A nonlinear elasticity system in Sobolev spaces with variable exponents
 by
 Merouani Boubakeur ${ }^{(1)}$, Zoubai Fayrouz ${ }^{(2)}$

Abstract

Several authors studied the system of elasticity with laws of particular behavior and using various techniques in constant exponents Sobolev spaces. In this article we consider a Dirichlet problem for nonlinear elasticity system with laws of general behavior. The coefficients of elasticity depends on x and the density of the volumetric forces depends on the displacement. We consider this problem as a Leray-Lions operator and the main aim of this paper is to apply Galerkin techniques and monotone operator theory to prove a theorem of existence and uniqueness.

Key Words: Existence and uniqueness, spaces of Lebesgue and Sobolev with variable exponents, Dirichlet problem, nonlinear elasticity system, operator of Leray-Lions.
2010 Mathematics Subject Classification: Primary 35J45; Secondary 35J55, $35 \mathrm{~A} 05,35 \mathrm{~A} 07,35 \mathrm{~A} 15$.

1 Introduction

The study of PDE problems with variable exponents is a new and quite interesting topic. It comes from the theory of nonlinear elasticity, elastic mechanics, fluid dynamics, electrorheological fluids, and image processing, etc. (see [2], [16], [17]).
First, we introduce the notations needed in this article. Let Ω a connected open bounded domain of $\mathbb{R}^{\mathbb{N}}(\mathbb{N}=3)$ with Lipschitz boundary Γ. To a given field of displacement u, we associate a nonlinear deformation tensor E defined by

$$
E(\nabla u(x))=\frac{1}{2}\left({ }^{T} \nabla u+\nabla u+{ }^{T} \nabla u \nabla u\right),
$$

whose components are:

$$
\begin{equation*}
E_{i j}(\nabla u(x))=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\sum_{m=1}^{3} \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial x_{j}}\right), 1 \leq i, j \leq 3 \tag{1.1}
\end{equation*}
$$

The corresponding nonlinear constraints tensor $\sigma(u)=\left(\sigma_{i j}(u(x))\right)_{1 \leq i, j \leq 3}$ is then given by:

$$
\begin{equation*}
\sigma_{i j}(u(x))=\sum_{k, h=1}^{3} a_{i j k h}(x) E_{k h}(\nabla u(x)), 1 \leq i, j \leq 3 \tag{1.2}
\end{equation*}
$$

which describes a nonlinear relation between the stress tensor $\left(\sigma_{i j}\right)_{i, j=1,2,3}$ and the deformation tensor $\left(E_{i j}\right)_{i, j=1,2,3}$. The coefficients of elasticity $a_{i j k h}$ satisfy the following symmetry properties:

$$
\begin{equation*}
a_{i j k h}=a_{j i k h}=a_{i j h k}, \text { for all } 1 \leq i, j, k, h \leq 3 \tag{1.3}
\end{equation*}
$$

The aim of this paper is to prove the existence and uniqueness of weak solutions for the following nonlinear elliptic problem, encountered in the theory of nonlinear elasticity:

$$
\left\{\begin{array}{c}
-\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}} \sigma_{i j}(u(x))=f_{i}(x, u(x)) \text { in } \Omega, 1 \leq i \leq 3 \\
\sigma_{i j}(u(x))=\sum_{k, h=1}^{3} a_{i j k h}(x) E_{k h}(\nabla u(x)) \text { in } \Omega, 1 \leq i, j \leq 3 \\
E_{i j}(\nabla u(x))=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\sum_{m=1}^{3} \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial x_{j}}\right) \text { in } \Omega, 1 \leq i, j \leq 3 \\
u_{i}=0 \text { on } \Gamma, 1 \leq i \leq 3
\end{array}\right.
$$

This problem models the behavior of a heterogeneous material with Dirichlet's condition on the boundary. The consideration of this general material is in no way restrictive. Indeed, we can applied this study to the most particular elastic materials, but this particular case makes it easy, to describe the different stages of this work. The tensor of the constraints considered here is nonlinear and grouped, as special cases, some models used in Ciarlet [3], Lions [11] and Dautry-Lions [5]. Let us cite by way of example (see [3], [9]):

1. The problem of pure displacement for a homogeneous or heterogeneous material of St Vennan-Kirchhoff where:

- the applied volumetric forces f are dead (does not depend on u),
- the tensor of stress is in the form (material of St Vennan-Kirchhoff):

$$
\left\{\begin{array}{c}
\sigma_{i j}(u(x))=\lambda(\operatorname{tr} E(\nabla u(x)))+2 \mu E_{i j}(\nabla u(x)), \\
1 \leq i, j \leq 3, \lambda>0, \mu>0
\end{array}\right.
$$

2. The coefficients of elasticity have the form:

$$
a_{i j p q}=\lambda \delta_{i j} \delta_{p q}+\mu\left(\delta_{i p} \delta_{j q}+\delta_{i q} \delta_{j p}\right), 1 \leq i, j, p, q \leq 3
$$

with, λ and μ depend on x or not,
3. The applied volumetric forces f have the form $f(\xi)=|\xi|^{p(x)-1} \xi$,
4. Some models called "LES"(Large Eddy Simulations) used in fluid mechanics. These problems are:

$$
-\operatorname{div}(\psi(x) a(\nabla u(x)))=f(x)
$$

For $\psi \equiv 1$ and $a(\xi)=|\xi|^{p(x)-2} \xi$, the above equation may be described by:

$$
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f
$$

The operator $\Delta_{p(x)}: u \longrightarrow \Delta_{p(x)}(u)=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is called the $p(x)$-Laplacian.

Several authors studied the system of elasticity with laws of particular behavior and using various techniques in constant exposants Sobolev spaces for example in [3] Ciarlet used the implicit function theorem to show the existence and uniqueness of a solution, in [5] DautryLions studied the linear problem in a regular boundary domain, in [12], [13], [14] Merouani studied the Lamé (elasticity) system in a polygonal boundary domain, in [18] Zoubai and Merouani studied the existence and uniqueness of the solutions of the nonlinear elasticity system by topological degree, and in [19] Zoubai and Merouani studied the existence and uniqueness of the solution of Neumann's problem, in Sobolev spaces with variable exponents.
The bibliography quoted here does not claim to be exhaustive and the deficiencies it certainly entails must be attributed to the author's ignorance and not to the author's ill will. To solve our problem, we will consider an operator: $u \rightarrow A(u)=-\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}} \sigma_{i j}(u(x))$ as operator of Leray-Lions [10], with Dirichlet's condition on Γ, and we prove a theorem of existence and uniqueness of solution using Galerkin techniques and monotone operator theory.

The appropriate Sobolev space to consider for this problem is the space $\left(W_{0}^{1, p(x)}(\Omega)\right)^{3} \cap\left(W^{2, p(x)}(\Omega)\right)^{3}$, where $p(x)$ needs to satisfy the log-Hölder condition (see $[6],[8])$ to obtain suitable properties.

