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Abstract

In this work, we propose a primal-dual interior-point algorithm for semidefinite
optimization based on a new kernel function with an efficient logarithmic barrier
term. We show that the best result of iteration bounds can be achieved, namely
O(

√
n logn log n

ε
), for large update and O(

√
n log n

ε
) for small-update methods.
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1 Introduction

Consider the standard semidefinite optimization (SDO) problem:

min {< C,X > : < Ai, X >= bi for i = 1, . . . ,m and X � 0} (P)

and its dual problem:

max{bty : S = C −
m∑
i=1

yiAi , S � 0}. (D)

Where b = (b1, b2, . . . , bm) ∈ Rm, the matrices C and Ai, i = 1, . . . ,m, are given and
belong to the linear space of n × n symmetric matrices Sn. The < ., . > operation is the
inner product on Sn of two matrices A and B which is the trace of their product, i.e.,
〈A,B〉 = tr(AB) =

∑
i,j aijbij and the inequality constraint X � 0 (X � 0) indicates that

the matrix X belong to the cone of positive semidefinite matrices S+
n (the cone of positive

definite matrices S++
n ).

Primal-dual interior-point method IPM is one of the most efficient numerical methods
for solving large classes of optimization problems and highly efficient in both theory and
practice. It is well known that the SDO has a variety of applications in engineering prob-
lems, such as optimal control, combinatorics, image processing, sensor networks, financial
mathematics and statistics[13]. Many researchers have proposed interior-point algorithms
for various optimization problems based on kernel functions. Most of the polynomial time
interior-point algorithms are based on the logarithmic kernel function with O(

√
n log n

ε )
and O(n log n

ε ) iteration complexity for small- and large update methods, respectively[10].
Recently, Peng et al.[9] defined a class of self regular kernel functions, proposed primal-dual
IPM for linear optimization LO and generalized to second order cone optimization SOCO
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and SDO. Roos et al.[2] defined eligible kernel functions which were defined by four condi-
tions on the function and proposed a primal-dual IPM for LO and simplified the complexity
analysis of Peng et al.’s in [9]. Bouafia et al.[3] proposed a primal-dual interior-point algo-
rithm for LO based on a kernel function with a trigonometric barrier term and they obtain
the best-known complexity result for small- and large update method.

Several interior-point methods IPMs for LO have been successfully extended to SDO.
Wang et al.[11] proposed a primal-dual IPM for SDO based on a generalized version of the
kernel function in[2] and obtained O(q2

√
n log n

ε ), q > 1, and O(
√
n log n log n

ε ) complexity
results for small- and large update, respectively. EL Ghami et al.[5] extended the IPM for
LO in[2] to SDO and obtained the similar iteration bounds as analog of LO. Lee et al.[7]
defined a new class of kernel functions and obtained the best-known complexity results for
small- and large update IPMs based on a kernel function for LO and SDO. EL Ghami [4]
generalize the analysis presented in [3] for SDO and obtained the best-known complexity
results for small- and large update method.

Motivated by their works, we proposed a primal-dual interior-point algorithm for SDO
based on a new logarithmic kernel function and obtain the best-known complexity results
of small- and large update methods.

This paper is organized as follows: In section 2, we introduce a fundamental concepts
and give the classical Nesterov-Todd direction. In section 3, we present the kernel function
based on Nesterov-Todd direction and describe the generic primal-dual algorithm. In section
4, a new kernel function and its growth properties for SDO are studied. In section 5, the
complexity results of small- and large update algorithms for SDO are computed. Finally, a
conclusion ends section 6.

