

))
= −3

2
κ2.

The function f(κ) = − 3
2κ

2 being continuous and increasing on R−, we deduce that the Bij
are increasing on R−.

3. We show that the Aij + Bij , are increasing : the proofs of points 1. and 2. imply
that the sum Aij + Bij , ∀i, j = 1 to 3, corresponds to the sum of the two functions
f(κ) + g(κ) = κ − 3

2κ
2,R −→ R, obviously continuous and increasing on

]
−∞, 1

3

]
, as

the derivative of the convex function h(x) = 1
2x

2 − 1
2x

3 on
]
−∞, 1

3

]
. So, (3.1) is verified

and consequently

〈Eij(u)− Eij(v), u− v〉 ≥ 〈(Aij +Bij)(u)− (Aij +Bij)(v), u− v〉 ≥ 0,∀i, j = 1 to 3.

In other words, the Eij(u), i, j = 1 to 3, are monotonous Wp(x)(Ω) in
(
Wp(x)(Ω)

)′
, i, j = 1

to 3.

Corollary 1. Under the same assumptions, of the above theorem, the operator

−div(aijkh(x) Eij(.)) is monotonous of Wp(x)(Ω) in
(
Wp(x)(Ω)

)′
.

under the assumption

∃α, β ∈ R∗+; α ≤ aijkh(x) ≤ β, a.e., ∀i, j, k, h = 1 to 3.

Proof of corollary 1:
We have

∀(u, v) ∈Wp(x)(Ω)2, 〈−div(aijkh(x) Eij(u))− (−div(aijkh(x) Eij(v)), u− v〉 ≥

α
3∑

i,j=1

∫
Ω

(Eij(u)− Eij(v))
(
∂u
∂xj
− ∂v

∂xj

)
dx.

The point 4. of theorem 1 implies that

3∑
i,j=1

∫
Ω

(Eij(u)− Eij(v))

(
∂u

∂xj
− ∂v

∂xj

)
dx ≥ 0,

hence the desired result.

4 Hypotheses and main result

We consider the problem (4.1), with the hypotheses (4.2),
−

3∑
j=1

∂
∂xj

σij(u(x)) = fi(x, u(x)) in Ω, 1 ≤ i ≤ 3,

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)) in Ω, 1 ≤ i, j ≤ 3,

ui = 0 on Γ, 1 ≤ i ≤ 3.

(4.1)
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
∀i, j, k, h = 1 to 3 :
(1) aijkh ∈ L∞ (Ω) ; ∃α0 > 0; aijkh ≥ α0 a.e. in Ω,

(2) f = (f1, f2, f3) ∈
(
L

p(x)
p(x)−1 (Ω)

)3

.

(4.2)

Let us look for an adequate weak form of (4.1).

Let u ∈Wp(x)(Ω) =
(
W

1,p(x)
0 (Ω)

)3

∩
(
W 2,p(x)(Ω)

)3
equipped with ‖.‖Wp(x)(Ω) = ‖.‖(

W
1,p(x)
0 (Ω)

)3 .

From the theorem 1, we have

Ekh (∇u)
∂vi
∂xj
∈ L1(Ω), i, j, k, h = 1 to 3.

It is therefore natural to look u ∈Wp(x)(Ω) and take the test functions in Wp(x)(Ω). We

also recall that if f(., s) ∈
(
Lp
′(x) (Ω)

)3

, the mapping v →
∫

Ω

f(x, u(x))v (x) dx acting from

Wp(x)(Ω) to R, is an element of
(
Wp(x)(Ω)

)′
. We denote by f this element, that is to say

for f ∈
(
Lp
′(x) (Ω)

)3

, we have

〈f, v〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

=

∫
Ω

f (x, u(x)) v (x) dx,∀v ∈Wp(x)(Ω).

The weak form of (4.1) is thus:
u ∈Wp(x)(Ω),

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇u(x))
∂vi

∂xj
dx

= 〈f, v〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

,∀v ∈Wp(x)(Ω).

(4.3)

Theorem 2. Under the hypotheses (4.2), there exist u ∈ Wp(x)(Ω) solution of (4.3). If,
moreover, (Ekh (ξ)− Ekh (η)) (ξij − ηij) > 0, for all ξ, η ∈ R3×3, ξij , ηij ∈ R, ξij 6= ηij, and
f does not depend on u then there exist a unique solution u of (4.3).

For the proof of this theorem, we will need the following lemmas:

Lemma 3. Let p : Ω→ ]1,+∞[ . If fn → f in Lp(x) (Ω) and gn → g weakly in Lp
′(x) (Ω) .