This paper is organized as follows:

- Notations and properties of variable exponent Lebesgue-Sobolev spaces,
- Some properties of the operator $E_{i j}$,
- Hypotheses and main result,
- Proof of theorem,
- Conclusion and bibliography.

2 Properties of variable exponent Lebesgue-Sobolev spaces

In this section, we recall some definitions and basic properties of the generalized LebesgueSobolev spaces $L^{p(x)}(\Omega), W^{1, p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$, when Ω is a bounded open set of $\mathbb{R}^{\mathbb{N}}(\mathbb{N} \geq 1)$ with a smooth boundary.

Let $p: \bar{\Omega} \rightarrow[1,+\infty)$ be a continuous, real-valued function. Denote by $p_{-}=\min _{x \in \bar{\Omega}} p(x)$ and $p_{+}=\max _{x \in \bar{\Omega}} p(x)$.
We introduce the variable exponent Lebesgue space

$$
L^{p(x)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} ; u \text { is measurable with } \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\},
$$

endowed with the Luxemburg norm

$$
\|u\|_{L^{p(x)}(\Omega)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\} .
$$

The following inequality will be used later

$$
\min \left\{\|u\|_{L^{p(x)}(\Omega)}^{p_{-}},\|u\|_{L^{p(x)}(\Omega)}^{p_{+}}\right\} \leq \int_{\Omega}|u(x)|^{p(x)} d x \leq \max \left\{\|u\|_{L^{p(x)}(\Omega)}^{p_{-}},\|u\|_{L^{p(x)}(\Omega)}^{p_{+}}\right\}
$$

for any $u \in L^{p(x)}(\Omega)$.
Lemma 1. [4], [6], [7], [8]

- The space $\left(L^{p(x)}(\Omega),\|\cdot\|_{L^{p(x)}(\Omega)}\right)$ is a Banach space.
- If $p_{-}>1$, then $L^{p(x)}(\Omega)$ is reflexive and its conjugate space can be identified with $L^{p^{\prime}(x)}(\Omega)$ where, $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$. Moreover, for any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p^{\prime}(x)}(\Omega)$, we have the Hölder inequality

$$
\int_{\Omega}|u v| d x \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\|u\|_{L^{p(x)}(\Omega)}\|v\|_{L^{p^{\prime}(x)}(\Omega)} \leq 2\|u\|_{L^{p(x)}(\Omega)}\|v\|_{L^{p^{\prime}(x)}(\Omega)}
$$

- If $p_{+}<+\infty$, then $L^{p(x)}(\Omega)$ is separable.
- Some embedding stay true, for example, if $0<|\Omega|<\infty$ and p_{1}, p_{2} are variable exponent such that $p_{1}(x) \leq p_{2}(x)$ almost everywhere in Ω, then we have the continuous injection.

Now, we define also the variable Sobolev space by

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega) ;|\nabla u| \in L^{p(x)}(\Omega)\right\}
$$

endowed with the following norm

$$
\|u\|_{W^{1, p(x)}(\Omega)}=\|u\|_{L^{p(x)}(\Omega)}+\|\nabla u\|_{L^{p(x)}(\Omega)} .
$$

Definition 1. The variable exponent $p: \bar{\Omega} \rightarrow[1,+\infty)$ is said to satisfy the log-Hölder continuous condition if

$$
\forall x, y \in \bar{\Omega}, \quad|x-y|<1, \quad|p(x)-p(y)|<w(|x-y|)
$$

where $w:(0, \infty) \rightarrow \mathbb{R}$ is a nondecreasing function with $\lim _{\alpha \rightarrow 0} \sup w(\alpha) \ln \left(\frac{1}{\alpha}\right)<\infty$.
Lemma 2. [4], [6], [7], [8]

- If $1<p_{-} \leq p_{+}<\infty$, then the space $\left(W^{1, p(x)}(\Omega),\|\cdot\|_{W^{1, p(x)}(\Omega)}\right)$ is a separable and reflexive Banach space.
- If $p(x)$ satisfies the log-Hölder continuous condition, then $C^{\infty}(\Omega)$ is dense in $W^{1, p(x)}(\Omega)$. Moreover, we can define the Sobolev space with zero boundary values, $W_{0}^{1, p(x)}(\Omega)$ as the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{W^{1, p(x)}(\Omega)}$.
- For all $u \in W_{0}^{1, p(x)}(\Omega)$, the Poincaré inequality

$$
\|u\|_{L^{p(x)}(\Omega)} \leq C\|\nabla u\|_{L^{p(x)}(\Omega)}
$$

holds. Moreover, $\|u\|_{W_{0}^{1, p(x)}(\Omega)}=\|\nabla u\|_{L^{p(x)}(\Omega)}$ is a norm in $W_{0}^{1, p(x)}(\Omega)$.
Remark 1. [1] Let $a \geq 0, b \geq 0$ and let $1 \leq p_{-} \leq p_{+}<+\infty$, then

$$
(a+b)^{p(x)} \leq 2^{p_{+}-1}\left(a^{p(x)}+b^{p(x)}\right)
$$

Throughout this paper, we shall assume that the variable exponent $p(x)$ satisfy the logHölder condition, and $\mathbb{N}<p_{-} \leq p_{+}<\infty$ because if $p(x)>\mathbb{N}$ then $W^{1, p(x)}(\Omega) \subset C(\Omega)$ for every $x \in \Omega$.

3 Some properties of the operator $E_{i j}$

For the rest of this work, we will need some properties of the deformation tensor (1.1). For this, we have the following lemma:

Theorem 1. (Some properties of the operator $E_{i j}$)
For $u \in \mathbf{W}^{p(x)}(\Omega)=\left(W_{0}^{1, p(x)}(\Omega)\right)^{3} \cap\left(W^{2, p(x)}(\Omega)\right)^{3}$, with $3<p(x)<+\infty$, the components $E_{k h}$ of the deformation tensor of St. Venant E verify the following properties:

1. (Continuity) $E_{k h}$ is a continuous function, $k, h=1$ to 3 ,
2. (Coercivity) $\exists \alpha>0$; such as $E_{k h}(\xi) \xi_{i j} \geq \alpha|\xi|^{p(x)}, \forall i, j, k, h=1$ to 3 ,
3. $E_{k h}(\nabla u) \frac{\partial v_{i}}{\partial x_{j}} \in L^{1}(\Omega), \forall i, j, k, h=1$ to 3 ,
4. (Monotony) Let the functions $\left.\left.\frac{\partial u_{i}}{\partial x_{j}}: \Omega \longrightarrow\right]-\infty, \frac{1}{3}\right], x \longrightarrow \frac{\partial u_{i}}{\partial x_{j}}(x)$ and $\frac{\partial u_{j}}{\partial x_{i}}: \Omega \longrightarrow$ $\left.]-\infty, \frac{1}{3}\right], x \longrightarrow \frac{\partial u_{j}}{\partial x_{i}}(x), i, j=1$ to $3 ;$ then the operators

$$
E_{i j}(.) \text { of } \mathbf{W}^{p(x)}(\Omega) \text { in }\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, i, j=1 \text { to } 3
$$

are monotonous.