We will make use of the following notations throughout the paper: Rn, Rn+ and Rn++

denote the set of real, nonnegative real and positive real vectors with n components, re-
spectively. ||.|| denotes the Frobenius norm for matrices. For Q ∈ Sn++ , Q1/2 denotes the
symmetric square root of Q. For any V ∈ Sn , we denote by λ(V ) the vector of eigen-
values of V arranged in non-increasing order, that is, λ1(V ) ≥ λ2(V ) ≥ . . . ≥ λn(V ) and
Λ = diag(λ(V )), i.e., the diagonal matrix from a vector λ(V ). I denotes an n× n identity
matrix. For f(x), g(x) : R++ → R++, f(x) = O(g(x)) if f(x) ≤ c1g(x) for some positive
constant c1 and f(x) = Θ(g(x)) if c2g(x) ≤ f(x) ≤ c3g(x) for some positive constants c2
and c3.

2 Classical Nestrov-Todd search direction for SDO

In this section, we recall the notion of the central path with its properties and we drive the
classical Nestrov-Todd search direction for SDO.

Throughout the paper, we assume that the matrix Ai, i = 1, . . . ,m, are linearly inde-
pendent and the problems (P ) and (D) satisfy the interior-point condition (IPC), i.e., there
exists X ∈ FP , S ∈ FD with X � 0, S � 0, where FP and FD denote the feasible sets of the
problem (P ) and (D), respectively.

Finding an optimal solution of the problem (P ) and (D) is equivalent to solving the
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following system: 
< Ai, X >= bi, i = 1, . . . ,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = 0.

(2.1)

The basic idea of primal-dual IPMs is to replace the complementarity condition of (2.1),
XS = 0, by the parameterized equation XS = µI with X,S � 0 and µ > 0. So, we consider
the following system: 

< Ai, X >= bi, i = 1, . . . ,m, X � 0,
m∑
i=1

yiAi + S = C, S � 0,

XS = µI.

(2.2)

Under the previous assumptions, the system (2.2) has a unique solution (X(µ), y(µ), S(µ))
for each µ > 0, we call it the µ−center of both problems (P ) and (D). The set of µ−center
defines a homotopy which is called the central path of (P ) and (D) which is converges to
the optimal solution of the problem (P ) and (D) as µ goes to zero[13]. Now, to obtain the
search direction, we apply Newton’s method to the system (2.2), then we get the Newton
system as follows: 

< Ai,∆X >= 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi + ∆S = 0,

X∆S + ∆XS = µI −XS.

(2.3)

Since Ai are linearly independent and X � 0, S � 0, the system (2.3) has a unique
search direction (∆X,∆y,∆S). Note that ∆S is symmetric from the second equation of
(2.3), but ∆X may be not symmetric. Various methods of symmetrizing the third equation
of (2.3) are proposed so that the new system has a unique symmetric solution. In this
paper, we use the NT symmetrizing scheme[8]. Let

P = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2

and D = P 1/2 where P 1/2 denotes the symmetric square root of P . The matrix D is used
to scale both matrices X and S to the same matrix V defined by

V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ

(D−1XSD)1/2. (2.4)

Then, matrices D and V are symmetric positive definite. By using (2.4) the Newton
system (2.3) can be rewritten as follows:

< Ai, DX >= 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = V −1 − V.

(2.5)

with

Ai =
1
√
µ
DAiD, i = 1,m, DX =

1
√
µ
D−1∆XD−1, DS =

1
√
µ
D∆SD. (2.6)
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The system (2.5) determines a uniquely symmetric NT direction with the matrices DX

and DS be orthogonal, and it is evident that Tr(DXDS) = Tr(DSDX) = 0. The above
Nesterov-Todd direction leads to the classical primal-dual IPM algorithms for SDO.

3 New search direction and the generic primal-dual
IPM for SDO

In this section, we recall the definition of a matrix function and we derive the new ker-
nel function based on NT direction and then we introduce our generic primal-dual IPM
algorithm for SDO.

For V = QT diag(λ1(V ), λ2(V ), . . . , λn(V ))Q, the spectral decomposition of V ∈ Sn++,
we generalize a function ψ(t) : R++ → R+ to the matrix function ψ(V ) : Sn++ → Sn as
follows:

ψ(V ) = QT diag(ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V )))Q, (3.1)

ψ′(V ) = QT diag(ψ′(λ1(V )), ψ′(λ2(V )), . . . , ψ′(λn(V )))Q.

