A new proof for the classification of simple parameterized space curve singularities
by
Nimra Javed(1), Afshan Sadiq(2)

Abstract

Let K be an algebraically closed field of characteristic 0. The aim of the article is to give a new proof for the classification of simple parameterized space curve singularities classified by Gibson and Hobbs [6]. The proof is based on explicit computations to be a basis for the corresponding classification in characteristic $p > 0$.

Key Words: Simple singularities, space curves, parametrized curves.
2010 Mathematics Subject Classification: Primary 14H20; Secondary 14H50, 14B05.

1 Introduction

The study and classification of singularities have a long history. Very important contributions go back to Zariski [14] and Arnold [1]. Most of the results were obtained over the complex numbers. Greuel and his students started a classification for hypersurface singularities in characteristic p ([2],[7],[8]). Bruce and Gaffney [4] classified the simple parameterized plane curve singularities over the complex numbers. Mehmood and Pfister [12] classified the simple plane curve parametrizations in characteristic p. Parametrization of space curve singularities were studied by Gibson and Hobbs in characteristic zero [6]. Their proofs cannot be adapted to characteristic p. The aim of this paper is to give another proof of the results of Gibson and Hobbs in characteristic zero.

Let K be an algebraically closed field of characteristic zero. A parametrized space curve singularity is an analytic map $(K,0) \rightarrow (K^3,0)$. Algebraically it is given by a map $f : K[[x,y,z]] \rightarrow K[[t]]$. If $f(x) = x(t)$, $f(y) = y(t)$ and $f(z) = z(t)$ then we write shortly $f = (x(t), y(t), z(t))$. The image of f is the subalgebra $K[[x(t), y(t), z(t)]] \subseteq K[[t]]$ and we will always assume that

$$\dim_K K[[t]]/K[[x(t), y(t), z(t)]] < \infty.$$

The finiteness condition implies that there exist a minimal c such that the ideal, called the conductor ideal, $t^cK[[t]] \subseteq K[[x(t), y(t), z(t)]]$. Two parametrized space curve singularities $f = (x(t), y(t), z(t))$ and $g = (x(t), y(t), z(t))$ are called A-equivalent, $f \sim g$, if there exist automorphisms,

$$\psi : K[[t]] \rightarrow K[[t]]$$

$$\varphi : K[[x,y,z]] \rightarrow K[[x,y,z]]$$
such that the following diagram commutes:

\[
\begin{array}{ccc}
K[[x, y, z]] & \xrightarrow{f} & K[[x(t), y(t), z(t)]] \subseteq K[[t]] \\
\varphi \downarrow & & \psi \\
K[[x, y, z]] & \xrightarrow{g} & K[[\hat{x}(t), \hat{y}(t), \hat{z}(t)]] \subseteq K[[t]]
\end{array}
\]

i.e.

\[(x(\psi(t)), y(\psi(t)), z(\psi(t))) = (\varphi_1(\hat{x}(t), \hat{y}(t), \hat{z}(t)), \varphi_2(\hat{x}(t), \hat{y}(t), \hat{z}(t)), \varphi_3(\hat{x}(t), \hat{y}(t), \hat{z}(t))).\]

Given a parametrization \(f = (x(t), y(t), z(t)) \), we define a semigrop as \(\Gamma_f = \{ \text{ord}_i(h) | h \in K[[x(t), y(t), z(t)]] \} \) (or \(\Gamma \) if \(f \) is fixed). If \(t^cK[[t]] \) is the conductor ideal then \(c - 1 \notin \Gamma \) and \(l \in \Gamma \) if \(l \geq c \). The integer \(c \) is called conductor of \(\Gamma \).

Definition 1. Let \(f = (x(t), y(t), z(t)) \in tK[[t]]^3 \) define a parametrized space curve singularity. A deformation of \(f \) is a pair \((F, m)\), \(F \in tA[[t]]^3 \) and \(m \subseteq A = K[x_1, ..., x_n]/I \) a maximal ideal, such that \(F \) mod \(mA[[t]]^3 = f \). Since the field \(K \) is algebraically closed a point \(p \in V(I) \subseteq \mathbb{K}^n \) correspond to a maximal ideal \(m_p \subseteq A \) and we will write \(F(p, t) \in K[[t]]^3 \) for \(F \) mod \(m_pA[[t]]^3 \). We will denote the point corresponding to \(m \) by \(o \).