Proof of theorem 1:

1. The continuity of $E_{k h}$:
for $p(x)>3$, the space $W^{1, p(x)}(\Omega)$ is an algebra, that is to say

$$
u, v \in W^{1, p(x)}(\Omega) \Rightarrow u v \in W^{1, p(x)}(\Omega)
$$

So we have for $u \in \mathbf{W}^{p(x)}(\Omega)=\left(W_{0}^{1, p(x)}(\Omega)\right)^{3} \cap\left(W^{2, p(x)}(\Omega)\right)^{3}$:

$$
\frac{\partial u_{k}}{\partial x_{h}}, \frac{\partial u_{h}}{\partial x_{k}} \text { and } \sum_{m=1}^{3} \frac{\partial u_{m}}{\partial x_{k}} \frac{\partial u_{m}}{\partial x_{h}} \in W^{1, p(x)}(\Omega)
$$

and therefore $E_{k h}(\nabla u) \in W^{1, p(x)}(\Omega)$. In addition, for $p(x)>3$, we have the continuous injection $W^{1, p(x)}(\Omega) \hookrightarrow C(\Omega)$, so the continuity of $E_{k h}, k, h=1$ to 3 are fulfilled.
2. The Coercivity:
for the coercivity of the components $E_{k h}$ see [15].
3. $E_{k h}(\nabla u) \frac{\partial v_{i}}{\partial x_{j}} \in L^{1}(\Omega), \forall i, j, k, h=1$ à 3 ,
by exploiting the remark 1, we arrive at

$$
\begin{aligned}
\left|E_{k h}(\nabla u)\right|^{p(x)} & =\left(\frac{1}{2}\right)^{p(x)}\left|\left(\frac{\partial u_{k}}{\partial x_{h}}+\frac{\partial u_{h}}{\partial x_{k}}+\sum_{m=1}^{3} \frac{\partial u_{m}}{\partial x_{k}} \frac{\partial u_{m}}{\partial x_{h}}\right)\right|^{p(x)} \\
& \leq\left(\frac{1}{2}\right)^{p(x)} \times 2^{p^{+}-1}\left[\left|\frac{\partial u_{k}}{\partial x_{h}}+\frac{\partial u_{h}}{\partial x_{k}}\right|^{p(x)}+\left(\left|\sum_{m=1}^{3} \frac{\partial u_{m}}{\partial x_{k}} \frac{\partial u_{m}}{\partial x_{h}}\right|\right)^{p(x)}\right] \\
& \leq\left(\frac{1}{2}\right)^{p(x)} \times 2^{p^{+}-1}\left[2^{p^{+}-1}\left(\left|\frac{\partial u_{k}}{\partial x_{h}}\right|^{p(x)}+\left|\frac{\partial u_{h}}{\partial x_{k}}\right|^{p(x)}\right)+\left(\left|\sum_{m=1}^{3} \frac{\partial u_{m}}{\partial x_{k}} \frac{\partial u_{m}}{\partial x_{h}}\right|\right)^{p(x)}\right]
\end{aligned}
$$

hence

$$
E_{k h}(\nabla u) \in L^{p(x)}(\Omega), k, h=1 \text { to } 3
$$

and as $p(x)>p^{\prime}(x)$ as soon as $p(x)>3$ and Ω bounded, we have:

$$
E_{k h}(\nabla u) \in L^{p^{\prime}(x)}(\Omega), k, h=1 \text { to } 3 .
$$

Take then $v \in \mathbf{W}^{p(x)}(\Omega)$, we have $\frac{\partial v_{i}}{\partial x_{j}} \in L^{p(x)}(\Omega), \forall 1 \leq i, j \leq 3$. We therefore have by Hölder's inequality:

$$
E_{k h}(\nabla u) \frac{\partial v_{i}}{\partial x_{j}} \in L^{1}(\Omega), i, j, k, h=1 \text { to } 3
$$

4. The monotony:
using the rule $\frac{1}{2}\left(a^{2}+b^{2}\right) \geq-a b$, with $a=\frac{\partial u_{m}}{\partial x_{i}}$ and $b=\frac{\partial u_{m}}{\partial x_{j}}$, we have

$$
\begin{gathered}
E_{i j}(u) \geq \frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\frac{1}{4} \sum_{m=1}^{3}\left(\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}+\left(\frac{\partial u_{m}}{\partial x_{j}}\right)^{2}\right)= \\
\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\frac{1}{4}\left(\sum_{m=1}^{3}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}+\sum_{m=1}^{3}\left(\frac{\partial u_{m}}{\partial x_{j}}\right)^{2}\right), i, j=1 \text { to } 3,
\end{gathered}
$$

and consequently, $\forall i, j=1$ to 3 :

$$
\begin{gather*}
\left\langle E_{i j}(u)-E_{i j}(v), u-v\right\rangle \geq \frac{1}{2}\left\langle\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right), u-v\right\rangle \\
-\frac{1}{4}\left\langle\left(\sum_{m=1}^{3}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}+\sum_{m=1}^{3}\left(\frac{\partial u_{m}}{\partial x_{j}}\right)^{2}\right)-\left(\sum_{m=1}^{3}\left(\frac{\partial v_{m}}{\partial x_{i}}\right)^{2}+\sum_{m=1}^{3}\left(\frac{\partial v_{m}}{\partial x_{j}}\right)^{2}\right), u-v\right\rangle . \tag{3.1}
\end{gather*}
$$

To conclude, we must prove that the second member of (3.1) is ≥ 0. For that, we separate the second member of (3.1) in linear and nonlinear part.
Let the linear function $\Omega \xrightarrow{J_{x}} \mathbb{R}^{3} \times \mathbb{R}^{3} \xrightarrow{A_{i j}} \mathbb{R}$, defined by

$$
\left(A_{i j} \circ J_{x}\right)(x)=A_{i j}\left(\frac{\partial u}{\partial x_{i}}(x), \frac{\partial u}{\partial x_{j}}(x)\right)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}(x)+\frac{\partial u_{j}}{\partial x_{i}}(x)\right), i, j=1 \text { to } 3,
$$

and the nonlinear function $\Omega \xrightarrow{J_{x}} \mathbb{R}^{3} \times \mathbb{R}^{3} \xrightarrow{B_{i j}} \mathbb{R}$, defined by

$$
\left(B_{i j} \circ J_{x}\right)(x)=B_{i j}\left(\frac{\partial u}{\partial x_{i}}(x), \frac{\partial u}{\partial x_{j}}(x)\right)=-\frac{1}{4}\left(\sum_{j=1}^{3}\left(\frac{\partial u_{j}}{\partial x_{i}}(x)\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{j}}(x)\right)^{2}\right), i, j=1 \text { to } 3
$$

The functions $A_{i j}$ and $B_{i j}$ are continuous for $p(x)>3$. It remains to show that, $\forall i, j=1$ to 3 , the $A_{i j}$ are increasing on \mathbb{R}, the $B_{i j}$ increasing on \mathbb{R}^{-}and the $A_{i j}+B_{i j}$ increasing on] $\left.-\infty, \frac{1}{3}\right]$.