Replacing the right hand side V −1 − V of the third equation of (2.5) by −ψ′(V ). Then
we have the linear system: 

< Ai, DX >= 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = −ψ′(V ).

(3.2)

where ψ(t) is a given kernel function and ψ(V ), ψ′(V ) are the associated matrix functions
denote in (3.1), the system (3.2) has a unique symmetric solution. For any kernel function
ψ(t), we define Ψ(V ) : Sn++ → R+ by

Ψ(V ) = Tr(ψ(V )) =

n∑
i=1

ψ(λi(V )). (3.3)

Then Ψ(V ) is strictly convex with respect to V � 0 and vanishes at its global minimal
point V = I and Ψ(I) = 0. Since DX and DS are orthogonal, for µ > 0,

Ψ(V ) = 0⇔ V = I ⇔ DX = DS = 0⇔ X = X(µ), S = S(µ).

Hence we can use Ψ(V ) as a proximity function to measure the distance between the
current iteration and the corresponding µ−center.

The primal-dual interior-point algorithm for SDO works as follows: Assume that τ ≥ 1
and there is a strictly feasible point (X, y, S) which is in a τ−neighborhood of the given
µ−center[6]. We update µ to µ+ = (1− θ)µ , for some fixed θ ∈ (0, 1), and then solve the
system (3.2) and (2.6) to obtain the NT search direction. The positivity condition of a new
iteration is ensured with the right choice of the step size α. This procedure is repeated until
we find a new iteration (X+, y+, S+) which is in a τ−neighborhood of the µ+−center and
then we let µ = µ+ and (X, y, S) = (X+, y+, S+). We repeat the process until nµ < ε.
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primal-dual Algorithm for SDO
Input
A threshold parameter τ ≥ 1; an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible (X0, S0) and µ0 = 1 such that Ψ(X0, S0, µ0) ≤ τ ;
begin

X = X0;S = S0;µ = µ0;
while nµ ≥ ε do
begin
µ = (1− θ)µ;
while Ψ(X,S, µ) > τ do
begin

solve the system (3.2) and (2.6) to obtain ∆X, ∆y, ∆S;
determine a step size α and take
X = X + α∆X; y = y + α∆y;S = S + α∆S;

end
end

end

4 Kernel function and its properties

In this section, we define a class of kernel functions and give its essential properties for
complexity analysis.

Definition 1. We call ψ : R++ → R+ a kernel function if ψ is twice differentiable and
satisfies the following conditions:

ψ′(1) = ψ(1) = 0, ψ′′(t) > 0, t > 0, lim
t→0+

ψ(t) = lim
t→∞

ψ(t) =∞. (4.1)

From the first tow conditions, it follows that ψ(t) is strictly convex and minimal at
t = 1, and ψ(t) is expressed in term of its second derivative as follows:

ψ(t) =

t∫
1

ξ∫
1

ψ′′(ζ)dζdξ. (4.2)

However, the third condition indicates the barrier property of ψ(t).
Now, we consider our new kernel function ψ(t) as follows:

ψ(t) = t2 − 1 +
t1−q − 1

q − 1
− log t, q > 1, t > 0. (4.3)

It is easy to check that ψ(t) is indeed a barrier kernel function and its three first derivatives
are as follows:

ψ′(t) = 2t− t−q − 1

t
, ψ′′(t) = 2 + qt−q−1 +

1

t2
, ψ(3)(t) = −q(q + 1)t−q−2 − 2

t3
. (4.4)

From (4.4), we have
ψ′′(t) > 1, t > 0. (4.5)
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Lemma 1. Let ψ(t) be defined as in (4.3), then
(i) tψ′′(t) + ψ′(t) > 0, 0 < t < 1,
(ii) tψ′′(t)− ψ′(t) > 0, t > 1,
(iii) ψ(3)(t) < 0, t > 0.