Definition 2. Let \(f = (x(t), y(t), z(t)) \in tK[[t]]^3 \) define a parametrized space curve singularity. \(f \) is called simple if for any deformation \((F, m)\) of \(f \), \(F \in tA[[t]]^3 \), \(A = K[x_1, ..., x_n]/I \), there exist a Zariski open subset \(U \) of \(V(I) \subseteq \mathbb{K}^n \) containing \(o \) such that the set \(\{ F(p, t) | p \in U \} \) contains only finitely many \(A \)-equivalent classes.

Remark 1. Given parametrizations \((x(t), y(t), z(t)), (\hat{x}(t), \hat{y}(t), \hat{z}(t))\) and assume the \((x(t), y(t), z(t))\) is not simple, if \((x(t), y(t), z(t))\) is \(A \)-equivalent to a parametrization in a deformation of \((\hat{x}(t), \hat{y}(t), \hat{z}(t))\) then \((\hat{x}(t), \hat{y}(t), \hat{z}(t))\) is not simple.

Theorem 1. Let \(f \in tK[[t]]^3 \) be a simple parametrized space curve singularity then \(f \) is \(A \)-equivalent to a parametrized space curve singularity in the following table:
Normal Forms

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(t, 0, 0)$</td>
<td>1 ≤ k ≤ $s < 2k - 1$</td>
</tr>
<tr>
<td>$(t^2, t^{2k+1}, 0)$</td>
<td>1 ≤ k ≤ $s < 2k$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+1}, 0)$</td>
<td>1 ≤ k ≤ $s < 2k$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+1} + t^{3s+2}, 0)$</td>
<td>1 ≤ k ≤ $s < 2k$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+2}, 0)$</td>
<td>1 ≤ k ≤ $s < 2k$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+2} + t^{3s+1}, 0)$</td>
<td>1 ≤ k ≤ $s < 2k$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+1} + t^{3r+2}, t^{3s+2})$</td>
<td>1 ≤ k ≤ $s < 2k, r < s$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+2}, t^{3s+1})$</td>
<td>1 ≤ k ≤ $s < 2k$</td>
</tr>
<tr>
<td>$(t^3, t^{3k+2} + t^{3r+1}, t^{3s+2})$</td>
<td>1 ≤ k ≤ $s < 2k, r < s$</td>
</tr>
<tr>
<td>$(t^4, t^5, 0)$</td>
<td></td>
</tr>
<tr>
<td>$(t^4, t^5 + t^7, 0)$</td>
<td></td>
</tr>
<tr>
<td>$(t^4, t^5 + t^6)$</td>
<td>k ≥ 3</td>
</tr>
<tr>
<td>(t^4, t^5, t^7)</td>
<td></td>
</tr>
<tr>
<td>(t^4, t^5, t^{11})</td>
<td>k ≥ 3</td>
</tr>
<tr>
<td>$(t^4, t^6 + t^{2k+1}, 0)$</td>
<td>k ≥ 3</td>
</tr>
<tr>
<td>(t^4, t^6, t^{2k+1})</td>
<td>k ≥ 4</td>
</tr>
<tr>
<td>$(t^4, t^6 + t^{2k-1}, t^{2k+1})$</td>
<td>k ≥ 5</td>
</tr>
<tr>
<td>$(t^4, t^6 + t^{2k-3}, t^{2k+1})$</td>
<td>k ≥ 5</td>
</tr>
<tr>
<td>$(t^4, t^6 + t^{2k-7}, t^{2k+1})$</td>
<td></td>
</tr>
<tr>
<td>$(t^4, t^7, 0)$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^9, 0)$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{13}, 0)$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>(t^4, t^7, t^9)</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7, t^9 + t^{10})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>(t^4, t^7, t^{10})</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^9 + t^{10})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{10})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{13})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{13})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{17})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{17})$</td>
<td>k ≥ 7</td>
</tr>
<tr>
<td>$(t^4, t^7 + t^{13} + t^{17})$</td>
<td>k ≥ 7</td>
</tr>
</tbody>
</table>

The idea to prove Theorem 1 is the following. We may assume that for a given parametrized space curve singularity $f = (x(t), y(t), z(t))$ that $ord_x(x(t) < ord_y(t) < ord_z(t)$. We will prove that f is not simple if $ord_x(x(t) ≥ 5$ or $ord_x(x(t) = 4$ and $ord_y(t) ≥ 8$ (Corollary 1). For the other cases we give normal forms not depending on parameters and the property $ord_x(x(t) ≤ 4$ and $ord_y(t) ≤ 7$ is kept under deformations. A basis for the classification is the following theorem of Zariski [14].