1. Let us show that the $A_{i j}$ are increasing: let the function

$$
\Omega \xrightarrow{J_{x}} \mathbb{R} \xrightarrow{\frac{\partial u_{i}}{\partial x_{j}}} \mathbb{R} \text {, defined by }\left(\frac{\partial u_{i}}{\partial x_{j}} \circ J_{x}\right)(x)=\frac{\partial u_{i}}{\partial x_{j}}(x), i, j=1 \text { to } 3 .
$$

We note

$$
\frac{\partial u}{\partial x_{j}}(x)=t_{j} \text { and } \frac{\partial u}{\partial x_{i}}(x)=\tau_{i}
$$

and

$$
\frac{\partial u_{i}}{\partial x_{j}}(x)=t_{i j} \text { and } \frac{\partial u_{j}}{\partial x_{i}}(x)=\tau_{j i}
$$

The function $t \longmapsto \frac{1}{2} t$ of $\mathbb{R} \longrightarrow \mathbb{R}$, being increasing on \mathbb{R}, we have:

$$
\begin{aligned}
& \frac{1}{2}\left\langle\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial v_{i}}{\partial x_{j}}, \frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial v_{i}}{\partial x_{j}}\right\rangle=\frac{1}{2} \int_{\Omega}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial v_{i}}{\partial x_{j}}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial v_{i}}{\partial x_{j}}\right) d x= \\
& \frac{1}{2}\left\|\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial v_{i}}{\partial x_{j}}\right\|_{L^{2}(\Omega)}^{2} \geq 0 .
\end{aligned}
$$

Therefore, the $A_{i j}$ are increasing.
2. Let us show that the $B_{i j}$ are increasing: let the function

$$
\Omega \xrightarrow{J_{x}} \mathbb{R}^{3} \times \mathbb{R}^{3} \xrightarrow{B_{i j}} \mathbb{R},
$$

defined by

$$
\left(B_{i j} \circ J_{x}\right)(x)=B_{i j}\left(t_{j}, \tau_{i}\right)=-\frac{1}{4}\left(\sum_{j=1}^{3}\left(\frac{\partial u_{j}}{\partial x_{i}}(x)\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{j}}(x)\right)^{2}\right), i, j=1 \text { to } 3
$$

As in point 1., we note

$$
\begin{aligned}
t_{i j} & =\frac{\partial u_{i}}{\partial x_{j}}(x), \tau_{j i}=\frac{\partial u_{j}}{\partial x_{i}}(x), \forall i, j=1 \text { to } 3 \\
B_{i j}\left(t_{j}, \tau_{i}\right) & =-\frac{1}{4}\left(\sum_{j=1}^{3}\left(\frac{\partial u_{j}}{\partial x_{i}}(x)\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{j}}(x)\right)^{2}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
B_{i j}\left(t_{j}, \tau_{i}\right) & =-\frac{1}{4}\left(\sum_{i=1}^{3} t_{i j}^{2}+\sum_{j=1}^{3} \tau_{j i}^{2}\right) \\
& \geq-\frac{1}{4}\left(6 \times \underset{1 \leq i, j \leq 3}{M a x}\left(t_{i j}^{2}, \tau_{j i}^{2}\right)\right)=-\frac{3}{2} \varkappa^{2} .
\end{aligned}
$$

The function $f(\varkappa)=-\frac{3}{2} \varkappa^{2}$ being continuous and increasing on \mathbb{R}^{-}, we deduce that the $B_{i j}$ are increasing on \mathbb{R}^{-}.
3. We show that the $A_{i j}+B_{i j}$, are increasing: the proofs of points 1. and 2. imply that the sum $A_{i j}+B_{i j}, \forall i, j=1$ to 3 , corresponds to the sum of the two functions $f(\varkappa)+g(\varkappa)=\varkappa-\frac{3}{2} \varkappa^{2}, \mathbb{R} \longrightarrow \mathbb{R}$, obviously continuous and increasing on $\left.]-\infty, \frac{1}{3}\right]$, as the derivative of the convex function $h(x)=\frac{1}{2} x^{2}-\frac{1}{2} x^{3}$ on $\left.]-\infty, \frac{1}{3}\right]$. So, (3.1) is verified and consequently

$$
\left\langle E_{i j}(u)-E_{i j}(v), u-v\right\rangle \geq\left\langle\left(A_{i j}+B_{i j}\right)(u)-\left(A_{i j}+B_{i j}\right)(v), u-v\right\rangle \geq 0, \forall i, j=1 \text { to } 3
$$

In other words, the $E_{i j}(u), i, j=1$ to 3 , are monotonous $\mathbf{W}^{p(x)}(\Omega)$ in $\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, i, j=1$ to 3 .
Corollary 1. Under the same assumptions, of the above theorem, the operator

$$
-\operatorname{div}\left(a_{i j k h}(x) E_{i j}(.)\right) \text { is monotonous of } \mathbf{W}^{p(x)}(\Omega) \text { in }\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}
$$

under the assumption

$$
\exists \alpha, \beta \in \mathbb{R}_{+}^{*} ; \alpha \leq a_{i j k h}(x) \leq \beta, \text { a.e., } \forall i, j, k, h=1 \text { to } 3 .
$$

Proof of corollary 1 :
We have

$$
\begin{gathered}
\forall(u, v) \in \mathbf{W}^{p(x)}(\Omega)^{2},\left\langle-\operatorname{div}\left(a_{i j k h}(x) E_{i j}(u)\right)-\left(-\operatorname{div}\left(a_{i j k h}(x) E_{i j}(v)\right), u-v\right\rangle \geq\right. \\
\alpha \sum_{i, j=1}^{3} \int_{\Omega}\left(E_{i j}(u)-E_{i j}(v)\right)\left(\frac{\partial u}{\partial x_{j}}-\frac{\partial v}{\partial x_{j}}\right) d x .
\end{gathered}
$$

The point 4. of theorem 1 implies that

$$
\sum_{i, j=1}^{3} \int_{\Omega}\left(E_{i j}(u)-E_{i j}(v)\right)\left(\frac{\partial u}{\partial x_{j}}-\frac{\partial v}{\partial x_{j}}\right) d x \geq 0
$$

hence the desired result.