So ∫
Ω

fn gndx→
∫

Ω

f gdx when n→∞.

Demonstration of Lemma 3
We have:∣∣∣∣∫

Ω

(fn gn − f g) dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(fn gn − f g − f gn + f gn) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

[(fn − f) gn + f (gn − g)] dx

∣∣∣∣
≤
∫

Ω

|fn − f | |gn| dx+

∣∣∣∣∫
Ω

f (gn − g)dx

∣∣∣∣
≤ 2 ‖fn − f‖Lp(x)(Ω) ‖gn‖Lp′(x)(Ω) +

∣∣∣〈gn − g, f〉Lp′(x)(Ω),Lp(x)(Ω)

∣∣∣→ 0.
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Lemma 4. (Finite-dimensional coercive operator) Let V be a finite-dimensional space, and
T : V → V ′ continuous. We suppose that T is coercive, namely:

〈T (v) .v〉V ′,V
‖v‖V

→ +∞ when ‖v‖V → +∞.

Then, for every b ∈ V ′ there exists v ∈ V such that T (v) = b.

5 Proof of theorem

Study of finite dimension problem

Since Wp(x)(Ω) is separable, then, there exists a countable family (fn)n∈N∗ dense in Wp(x)(Ω).
Let Vn = V ect {fi, i = 1, ..., n} be the vector space generated by the first n functions of this
family. So we have dimVn ≤ n, Vn ⊂ Vn+1 for all n ∈ N∗ and we have ∪

n∈N
Vn = Wp(x)(Ω).

We deduce that for all v ∈Wp(x)(Ω) there exists a sequence vn ∈ Vn, such that vn → v in
Wp(x)(Ω) when n→ +∞.
In the first step, we fix n ∈ N∗ and look for un solution of the following problem, posed in
finite dimension: 

un ∈ Vn,
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇un(x))
∂vi
∂xj

dx

= 〈f, v〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

,∀v ∈ Vn.

(5.1)

The application v → 〈f, v〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

is a linear mapping of Vn to R (it is also

continuous because dimVn < +∞). We denote by bn this application. So bn ∈ V ′n and

〈bn, v〉V ′n,Vn
= 〈f, v〉(Wp(x)(Ω))

′
,Wp(x)(Ω)

.

Let u ∈ Vn. We denote by Tn (u) the mapping of Vn into V ′n which has v ∈ Vn associated

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx.

This application is linear and continuous, so it is also an element of V
′

n and we have

〈Tn (u) , v〉
V ′n,Vn

=
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx.

We have thus defined an application T of Vn to V ′n. We shall show that T is continuous
and coercive. We can thus deduce by the Lemma 4, that T is surjective, and therefore that
there exists un ∈ Vn satisfying T (un) = bn, quecisely un is the solution of the problem
(5.1).
(a) Continuity of Tn. To ease the writing, we note V = Vn equipped with ‖.‖V =
‖.‖Wp(x)(Ω) and note T = Tn. Let u, u ∈ V, we have:
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�-Ekh (∇u))
∂vi
∂xj

dx

Putting
a = ‖aijkh‖L∞(Ω) ,

we obtain by Hölder inequality

‖T (u)− T (u)‖V ′ = sup
v∈V, ‖v‖V =1

|〈T (u)− T (u) , v〉V ′,V |

= sup
v∈V, ‖v‖

Wp(x)(Ω)
=1

∣∣∣∣∣ 3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)(Ekh (∇u)− Ekh (∇u))
∂vi
∂xj

dx

∣∣∣∣∣
≤ sup
v∈Wp(x)(Ω), ‖v‖

Wp(x)(Ω)
=1

3∑
i,j=1

3∑
k,h=1∣∣∣∣∫

Ω

aijkh(x)(Ekh (∇u)− Ekh (∇u))
∂vi
∂xj

dx

∣∣∣∣
Thus if (un)n∈N is a sequence of V such that un → u in V , we have

‖T (un)− T (u)‖V ′ ≤ 18a
3∑

k,h=1

‖Ekh (∇un)− Ekh (∇u)‖Lp′(x)(Ω) .