Proof. For (i), by using (4.4), it follows that tψ′′(t) + ψ′(t) = 4t + (q − 1)t−q > 0, for all
q > 1 and t > 0.

For (ii), we have tψ′′(t)− ψ′(t) = (q + 1)t−q + 2
t > 0, for all q > 1 and t > 0.

For (iii), it is clear from (4.4) that ψ(3)(t) < 0, for t > 0.

Remark 1. (Lemma 2.4 in [2]) if ψ(t) satisfy (ii) and (iii) in Lemma 1, then

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 0, β > 1.

Lemma 2. For ψ(t), we have for q > 1,
(i) 1

2 (t− 1)2 ≤ ψ(t) ≤ 1
2 [ψ′(t)]2, t > 0, (ii) ψ(t) ≤ 1

2 (3 + q)(t− 1)2, t ≥ 1.

Proof. For (i), using the first condition of (4.1) and (4.5), we have

ψ(t) =

t∫
1

ξ∫
1

ψ′′(ζ)dζdξ ≥
t∫

1

ξ∫
1

dζdξ =
1

2
(t− 1)2,

the second inequality is obtained as follows:

t∫
1

ξ∫
1

ψ′′(ζ)dζdξ ≤
t∫

1

ξ∫
1

ψ′′(ξ)ψ′′(ζ)dζdξ=
t∫

1

ψ′′(ξ)ψ′(ξ)dξ =
t∫

1

ψ′(ξ)dψ′(ξ)dξ = 1
2 (ψ′(t))2.

For (ii), using Taylor’s theorem, the first condition of (4.1) and Lemma 1 (iii), we have

ψ(t) = ψ(1) + ψ′(1)(t− 1) + 1
2ψ
′′(1)(t− 1)2 + 1

3!ψ
(3)(c)(t− 1)3

= 1
2ψ
′′(1)(t− 1)2 + 1

3!ψ
(3)(c)(t− 1)3 < 1

2ψ
′′(1)(t− 1)2 = 1

2 (3 + q)(t− 1)2,

for some c, 1 ≤ c ≤ t. This completes the proof.

Lemma 3. Let % : [0,∞)→ [1,∞) be the inverse function of ψ(t) for t ≥ 1. Then we have

1 +

√
2s

3 + q
≤ %(s) ≤ 1 +

√
2s, q > 1, s ≥ 0.

Proof. Let s = ψ(t) for t ≥ 1, i.e., %(s) = t, t ≥ 1. By the definition of ψ(t), s = t2 − 1 +
t1−q−1
q−1 − log t, q > 1, t > 0. Using Lemma 2 (i), we have s = ψ(t) ≥ 1

2 (t− 1)2 this implies

that t = %(s) ≤ 1 +
√

2s.
For the second inequality using Lemma 2 (ii), then s = ψ(t) ≤ 1

2 (3 + q)(t− 1)2, t ≥ 1.

It follows that t = %(s) ≥ 1 +
√

2s
3+q . This completes the proof.
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Lemma 4. Let ρ : [0,∞) → (0, 1] be the inverse function of − 1
2ψ(t) for 0 < t ≤ 1. Then

we have

ρ(z) ≥ (
1

2z + 1
)

1
q−1 , q > 1, z ≥ 0.

Proof. Let z = − 1
2ψ(t) for 0 < t ≤ 1. By the definition of ρ, ρ(z) = t, for z ≥ 0. So, we

have z = − 1
2 (2t− t−q − 1

t )⇐⇒
t−q+t−1

2 = z + t⇐⇒ t−q+1 = 2t(z + t)− 1, it follows that

t−q+1 ≤ 2(z+ 1)−1. Hence, we obtain t = ρ(z) ≥ ( 1
2z+1 )

1
q−1 . This completes the proof.