4 Hypotheses and main result

We consider the problem (4.1), with the hypotheses (4.2),

$$
\left\{\begin{array}{l}
-\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}} \sigma_{i j}(u(x))=f_{i}(x, u(x)) \text { in } \Omega, 1 \leq i \leq 3 \tag{4.1}\\
\sigma_{i j}(u(x))=\sum_{k, h=1}^{3} a_{i j k h}(x) E_{k h}(\nabla u(x)) \text { in } \Omega, 1 \leq i, j \leq 3 \\
u_{i}=0 \text { on } \Gamma, 1 \leq i \leq 3
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\forall i, j, k, h=1 \text { to } 3: \tag{4.2}\\
(1) a_{i j k h} \in L^{\infty}(\Omega) ; \exists \alpha_{0}>0 ; a_{i j k h} \geq \alpha_{0} \text { a.e. in } \Omega, \\
(2) f=\left(f_{1}, f_{2}, f_{3}\right) \in\left(L^{\frac{p(x)}{p(x)-1}}(\Omega)\right)^{3}
\end{array}\right.
$$

Let us look for an adequate weak form of (4.1).
Let $u \in \mathbf{W}^{p(x)}(\Omega)=\left(W_{0}^{1, p(x)}(\Omega)\right)^{3} \cap\left(W^{2, p(x)}(\Omega)\right)^{3}$ equipped with $\|\cdot\|_{\mathbf{W}^{p(x)}(\Omega)}=\|\cdot\|_{\left(W_{0}^{1, p(x)}(\Omega)\right)^{3}}$.
From the theorem 1, we have

$$
E_{k h}(\nabla u) \frac{\partial v_{i}}{\partial x_{j}} \in L^{1}(\Omega), i, j, k, h=1 \text { to } 3 .
$$

It is therefore natural to look $u \in \mathbf{W}^{p(x)}(\Omega)$ and take the test functions in $\mathbf{W}^{p(x)}(\Omega)$. We also recall that if $f(., s) \in\left(L^{p^{\prime}(x)}(\Omega)\right)^{3}$, the mapping $v \rightarrow \int_{\Omega} f(x, u(x)) v(x) d x$ acting from $\mathbf{W}^{p(x)}(\Omega)$ to \mathbb{R}, is an element of $\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}$. We denote by f this element, that is to say for $f \in\left(L^{p^{\prime}(x)}(\Omega)\right)^{3}$, we have

$$
\langle f, v\rangle_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega)}=\int_{\Omega} f(x, u(x)) v(x) d x, \forall v \in \mathbf{W}^{p(x)}(\Omega)
$$

The weak form of (4.1) is thus:

$$
\left\{\begin{array}{c}
u \in \mathbf{W}^{p(x)}(\Omega) \tag{4.3}\\
\\
\sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x) E_{k h}(\nabla u(x)) \frac{\partial v i}{\partial x j} d x \\
=\langle f, v\rangle\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega)
\end{array}, \forall v \in \mathbf{W}^{p(x)}(\Omega) .\right.
$$

Theorem 2. Under the hypotheses (4.2), there exist $u \in \mathbf{W}^{p(x)}(\Omega)$ solution of (4.3). If, moreover, $\left(E_{k h}(\xi)-E_{k h}(\eta)\right)\left(\xi_{i j}-\eta_{i j}\right)>0$, for all $\xi, \eta \in \mathbb{R}^{3 \times 3}, \xi_{i j}, \eta_{i j} \in \mathbb{R}, \xi_{i j} \neq \eta_{i j}$, and f does not depend on u then there exist a unique solution u of (4.3).

For the proof of this theorem, we will need the following lemmas:
Lemma 3. Let $p: \Omega \rightarrow] 1,+\infty\left[\right.$. If $f_{n} \rightarrow f$ in $L^{p(x)}(\Omega)$ and $g_{n} \rightarrow g$ weakly in $L^{p^{\prime}(x)}(\Omega)$. So

$$
\int_{\Omega} f_{n} g_{n} d x \rightarrow \int_{\Omega} f g d x \text { when } n \rightarrow \infty
$$

Demonstration of Lemma 3
We have:

$$
\begin{aligned}
\left|\int_{\Omega}\left(f_{n} g_{n}-f g\right) d x\right| & =\left|\int_{\Omega}\left(f_{n} g_{n}-f g-f g_{n}+f g_{n}\right) d x\right| \\
& =\left|\int_{\Omega}\left[\left(f_{n}-f\right) g_{n}+f\left(g_{n}-g\right)\right] d x\right| \\
& \leq \int_{\Omega}\left|f_{n}-f\right|\left|g_{n}\right| d x+\left|\int_{\Omega} f\left(g_{n}-g\right) d x\right| \\
& \leq 2\left\|f_{n}-f\right\|_{L^{p(x)}(\Omega)}\left\|g_{n}\right\|_{L^{p^{\prime}(x)}(\Omega)}+\left|\left\langle g_{n}-g, f\right\rangle_{L^{p^{\prime}(x)}(\Omega), L^{p(x)}(\Omega)}\right| \rightarrow 0
\end{aligned}
$$

Lemma 4. (Finite-dimensional coercive operator) Let V be a finite-dimensional space, and $T: V \rightarrow V^{\prime}$ continuous. We suppose that T is coercive, namely:

$$
\frac{\langle T(v) \cdot v\rangle_{V^{\prime}, V}}{\|v\|_{V}} \rightarrow+\infty \text { when }\|v\|_{V} \rightarrow+\infty
$$

Then, for every $b \in V^{\prime}$ there exists $v \in V$ such that $T(v)=b$.

5 Proof of theorem

Study of finite dimension problem

Since $\mathbf{W}^{p(x)}(\Omega)$ is separable, then, there exists a countable family $\left(f_{n}\right)_{n \in \mathbb{N}^{*}}$ dense in $\mathbf{W}^{p(x)}(\Omega)$. Let $V_{n}=V$ ect $\left\{f_{i}, i=1, \ldots, n\right\}$ be the vector space generated by the first n functions of this family. So we have $\operatorname{dim} V_{n} \leq n, V_{n} \subset V_{n+1}$ for all $n \in \mathbb{N}^{*}$ and we have $\overline{\bigcup_{n \in \mathbb{N}} V_{n}}=\mathbf{W}^{p(x)}(\Omega)$.
We deduce that for all $v \in \mathbf{W}^{p(x)}(\Omega)$ there exists a sequence $v_{n} \in V_{n}$, such that $v_{n} \rightarrow v$ in $\mathbf{W}^{p(x)}(\Omega)$ when $n \rightarrow+\infty$.
In the first step, we fix $n \in \mathbb{N}^{*}$ and look for u_{n} solution of the following problem, posed in finite dimension:

$$
\left\{\begin{array}{c}
u_{n} \in V_{n} \tag{5.1}\\
\sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x) E_{k h}\left(\nabla u_{n}(x)\right) \frac{\partial v_{i}}{\partial x_{j}} d x \\
=\langle f, v\rangle\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega), \forall v \in V_{n}
\end{array}\right.
$$

The application $v \rightarrow\langle f, v\rangle_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega)}$ is a linear mapping of V_{n} to \mathbb{R} (it is also continuous because $\left.\operatorname{dim} V_{n}<+\infty\right)$. We denote by b_{n} this application. So $b_{n} \in V_{n}^{\prime}$ and

$$
\left\langle b_{n}, v\right\rangle_{V_{n}^{\prime}, V_{n}}=\langle f, v\rangle_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega)} .
$$

Let $u \in V_{n}$. We denote by $T_{n}(u)$ the mapping of V_{n} into V_{n}^{\prime} which has $v \in V_{n}$ associated

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}(\nabla u(x)) \frac{\partial v_{i}}{\partial x_{j}} d x
$$