For u ∈Wp(x)(Ω), we have Ekh, k, h = 1 to 3, are continuous (see theorem 1), consequently
Ekh (∇un)→ Ekh (∇u) a.e.. We have also, according to the remark 1, Ekh (∇u) is bounded
in Lp(x)(Ω), so it bounded in Lp

′(x)(Ω) because p(x) > p′(x), as soon as p(x) > 3. So by
Lebesgue’s dominated convergence theorem Ekh (∇un)→ Ekh (∇u) in Lp

′(x) (Ω) , ∀k, h = 1
to 3. We have thus shown that T (un)→ T (u) in V ′, so T is continuous.
(b) Coercivity of Tn. According to the hypothesis (1) of (4.2), and the coercivity of Ekh
(see theorem 1), we have:

〈T (u) .u〉V ′,V =
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇u(x))
∂ui
∂xj

dx

≥ C1

∫
Ω

|∇u|p(x)
dx.

Now, we use the following inéquality (see section 2)

min
{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
≤
∫

Ω

|u (x)|p(x)
dx ≤ max

{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
we obtain

〈T (u) .u〉V ′,V ≥ C1 min
{
‖∇u‖p−

Lp(x)(Ω)
, ‖∇u‖p+

Lp(x)(Ω)

}
≥ C1 min

{
‖u‖p−V , ‖u‖p+

V

}
.
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Or, C1 is a constant depend of α0 and α.
Consequently, the operator T is coercive. This yields the existence of solution for problem
(5.1).

Study of infinite dimension problem

The solution of the problem (5.1) is obtained.
So to show the existence of u a solution of (4.3), we will estimate un the solution of (5.1)
and then by crossing to the limit when n→ +∞ we will have the solution u of our problem
(4.3). Therefore that technique used to show that the limit of the nonlinear term is the
desired term.
(a) Estimation on un
In view of coercivity, if we substitute v by un in (5.1), we obtain:

C1

∫
Ω

|∇un|p(x)
dx ≤ ‖f‖(Wp(x)(Ω))

′ ‖un‖Wp(x)(Ω) .

On the other hand

C1 min
{
‖un‖p−Wp(x)(Ω)

, ‖un‖p+Wp(x)(Ω)

}
≤ ‖f‖(Wp(x)(Ω))

′ ‖un‖Wp(x)(Ω) .

(b) Passage to the limit
We deduce from (a) that (un)n∈N is bounded in Wp(x)(Ω), so there exists a subsequence

denoted again (un)n∈N such that un → u weakly in Wp(x)(Ω).

The sequence (Ekh (∇un))n∈N is bounded in Lp
′(x) (Ω). Hence there exists ρ ∈ Lp′(x) (Ω)

such that, with a close subsequence,

Ekh (∇un)→ ρ weakly in Lp
′(x) (Ω) .

Let v ∈Wp(x)(Ω), then there exist vn ∈ Vn, n ∈ N∗ such that

vn → v in Wp(x)(Ω),

∇vn → ∇v in
(
Lp(x) (Ω)

)9

.

We substitute v by vn in (5.1), to obtain:

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇un(x))
∂vni
∂xj

(x)dx

= 〈f, vn〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

,∀v ∈ Vn.

Since 〈f, vn〉 → 〈f, v〉 , Ekh (∇un) → ρ weakly in Lp
′(x) (Ω) and ∂vni

∂xj
→ ∂vi

∂xj
for i = 1 to 3

strongly in Lp(x) (Ω) (because ∇vn → ∇v in
(
Lp(x) (Ω)

)9
strongly), using the Lemma 3, we

obtain 
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)ρ
∂vi
∂xj

dx =

〈f, v〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

,∀ v ∈Wp(x)(Ω).

(5.2)
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We tend to conclude that ρ is equal to Ekh (∇u). Unfortunately, this is not obvious because
the Ekh are nonlinear.
(c) Limit of nonlinear term
Finally, it remains to prove that

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)ρ
∂vi
∂xj

dx = (5.3)

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx,∀v ∈Wp(x)(Ω).

(I) First, we have

lim
n→∞

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇un(x))
∂uni
∂xj

dx

=
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)ρ
∂ui
∂xj

dx.

Indeed
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇un(x))
∂uni
∂xj

dx = 〈f, un〉 → 〈f, u〉 .

(II) Proof of (5.3)
Let v ∈ Wp(x)(Ω), there exist (vn)n∈N such that vn ∈ Vn for all n ∈ N and vn → v in

Wp(x)(Ω) when n→ +∞. We will pass to the limit in the term

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇un(x))
∂vni
∂xj

dx,

thanks to the hypothesis (1) of (4.2) and the monotony of Ekh (see corrollary 1).
Indeed,

0 ≤
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)(Ekh (∇un)− Ekh (∇vn))

(
∂uni
∂xj

− ∂vni
∂xj

)
dx =

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇un)
∂uni
∂xj

dx−
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇un)
∂vni
∂xj

dx

−
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇vn)
∂uni
∂xj

dx+
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇vn)
∂vni
∂xj

dx

= T1,n − T2,n − T3,n + T4,n.