For the analysis of the algorithm, we also use the norm-based proximity measure δ(V )
as follows:

δ(V ) =
1

2
||ψ′(V )|| = 1

2

√√√√ n∑
i=1

(ψ′(λi(V )))2 =
1

2
||DX +DS ||, V ∈ Sn++. (4.6)

In the following lemma, we give a relationship between two proximity measures.

Lemma 5. Let δ(V ) and Ψ(V ) be defined as in (4.6) and (3.3), respectively. Then we have

δ(V ) ≥
√

1

2
Ψ(V ), V ∈ Sn++.

Proof. Using (4.6) and the second inequality of Lemma 2 (i),

δ2(V ) =
1

4

n∑
i=1

(ψ′(λi(V )))2 ≥ 1

2

n∑
i=1

ψ(λi(V )) =
1

2
Ψ(V ).

Hence we have δ(V ) ≥
√

1
2Ψ(V ). This completes the proof.

Remark 2. Throughout the paper, we assume that τ ≥ 1. Using Lemma 5 and the as-
sumption that Ψ(V ) ≥ τ, we have δ(V ) ≥ 1√

2
.

In the following, using Remark 1, we estimate the effect of a µ−update on the value of
Ψ(V ).

Lemma 6. (Lemma 4.16 in [12]) Let % be defined as in Lemma 3. Then we have

Ψ(βV ) ≤ nψ
(
β%

(
Ψ(V )

n

))
, V ∈ Sn++, β ≥ 1.

Lemma 7. Let 0 < θ < 1 and V + = V√
1−θ . If Ψ(V ) ≤ τ, then for q > 1 we have

(i) Ψ(V +) ≤ 3+q
2(1−θ)

(√
nθ +

√
2τ
)2

, (ii) Ψ(V +) ≤ nθ + 2τ + 2
√

2τn

1− θ
.
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Proof. For (i), since 1√
1−θ ≥ 1 and %

(
Ψ(V )
n

)
≥ 1, we have

%( Ψ(V )
n )√

1−θ ≥ 1. Using Lemma 6

with β = 1√
1−θ , Lemma 2 (ii), Lemma 3 and Ψ(V ) ≤ τ , we obtain

Ψ(V +) ≤ nψ
(

1√
1−θ%

(
Ψ(V )
n

))
≤ n(3+q)

2

(
%( Ψ(V )

n )√
1−θ − 1

)2

≤ n(3+q)
2

(
1+
√

2τ
n −
√

1−θ√
1−θ

)2

≤ n(3+q)
2

(
θ+
√

2τ
n√

1−θ

)2

= 3+q
2(1−θ)

(√
nθ +

√
2τ
)2

,

where the last inequality holds from 1−
√

1− θ = θ
1+
√

1−θ ≤ θ, 0 ≤ θ < 1.

For (ii), we have ψ(t) ≤ t2 − 1,∀t ≥ 1. Using Lemma 6 with β = 1√
1−θ , Lemma 3 and

Ψ(V ) ≤ τ , we have

Ψ(V +) ≤ nψ
(

1√
1−θ%

(
Ψ(V )
n

))
≤ n

([
1√
1−θ%

(
Ψ(V )
n

)]2
− 1

)
= n

1−θ

(
%
(

Ψ(V )
n

)2

− (1− θ)
)
≤ n

1−θ

([
1 +

√
2Ψ(V )
n

]2

− (1− θ)

)
≤ n

1−θ

(
θ + 2 τn + 2

√
2τ
n

)
= nθ+2τ+2

√
2τn

1−θ .

Define for q > 1 and 0 < θ < 1,

Ψ̃0 =
3 + q

2(1− θ)

(√
nθ +

√
2τ
)2

, Ψ0 =
nθ + 2τ + 2

√
2τn

1− θ
. (4.7)

We will use Ψ̃0 and Ψ0 for the upper bounds of Ψ(V ) for small- and large- update
methods, respectively.