This application is linear and continuous, so it is also an element of V_{n}^{\prime} and we have

$$
\left\langle T_{n}(u), v\right\rangle_{V_{n}^{\prime}, v_{n}}=\sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x) E_{k h}(\nabla u(x)) \frac{\partial v_{i}}{\partial x_{j}} d x .
$$

We have thus defined an application T of V_{n} to V_{n}^{\prime}. We shall show that T is continuous and coercive. We can thus deduce by the Lemma 4, that T is surjective, and therefore that there exists $u_{n} \in V_{n}$ satisfying $T\left(u_{n}\right)=b_{n}$, quecisely u_{n} is the solution of the problem (5.1).
(a) Continuity of T_{n}. To ease the writing, we note $V=V_{n}$ equipped with $\|\cdot\|_{V}=$ $\|\cdot\|_{\mathbf{W}^{p(x)}(\Omega)}$ and note $T=T_{n}$. Let $u, \bar{u} \in V$, we have:

$$
\left.-\mathrm{E}_{k h}(\nabla \bar{u})\right) \frac{\partial v_{i}}{\partial x_{j}} d x
$$

Putting

$$
a=\left\|a_{i j k h}\right\|_{L^{\infty}(\Omega)}
$$

we obtain by Hölder inequality

$$
\begin{aligned}
\|T(u)-T(\bar{u})\|_{V^{\prime}} & =\sup _{v \in V,\|v\|_{V}=1}\left|\langle T(u)-T(\bar{u}), v\rangle_{V^{\prime}, V}\right| \\
& =\sup _{v \in V,\|v\|_{\mathbf{W}^{p(x)}(\Omega)}=1}\left|\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x)\left(E_{k h}(\nabla u)-E_{k h}(\nabla \bar{u})\right) \frac{\partial v_{i}}{\partial x_{j}} d x\right| \\
& \leq \sup _{v \in \mathbf{W}^{p(x)}(\Omega),\|v\|_{\mathbf{W}^{p(x)}(\Omega)}=1 i, j=1 k, h=1}^{3} \sum^{3} \\
& \left|\int_{\Omega} a_{i j k h}(x)\left(E_{k h}(\nabla u)-E_{k h}(\nabla \bar{u})\right) \frac{\partial v_{i}}{\partial x_{j}} d x\right|
\end{aligned}
$$

Thus if $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a sequence of V such that $u_{n} \rightarrow \bar{u}$ in V, we have

$$
\left\|T\left(u_{n}\right)-T(\bar{u})\right\|_{V^{\prime}} \leq 18 a \sum_{k, h=1}^{3}\left\|E_{k h}\left(\nabla u_{n}\right)-E_{k h}(\nabla \bar{u})\right\|_{L^{p^{\prime}(x)}(\Omega)}
$$

For $u \in \mathbf{W}^{p(x)}(\Omega)$, we have $E_{k h}, k, h=1$ to 3 , are continuous (see theorem 1), consequently $E_{k h}\left(\nabla u_{n}\right) \rightarrow E_{k h}(\nabla \bar{u})$ a.e.. We have also, according to the remark $1, E_{k h}(\nabla u)$ is bounded in $L^{p(x)}(\Omega)$, so it bounded in $L^{p^{\prime}(x)}(\Omega)$ because $p(x)>p^{\prime}(x)$, as soon as $p(x)>3$. So by Lebesgue's dominated convergence theorem $E_{k h}\left(\nabla u_{n}\right) \rightarrow E_{k h}(\nabla \bar{u})$ in $L^{p^{\prime}(x)}(\Omega), \forall k, h=1$ to 3 . We have thus shown that $T\left(u_{n}\right) \rightarrow T(\bar{u})$ in V^{\prime}, so T is continuous.
(b) Coercivity of T_{n}. According to the hypothesis (1) of (4.2), and the coercivity of $E_{k h}$ (see theorem 1), we have:

$$
\begin{aligned}
\langle T(u) \cdot u\rangle_{V^{\prime}, V} & =\sum_{i, j=1 k, h=1}^{3} \int_{\Omega}^{3} a_{i j k h}(x) E_{k h}(\nabla u(x)) \frac{\partial u_{i}}{\partial x_{j}} d x \\
& \geq C_{1} \int_{\Omega}|\nabla u|^{p(x)} d x
\end{aligned}
$$

Now, we use the following inéquality (see section 2)

$$
\min \left\{\|u\|_{L^{p(x)}(\Omega)}^{p_{-}},\|u\|_{L^{p(x)}(\Omega)}^{p_{+}}\right\} \leq \int_{\Omega}|u(x)|^{p(x)} d x \leq \max \left\{\|u\|_{L^{p(x)}(\Omega)}^{p_{-}},\|u\|_{L^{p(x)}(\Omega)}^{p_{+}}\right\}
$$

we obtain

$$
\begin{aligned}
\langle T(u) \cdot u\rangle_{V^{\prime}, V} & \geq C_{1} \min \left\{\|\nabla u\|_{L^{p(x)}(\Omega)}^{p_{-}},\|\nabla u\|_{L^{p(x)}(\Omega)}^{p_{+}}\right\} \\
& \geq C_{1} \min \left\{\|u\|_{V}^{p_{-}},\|u\|_{V}^{p_{+}}\right\}
\end{aligned}
$$

Or, C_{1} is a constant depend of α_{0} and α.
Consequently, the operator T is coercive. This yields the existence of solution for problem (5.1).

Study of infinite dimension problem

The solution of the problem (5.1) is obtained.
So to show the existence of u a solution of (4.3), we will estimate u_{n} the solution of (5.1) and then by crossing to the limit when $n \rightarrow+\infty$ we will have the solution u of our problem (4.3). Therefore that technique used to show that the limit of the nonlinear term is the desired term.
(a) Estimation on u_{n}

In view of coercivity, if we substitute v by u_{n} in (5.1), we obtain:

$$
C_{1} \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)} d x \leq\|f\|_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}}\left\|u_{n}\right\|_{\mathbf{W}^{p(x)}(\Omega)}
$$

On the other hand

$$
C_{1} \min \left\{\left\|u_{n}\right\|_{\mathbf{W}^{p(x)}(\Omega)}^{p_{-}},\left\|u_{n}\right\|_{\mathbf{W}^{p(x)}(\Omega)}^{p+}\right\} \leq\|f\|_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}}\left\|u_{n}\right\|_{\mathbf{W}^{p(x)}(\Omega)}
$$

(b) Passage to the limit

We deduce from (a) that $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $\mathbf{W}^{p(x)}(\Omega)$, so there exists a subsequence denoted again $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $u_{n} \rightarrow u$ weakly in $\mathbf{W}^{p(x)}(\Omega)$.