Theorem 2.

1. Given a parametrization $(t^i + \Sigma_{i>k} a_i t^i, t^m + \Sigma_{i>m} b_i t^i, t^n + \Sigma_{i>n} c_i t^i)$ and $k \in \Gamma$ then there exist an equivalent parameterization $(t^i + \Sigma_{i>k} a_i t^i, t^m + \Sigma_{i>m} b_i t^i, t^n + \Sigma_{i>n} c_i t^i)$ with $a_i = a_i, b_i = b_i, c_i = c_i$ if $i < k$ and $a_k = b_k = c_k = 0, a_s = b_s = c_s = 0, for all s \geq c$.

2. Given a parametrization $(t^i, t^m + \Sigma_{i>m} b_i t^i, t^n + \Sigma_{i>n} c_i t^i)$ and an integer k such that
If \(k+l-m \in \Gamma \) then there exist an equivalent parametrization \((t^i, t^m + \Sigma_{l>m} \hat{b}_i t^i, t^n + \Sigma_{i>n} \hat{c}_i t^i)\). such that \(b_i = \hat{b}_i, c_i = \hat{c}_i \) if \(i < k \) and \(\hat{b}_k = 0 \).

Theorem 3.

(i) \((t^5, t^6, 0)\) and \((t^5, t^6, t^7)\) are not simple.

(ii) \((t^4, t^9, 0)\) and \((t^4, t^9, t^{10})\) are not simple.

Proof. The cases \((t^5, t^6, 0)\) and \((t^4, t^9, 0)\) follow from the classification of plane parametrizations [13].

We will now prove that

\[
(t^5, t^6 + t^8 + at^9, t^7) \sim (t^5, t^6 + t^8 + bt^9, t^7)
\]

implies \(a = b \) or \(a = -b \) and

\[
(t^4, t^9 + t^{11}, t^{10} + at^{11}) \sim (t^4, t^9 + t^{11}, t^{10} + bt^{11})
\]

implies \(a = b \) or \(a = -b \).

This will prove the theorem since for different \(a \) the parametrizations are in different classes.

This gives infinitely many different classes since the field is algebraically closed.

To see this we make the following ansatz:

\[
\psi(t) = t + \sum_{i>1} a_i t^i
\]

\[
\varphi(x, y, z) = (\varphi_1, \varphi_2, \varphi_3) ; \varphi_j = \Sigma_{k,l,m} b_{j,k,l,m} x^k y^l z^m
\]

and assume

\[
\psi^5 = \varphi_1(t^5, t^6 + t^8 + at^9, t^7)
\]

\[
\psi^6 + b\psi^9 = \varphi_2(t^5, t^6 + t^8 + at^9, t^7)
\]

\[
\psi^7 = \varphi_3(t^5, t^6 + t^8 + at^9, t^7).
\]

This is the condition for \((t^4, t^9 + t^{11}, t^{10} + at^{11}) \sim (t^4, t^9 + t^{11}, t^{10} + bt^{11})\) according to Definition 2. Writing down this explicitly we see that \(a_2 = ... = a_5 = 0 \) and
\[\varphi_1 = x + 5a_6x^2 + 5a_7xy + b_{020}y^2 + (5a_8 - b_{020})xz + b_{011}yz + b_{002}z^2 + \text{ terms of order } \geq 3, \]
\[\varphi_2 = y + 6a_6xy + b_{020}y^2 + (6a_7 - b_{020})xz + b_{011}yz + b_{002}z^2 + \text{ terms of order } \geq 3, \]
\[\varphi_3 = z + b_{020}y^2 + (7a_6 - b_{020})xz + b_{011}yz + b_{002}z^2 + \text{ terms of order } \geq 3. \]

\[\psi^5 = \varphi_1(t^5, t^6 + t^8 + at^9, t^7) \mod t^{10} \]
\[\psi^6 + \psi^8 + b\psi^9 = \varphi_2(t^5, t^6 + t^8 + at^9, t^7) + (b - a)t^9 \mod t^{10} \]
\[\psi^7 = \varphi_3(t^5, t^6 + at^9, t^7) \mod t^{10} \]

This implies \(a = b \).