Remark 3. For small–update method with τ = O(1) and θ = Θ( 1√
n

), and for large-update

method with τ = O(n) and θ = Θ(1).

5 Complexity analysis

In this section, we compute a feasible step size α and the decrement of the proximity
function during an inner iteration.

For fixed µ, if we take a step size α along the search direction (∆X,∆y,∆S), we obtain
a new iteration X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S, α > 0.

Using (2.6), we can rewrite X+ and S+ as follows:

X+ =
√
µD(V + αDX)D, S+ =

√
µD−1(V + αDS)D−1. (5.1)

From (2.5), we have V + = 1√
µ (D−1X+S+D)1/2. From (5.1), we have

(V +)2 = (V + αDX)(V + αDS).
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Since V + αDX ∈ Sn++, V + αDS ∈ Sn++, (V +)2 is similar to the matrix

(V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 .

This implies that the eigenvalues of V + are the same as those of(
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

) 1
2

.

Then we have

Ψ(V +) = Ψ

((
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

) 1
2

)
.

Lemma 8. (Proposition 5.2.6 in [9]) Let V1, V2 ∈ Sn++. Then we have

Ψ

([
V

1
2

1 V2V
1
2

1

] 1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)).

By Lemma 8, we obtain

Ψ(V +) ≤ 1

2
(Ψ(V + αDX) + Ψ(V + αDS)). (5.2)

Define for α > 0, f(α) = Ψ(V +)−Ψ(V ), f1(α) = 1
2 (Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ).

From (5.2), f(α) ≤ f1(α) and f(0) = f1(0) = 0.
Now to estimate the decrease of the proximity during one step, we need the two succes-

sive derivatives of f1(α) with respect to α. We have

f ′1(α) =
1

2
Tr(ψ′(V + αDX)DX + ψ′(V + αDS)DS),

f
′′

1 (α) =
1

2
Tr(ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D2
S).

It is obvious that f
′′

1 (α) > 0, unless DX = DS = 0.
From the third equation of the system (3.2) and (4.6), we have

f ′1(0) =
1

2
Tr(ψ′(V )(DX +DS)) =

1

2
Tr(−(ψ′(V ))2) = −2δ2(V ).

For notational convenience, let δ = δ(V ) and Ψ = Ψ(V ).
To find the default step size, we need the following lemmas.

Lemma 9. (Lemma 5.19 in [12]) Let δ be defined as in (4.6). Then we have
f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ).

Lemma 10. (Lemma 4.2 in [2]) If α satisfies ψ′(λn(V ) − 2αδ) + ψ′(λn(V )) ≤ 2δ, then
f ′1(α) ≤ 0.

Lemma 11. (Lemma 4.4 in [2]) Let ρ and α be defined as in Lemma 4 and Lemma 10,
respectively. Then α ≥ 1

ψ′′(ρ(2δ)) .
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Lemma 12. Let ρ and α be defined as in Lemma 11. If 1 ≤ τ ≤ Ψ(V ), then we have

α ≥ 1

2 + (q + 1)(4δ + 1)
q+1
q−1

.

Proof. Using Lemma 11, lemma 4 and (4.4) we have

α ≥ 1
ψ′′(ρ(2δ)) = 1

2+ 1
ρ(2δ)2

+q(ρ(2δ))−q−1 ≥ 1

2+(4δ+1)
2
q−1 +q(4δ+1)

q+1
q−1

≥ 1

2+(q+1)(4δ+1)
q+1
q−1

.

This completes the proof.

Define the default step size α̃ as follows:

α̃ =
1

2 + (q + 1)(4δ + 1)
q+1
q−1

, (5.3)

with α̃ ≤ α.

Lemma 13. (Lemma 4.5 in [2]) If the step size α is such that α ≤ α, then

f(α) ≤ −αδ2.

Lemma 14. Let α̃ be defined as in (5.3). Then we have

f(α̃) ≤ − 1

40
√

2(q + 1)
Ψ

q−3
2(q−1) .