The sequence $\left(E_{k h}\left(\nabla u_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded in $L^{p^{\prime}(x)}(\Omega)$. Hence there exists $\rho \in L^{p^{\prime}(x)}(\Omega)$ such that, with a close subsequence,

$$
E_{k h}\left(\nabla u_{n}\right) \rightarrow \rho \text { weakly in } L^{p^{\prime}(x)}(\Omega)
$$

Let $v \in \mathbf{W}^{p(x)}(\Omega)$, then there exist $v_{n} \in V_{n}, n \in \mathbb{N}^{*}$ such that

$$
\begin{aligned}
v_{n} & \rightarrow v \text { in } \mathbf{W}^{p(x)}(\Omega) \\
\nabla v_{n} & \rightarrow \nabla v \text { in }\left(L^{p(x)}(\Omega)\right)^{9} .
\end{aligned}
$$

We substitute v by v_{n} in (5.1), to obtain:

$$
\begin{gathered}
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{i j k h}(x) E_{k h}\left(\nabla u_{n}(x)\right) \frac{\partial v_{n i}}{\partial x_{j}}(x) d x \\
\quad=\left\langle f, v_{n}\right\rangle\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega), \forall v \in V_{n}
\end{gathered}
$$

Since $\left\langle f, v_{n}\right\rangle \rightarrow\langle f, v\rangle, E_{k h}\left(\nabla u_{n}\right) \rightarrow \rho$ weakly in $L^{p^{\prime}(x)}(\Omega)$ and $\frac{\partial v_{n i}}{\partial x_{j}} \rightarrow \frac{\partial v_{i}}{\partial x_{j}}$ for $i=1$ to 3 strongly in $L^{p(x)}(\Omega)$ (because $\nabla v_{n} \rightarrow \nabla v$ in $\left(L^{p(x)}(\Omega)\right)^{9}$ strongly), using the Lemma 3, we obtain

$$
\left\{\begin{array}{c}
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{\Omega} a_{i j k h}(x) \rho \frac{\partial v_{i}}{\partial x_{j}} d x= \tag{5.2}\\
\langle f, v\rangle_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega)}, \forall v \in \mathbf{W}^{p(x)}(\Omega)
\end{array}\right.
$$

We tend to conclude that ρ is equal to $E_{k h}(\nabla u)$. Unfortunately, this is not obvious because the $E_{k h}$ are nonlinear.
(c) Limit of nonlinear term

Finally, it remains to prove that

$$
\begin{align*}
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) \rho \frac{\partial v_{i}}{\partial x_{j}} d x & = \tag{5.3}\\
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{i j k h}(x) E_{k h}(\nabla u(x)) \frac{\partial v_{i}}{\partial x_{j}} d x, \forall v & \in \mathbf{W}^{p(x)}(\Omega) .
\end{align*}
$$

(I) First, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}\left(\nabla u_{n}(x)\right) \frac{\partial u_{n i}}{\partial x_{j}} d x \\
& =\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) \rho \frac{\partial u_{i}}{\partial x_{j}} d x
\end{aligned}
$$

Indeed

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}\left(\nabla u_{n}(x)\right) \frac{\partial u_{n i}}{\partial x_{j}} d x=\left\langle f, u_{n}\right\rangle \rightarrow\langle f, u\rangle
$$

(II) Proof of (5.3)

Let $v \in \mathbf{W}^{p(x)}(\Omega)$, there exist $\left(v_{n}\right)_{n \in \mathbb{N}}$ such that $v_{n} \in V_{n}$ for all $n \in \mathbb{N}$ and $v_{n} \rightarrow v$ in $\mathbf{W}^{p(x)}(\Omega)$ when $n \rightarrow+\infty$. We will pass to the limit in the term

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}\left(\nabla u_{n}(x)\right) \frac{\partial v_{n i}}{\partial x_{j}} d x
$$

thanks to the hypothesis (1) of (4.2) and the monotony of $E_{k h}$ (see corrollary 1).
Indeed,

$$
\begin{aligned}
0 & \leq \sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x)\left(E_{k h}\left(\nabla u_{n}\right)-E_{k h}\left(\nabla v_{n}\right)\right)\left(\frac{\partial u_{n i}}{\partial x_{j}}-\frac{\partial v_{n i}}{\partial x_{j}}\right) d x= \\
& \sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x) E_{k h}\left(\nabla u_{n}\right) \frac{\partial u_{n i}}{\partial x_{j}} d x-\sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x) E_{k h}\left(\nabla u_{n}\right) \frac{\partial v_{n i}}{\partial x_{j}} d x \\
& -\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}\left(\nabla v_{n}\right) \frac{\partial u_{n i}}{\partial x_{j}} d x+\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}\left(\nabla v_{n}\right) \frac{\partial v_{n i}}{\partial x_{j}} d x \\
& =T_{1, n}-T_{2, n}-T_{3, n}+T_{4, n}
\end{aligned}
$$

It has been seen that in (I):

$$
\lim _{n \rightarrow+\infty} T_{1, n}=\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) \rho \frac{\partial u_{i}}{\partial x_{j}} d x
$$

we have

$$
\lim _{n \rightarrow+\infty} T_{2, n}=\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) \rho \frac{\partial v_{i}}{\partial x_{j}} d x
$$

by a product of a strong convergence in $L^{p(x)}(\Omega)$ and a weak convergence in $L^{p^{\prime}(x)}(\Omega)$ (Lemma 3).
The same

$$
\lim _{n \rightarrow+\infty} T_{3, n}=\sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x) E_{k h}(\nabla v) \frac{\partial u_{i}}{\partial x_{j}} d x
$$

by a product of a strong convergence of $E_{k h}\left(\nabla v_{n}\right)$ in $L^{p^{\prime}(x)}(\Omega)$ (because $E_{k h}, k, h=1$ to 3 are continuous and bounded in $L^{p^{\prime}(x)}(\Omega)$, so by Lebesgue's dominated convergence theorem $E_{k h}\left(\nabla v_{n}\right) \rightarrow E_{k h}(\nabla v)$ in $\left.L^{p^{\prime}(x)}(\Omega)\right)$, and a weak convergence in $L^{p(x)}(\Omega)$.
Finally, we have

$$
\lim _{n \rightarrow+\infty} T_{4, n}=\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{i j k h}(x) E_{k h}(\nabla v) \frac{\partial v_{i}}{\partial x_{j}} d x
$$

by the product of a strong convergence in $L^{p^{\prime}(x)}(\Omega)$ and a strong convergence in $L^{p(x)}(\Omega)$. The passage to the limit in inequality thus gives:

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x)\left(\rho-E_{k h}(\nabla v)\right)\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial v_{i}}{\partial x_{j}}\right) d x \geq 0 \text { for all } v \in \mathbf{W}^{p(x)}(\Omega)
$$

The function test v is now astutely chosen. We take $v=u+\frac{1}{n} w$ with $w \in \mathbf{W}^{p(x)}(\Omega)$ and $n \in \mathbb{N}^{*}$. We obtain

$$
-\frac{1}{n} \sum_{i, j=1}^{3} \sum_{k, h=1}^{3} \int_{\Omega} a_{i j k h}(x)\left(\rho-E_{k h}\left(\nabla u+\frac{1}{n} \nabla w\right)\right) \frac{\partial w_{i}}{\partial x_{j}} d x \geq 0
$$

so

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{i j k h}(x)\left(\rho-E_{k h}\left(\nabla u+\frac{1}{n} \nabla w\right)\right) \frac{\partial w_{i}}{\partial x_{j}} d x \leq 0
$$

but $u+\frac{1}{n} w \rightarrow u$ in $\mathbf{W}^{p(x)}(\Omega)$, thus

$$
E_{k h}\left(\nabla u+\frac{1}{n} \nabla w\right) \rightarrow E_{k h}(\nabla u) \text { in } L^{p^{\prime}(x)}(\Omega)
$$