If we consider the \(K^* \)-action, i.e. \(\psi(t) = at \) with \(\alpha \neq 0 \).

We obtain
\[(t^5, t^6 + t^8 + at^9, t^7) \sim (t^5, t^6 + \alpha^2 t^8 + \alpha^2 at^9, t^7). \]

This implies \(\alpha^2 = 1 \) and
\[(t^5, t^6 + t^8 + at^9, t^7) \sim (t^5, t^6 + t^8 - at^9, t^7). \]

The case \((t^4, t^9 + t^{11}, t^{10} + at^{11}) \) can be treated similarly.

The computation can be done using SINGULAR.

The corresponding code for \((t^4, t^9 + t^{11}, t^{10} + t^{11}) \) look as follows:

```plaintext
ing ring R=(0,a,b,c,d,e,f,g,h,i,j,k,n,m,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,v1,v2,v3,
v4,v5,v6,v7,v8,v9,v10,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10) ,(x,y,z,t) ,ds;
poly phi=t+a*t2+b*t3+c*t4+d*t5+e*t6+f*t7+g*t8+h*t9+i*t10+j*t11+k*t12;
poly Hx=u1*x+u2*y+u3*z+u4*x2+u5*xy+u6*xz+u7*x3;
poly Hy=v1*x+v2*y+v3*z+v4*x2+v5*xy+v6*xz+v7*x3;
poly Hz=w1*x+w2*y+w3*z+w4*x2+w5*xy+w6*xz+w7*x3;
jet(phi^4-subs t(Hx,x,t4,y,t9+t11,z,t10+m*t11) ,11);
jet(phi^9+phi^11-subs t(Hy,x,t4,y,t9+t11,z,t10+m*t11), 11);
jet(phi^10+n*phi^11-subs t(Hz,x,t4,y,t9+t11,z, t10+m*t11), 11);
```

Using Remark 1, we obtain the following Corollary.

Corollary 1.
\((x(t), y(t), z(t))\) is not simple if
\(\text{ (i) } 5 \leq \text{ord}_t x(t) \leq \text{ord}_t y(t) \leq \text{ord}_t z(t) \)
\(\text{ (ii) ord}_t x(t) = 4, 8 \leq \text{ord}_t y(t) \leq \text{ord}_t z(t). \)
Let \((\bar{x}(t), \bar{y}(t), \bar{z}(t))\) be a parametrized space curve singularity. Then there exists a parametrization \((x(t), y(t), z(t))\), \(\text{ord}_t x(t) = l\), \(\text{ord}_t y(t) = m\) and \(\text{ord}_t z(t) = n\) such that\(^1\)

- \(l < m < n\)
- \(l\) does not divide \(m\)
- \(n \not< l, m \geq \{ul + vm|u, v \in \mathbb{Z}_{\geq 0}\}\).

Proof. We prove the lemma using induction on the orderings. Let \(x(t) = \sum_{i \geq l} a_i t^i, a_l \neq 0, y(t) = \sum_{i \geq m} b_i t^i, b_m \neq 0\) and \(z(t) = \sum_{i \geq n} c_i t^i, c_n \neq 0\).

Permuting \(x(t), y(t), z(t)\) if necessary, we may assume \(l \leq m \leq n\).

- If \(l = m\) then we replace \(y(t)\) by \(y(t) - \frac{b_l}{a_l} x(t)\), then we obtain that \(\text{ord}_t y(t) > l\).

Similarly we arrange \(m < n\).

- We need to show that \(l\) does not divides \(m\). If \(m = l \cdot k\) then similarly we replace \(y(t)\) by \(y(t) - \frac{b_m}{a_m} x(t)^k\) then we obtain that \(\text{ord}_t y(t) > l\).