Proof. Using Lemma 13 with α = α̃ and (5.3), we have

f(α̃) ≤ −α̃δ2 = − δ2

2+(q+1)(4δ+1)
q+1
q−1

≤ − δ2

2(2δ)
q+1
q−1 +(q+1)(4δ+(2δ))

q+1
q−1

≤ − δ
2− q+1

q−1

(8+(q+1)36) ≤ −
δ
q−3
q−1

40(q+1) ≤ −
Ψ

q−3
2(q−1)

40
√

2(q+1)
.

This completes the proof.

Lemma 15. (Proposition 1.3.2 in [9]) Suppose that a sequence tk > 0, k = 0, 1, . . . ,K is
satisfying the following inequality: tk+1 ≤ tk−ηtγk , η > 0, γ ∈ [0, 1[, k = 0, 1, 2, . . . ,K.
Then

K ≤

[
t1−γ0

η(1− γ)

]
.

We denote the value of Ψ after µ−update as Ψ0 and the subsequent values in the same
outer iteration are denoted as Ψl, l = 0, 1, . . . ,K, where K denotes the total number of
inner iterations per an outer iteration. Then we have Ψ0 ≤ Ψ̃0 and Ψ0 ≤ Ψ0, where Ψ̃0

and Ψ0 are defined in (4.7). Then we have ΨK−1 > τ and 0 ≤ ΨK ≤ τ.
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Theorem 1. Let Ψ̃0 and Ψ0 be defined as in (4.7) and let K1 and K2 be the total numbers
of inner iterations in the outer iteration for small- and large-update methods, respectively.
Then for q ≥ 1, we have

(i) K1 ≤
[
80
√

2(q − 1)Ψ̃
q+1

2(q−1)

0

]
, (ii) K2 ≤

[
80
√

2(q − 1)Ψ
q+1

2(q−1)

0

]
.

Proof. For (i), combining Lemma 14 and Lemma 15 with η = 1
40
√

2(q+1)
and γ = q−3

2(q−1) ,

we have

K1 ≤
[
80
√

2(q − 1)Ψ̃
q+1

2(q−1)

0

]
.

For (ii), by the same way, we have

K2 ≤
[
80
√

2(q − 1)Ψ
q+1

2(q−1)

0

]
.

This completes the proof.

The number of outer iterations is bounded above by
[

1
θ log n

ε

]
[10]. By multiplying the

number of outer iterations by the number of inner iterations, then the total number of

iterations for small- and large-update methods are bounded by [80
√

2(q− 1)Ψ̃
q+1

2(q−1)

0
1
θ log n

ε ]

and [80
√

2(q − 1)Ψ
q+1

2(q−1)

0
1
θ log n

ε ] respectively.

For large-update methods with τ = O(n) and θ = Θ(1), we haveO((q − 1)n
q+1

2(q−1) log n
ε )

iteration complexity. In case of a small-update methods with τ = O(1), θ = Θ( 1√
n

) and

Ψ̃0 = O(q), the iteration bound becomes O((q − 1)q
q+1

2(q−1)
√
n log n

ε ) iteration complexity.

Remark 4. If q = any constant, we have O(
√
n log n

ε ) iteration complexity result for
small-update method. Similarly choosing q = 1 + log n, we have O(

√
n log n log n

ε ) itera-
tion complexity for large-update method. These are the best-known complexity results for
such methods.

6 Conclusion

In this paper, we proposed a new kernel function with a logarithmic term. We have shown
that the best result of iteration bounds for small- and large-update methods can be achieved,
namely O(

√
n log n log n

ε ) for large-update and O(
√
n log n

ε ) for small-update methods. Fu-
ture researches might extend this analysis for convex quadratic semidefinite optimization
problems, complementarity and conic problems.
Acknowledgement. The authors are grateful to the referee whose detailed comments
greatly improve the presentation of the paper.
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