It has been seen that in (I):

lim
n→+∞

T1,n =
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)ρ
∂ui
∂xj

dx,

we have

lim
n→+∞

T2,n =
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)ρ
∂vi
∂xj

dx,
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by a product of a strong convergence in Lp(x) (Ω) and a weak convergence in Lp
′(x) (Ω)

(Lemma 3).
The same

lim
n→+∞

T3,n =
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇v)
∂ui
∂xj

dx,

by a product of a strong convergence of Ekh (∇vn) in Lp
′(x) (Ω) ( because Ekh, k, h = 1 to 3

are continuous and bounded in Lp
′(x)(Ω), so by Lebesgue’s dominated convergence theorem

Ekh (∇vn)→ Ekh (∇v) in Lp
′(x) (Ω)), and a weak convergence in Lp(x) (Ω).

Finally, we have

lim
n→+∞

T4,n =
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇v)
∂vi
∂xj

dx,

by the product of a strong convergence in Lp
′(x) (Ω) and a strong convergence in Lp(x) (Ω).

The passage to the limit in inequality thus gives:

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x) (ρ− Ekh (∇v))

(
∂ui
∂xj
− ∂vi
∂xj

)
dx ≥ 0 for all v ∈Wp(x)(Ω).

The function test v is now astutely chosen. We take v = u +
1

n
w with w ∈Wp(x)(Ω) and

n ∈ N∗. We obtain

− 1

n

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)

(
ρ− Ekh

(
∇u+

1

n
∇w
))

∂wi
∂xj

dx ≥ 0

so
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)

(
ρ− Ekh

(
∇u+

1

n
∇w
))

∂wi
∂xj

dx ≤ 0,

but u+
1

n
w → u in Wp(x)(Ω), thus

Ekh

(
∇u+

1

n
∇w
)
→ Ekh (∇u) in Lp

′(x) (Ω) .

By passing to the limit when n→ +∞, we obtains then

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x) (ρ− Ekh (∇u))
∂wi
∂xj

dx ≤ 0 , ∀w ∈Wp(x)(Ω).

By the linearity (we can change w in −w), we get:

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x) (ρ− Ekh (∇u))
∂wi
∂xj

dx = 0,∀w ∈Wp(x)(Ω),

we deduce that

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)ρ
∂wi
∂xj

dx =
3∑

i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh (∇u)
∂wi
∂xj

dx, ∀w ∈Wp(x)(Ω).
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We have thus proved that u is a solution of (4.3).
Uniqueness
We suppose that (Ekh (ξ)− Ekh (η)) (ξij − ηij) > 0, if and only if ξij 6= ηij , and f does not
depend to u. Let u1 and u2 be two solutions:

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)Ekh(∇ul(x))
∂vi
∂xj

dx

= 〈f, v〉(Wp(x)(Ω))
′
,Wp(x)(Ω)

, l = 1, 2; ∀v ∈Wp(x)(Ω).

Subtracting term to term and substituting v by u1 − u2, we obtain:

3∑
i,j=1

3∑
k,h=1

∫
Ω

aijkh(x)(Ekh (∇u1)− Ekh(∇u2))

(
∂u1i

∂xj
− ∂u2i

∂xj

)
dx = 0.

Since

M = aijkh(x)(Ekh (∇u1)− Ekh(∇u2))

(
∂u1i

∂xj
− ∂u2i

∂xj

)
≥ 0, i, j, k, h = 1 to 3.

and M > 0 if
∂u1i

∂xj
6= ∂u2i

∂xj
; we get

∂u1i

∂xj
=
∂u2i

∂xj
in Lp(x)(Ω), and by Hölder’s inequality we

have u1 = u2 in
(
W

1,p(x)
0 (Ω)

)3

.

6 Conclusion

In this work, we consider the nonlinear elasticity system as Leray–Lions’s operators with
variable exponent, to study the existence and uniqueness of Dirichlet’s problem solution by
Galerkin techniques and monotone operator theory. It has been found that these techniques
adapt well to this type of problems with different boundary conditions.
From a perspective of this work, we will consider the same problem with the boundary
conditions Robin, Tresca or Coulomb.
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