By passing to the limit when $n \rightarrow+\infty$, we obtains then

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x)\left(\rho-E_{k h}(\nabla u)\right) \frac{\partial w_{i}}{\partial x_{j}} d x \leq 0, \forall w \in \mathbf{W}^{p(x)}(\Omega)
$$

By the linearity (we can change w in $-w$), we get:

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x)\left(\rho-E_{k h}(\nabla u)\right) \frac{\partial w_{i}}{\partial x_{j}} d x=0, \forall w \in \mathbf{W}^{p(x)}(\Omega)
$$

we deduce that

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) \rho \frac{\partial w_{i}}{\partial x_{j}} d x=\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{i j k h}(x) E_{k h}(\nabla u) \frac{\partial w_{i}}{\partial x_{j}} d x, \forall w \in \mathbf{W}^{p(x)}(\Omega)
$$

We have thus proved that u is a solution of (4.3).

Uniqueness

We suppose that $\left(E_{k h}(\xi)-E_{k h}(\eta)\right)\left(\xi_{i j}-\eta_{i j}\right)>0$, if and only if $\xi_{i j} \neq \eta_{i j}$, and f does not depend to u. Let u_{1} and u_{2} be two solutions:

$$
\begin{aligned}
& \sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} a_{i j k h}(x) E_{k h}\left(\nabla u_{l}(x)\right) \frac{\partial v_{i}}{\partial x_{j}} d x \\
& =\langle f, v\rangle_{\left(\mathbf{W}^{p(x)}(\Omega)\right)^{\prime}, \mathbf{W}^{p(x)}(\Omega)}, l=1,2 ; \forall v \in \mathbf{W}^{p(x)}(\Omega)
\end{aligned}
$$

Subtracting term to term and substituting v by $u_{1}-u_{2}$, we obtain:

$$
\sum_{i, j=1 k, h=1}^{3} \sum_{\Omega}^{3} \int_{i j k h}(x)\left(E_{k h}\left(\nabla u_{1}\right)-E_{k h}\left(\nabla u_{2}\right)\right)\left(\frac{\partial u_{1 i}}{\partial x_{j}}-\frac{\partial u_{2 i}}{\partial x_{j}}\right) d x=0
$$

Since

$$
M=a_{i j k h}(x)\left(E_{k h}\left(\nabla u_{1}\right)-E_{k h}\left(\nabla u_{2}\right)\right)\left(\frac{\partial u_{1 i}}{\partial x_{j}}-\frac{\partial u_{2 i}}{\partial x_{j}}\right) \geq 0, i, j, k, h=1 \text { to } 3 .
$$

and $M>0$ if $\frac{\partial u_{1 i}}{\partial x_{j}} \neq \frac{\partial u_{2 i}}{\partial x_{j}}$; we get $\frac{\partial u_{1 i}}{\partial x_{j}}=\frac{\partial u_{2 i}}{\partial x_{j}}$ in $L^{p(x)}(\Omega)$, and by Hölder's inequality we have $u_{1}=u_{2}$ in $\left(W_{0}^{1, p(x)}(\Omega)\right)^{3}$.

6 Conclusion

In this work, we consider the nonlinear elasticity system as Leray-Lions's operators with variable exponent, to study the existence and uniqueness of Dirichlet's problem solution by Galerkin techniques and monotone operator theory. It has been found that these techniques adapt well to this type of problems with different boundary conditions.
From a perspective of this work, we will consider the same problem with the boundary conditions Robin, Tresca or Coulomb.

Anckowledgement. This work has been realized thanks to the DGRSDT, MESRS Algeria and research project under code: C00L03UN190120190001

References

[1] M. B. Benboubker, Sur certains problèmes elliptiques quasilinéaires non homogènes de type Dirichlet ou Neumann, Université Sidi Mohamed Ben Abdellah (2013).
[2] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 1383-1406 (2006).
[3] P. G. Ciarlet, Mathematical elasticity, Vol. I: Three-Dimensional Elasticity, NorthHolland, Amsterdam (1988).
[4] D.V. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Basel (2013).
[5] R. Dautray, J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol.1, Masson (1984).
[6] L. Diening, P. Harjulehto, P. Hästo, M. RŮŽIČKa, Lebesgue and Sobolev spaces with Variable Exponents, 2017, Lecture Notes in Mathematics, Springer, Heidelberg (2017).
[7] A. El Hachimi, S. MaAtouk, Existence of periodic solutions for some quasilinear parabolic problems with variable exponents, Arab. J. Math., 6, 263-280 (2017).
[8] X. Fan, D. Zhao: On the spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$, J. Math. Anal. Appl., 263, 424-446 (2001).
[9] T. Gallouët, R. Herbin, Equations aux dérivées partielles, Université Aix Marseille, (2013).
[10] J. Leray, J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93, 97-107 (1965).
[11] J. L. Lions, Quelques méthode de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
[12] B. Merouani, R. Boufenouche, Trigonometric series adapted for the study of Dirichlet boundary-value problems of Lamé systems, Electronic Journal of Differential Equations, 181, 1-6 (2015).
[13] B. Merouani, Solutions singulières du système de l'élasticité dans un polygone pour différentes conditions aux limites, Maghreb Math. Rev., 5, 95-112 (1996).
[14] B. Merouani, Quelques problèmes aux limites pour le système de Lamé dans un secteur plan, C.R.A.S., 304, série I (1987).
[15] J. T. Oden, Existence theorems for a class of problems in nonlinear elasticity, Journal of Mathematical Analysis and Applications, 69, 51-83 (1979).
[16] M. RŮŽIČKA, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1784, Springer-Verlag, Berlin, (2000).
[17] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Math. USSR, 29, 33-36 (1987).
[18] F. Zoubai, B. Merouani, Study of a mixed problem for a nonlinear elasticity system by topological degree, Stud. Univ. Babeş-Bolyai Math. (accepted).
[19] F. Zoubai, B. Merouani, On a pure traction problem for the nonlinear elasticity system in Sobolev spaces with variable exponents, Stud. Univ. Babes-Bolyai Math. (accepted).

Received: 15.09.2019
Revised: 30.08.2020
Accepted: 10.01.2021
${ }^{(1)}$ Applied Mathemathics Laboratory (LaMA)
Department of Mathematics, Setif 1 University
19000, Algeria
E-mail: mermathsb@hotmail.fr
${ }^{(2)}$ Applied Mathemathics Laboratory (LaMA) Department of Mathematics, Setif 1 University 19000, Algeria
E-mail: fayrouz.zoubai@univ-setif.dz