- Assume \(n < l, m > n\). We need to show that \(l\) does not divides \(m\). If \(m = l \cdot k\) then similarly we replace \(y(t)\) by \(y(t) - \frac{b_m}{a_m} x(t)^k\) then we obtain that \(\text{ord}_t y(t) > l\). The resulting expression has higher order than \(n\).

\[\square\]

Lemma 2. Let \((x(t), y(t), z(t))\) be a parametrized space curve singularity with \(\text{ord}_t x(t) = l\). Then there exists an equivalent parametrization \((t^l, \bar{y}(t), \bar{z}(t))\) with \(\text{ord}_t \bar{y} = \text{ord}_t y\) and \(\text{ord}_t \bar{z} = \text{ord}_t z\).

Proof. Let \(x(t) = \sum_{i \geq l} a_i t^i; a_l \neq 0\) then \(u(t) := \sum_{i \geq l} a_i t^{i-1}\) is a unit.

By implicit function theorem, there exist a \(\phi: \mathbb{K}[[t]] \to \mathbb{K}[[t]], \phi(\omega(t) \cdot t) = t\). We obtain \((x(t), y(t), z(t)) \sim (t^l, \phi(y(t)), \phi(z(t)))\).

\[\square\]

Theorem 4. Let \((x(t), y(t), z(t))\) be a parametrized space curve singularity and \(\text{ord}_t x(t) = 2\). Then for a suitable odd \(k\), \((x(t), y(t), z(t)) \sim (t^2, t^k, 0)\).

Proof. We may assume that \(x(t) = t^2\). If \(y(t) \in \mathbb{K}[[t^2]]\) then \((x(t), y(t), z(t))\) is equivalent to \((t^2, z(t), 0)\).

If \(y(t) \notin \mathbb{K}[[t^2]]\), \(y = \sum_{i \geq k} b_i t^i, k\) minimal such that \(k\) odd, \(b_k \neq 0\). We obtain

\[(t^2, y(t), z(t)) \sim (t^2, \sum_{i \geq k} b_i t^i; \sum_{i > k} c_i t^i).\]

Since the conductor of the semigroup is less than or equal to \(k - 1\), we obtain using Zariski’s Theorem that \((t^2, \sum_{i \geq k} b_i t^i, 0) \sim (t^2, t^k, 0)\).

\[\square\]

\(^1\)The case \(n = \infty\), i.e. \(z(t) = 0\) is included. Here \(\text{ord}_t x(t)\) denotes the order of the power series \(x(t)\), i.e. \(x(t) = \text{unit} \cdot t^{\text{ord}_t x(t)}\).
Theorem 5. Let \((x(t), y(t), z(t))\) be a parametrized space curve singularities and \(\text{ord } x(t) = 3\) then \((x(t), y(t), z(t))\) is equivalent to one of the following parametrizations:

1. \((t^3, t^{3k+1}, 0)\)
2. \((t^3, t^{3k+1} + t^{3s+2}, 0) ; 1 \leq k \leq s < 2k - 1\)
3. \((t^3, t^{3k+2}, 0)\)
4. \((t^3, t^{3k+2} + t^{3s+1}, 0) ; 1 \leq k \leq s \leq 2k\)
5. \((t^3, t^{3k+1}, t^{3s+2}) ; 1 \leq k \leq s < 2k - 1\)
6. \((t^3, t^{3k+1} + t^{3r+2}, t^{3s+2}) ; 1 \leq k \leq s < 2k, r < s\)
7. \((t^3, t^{3k+2}, t^{3s+1}) ; 1 \leq k < s \leq 2k\)
8. \((t^3, t^{3k+2} + t^{3r+1}, t^{3s+2}) ; 1 \leq k < s \leq 2k, r < s\)

Proof. We may assume that \(x(t) = t^3\). If \((y(t) \in K[[t^3]])\), we obtain \((t^3, y(t), z(t))\) is equivalent to \((t^3, z(t), 0)\) and using the classification of plane curves, we obtain (1),(2),(3) or (4).

We may assume \(y(t) \not\in K[[t^3]]\), \(y(t) = \sum_{i \geq b} b_i t^i\), \(s\) minimal such that \(3\) does not divides \(s\) and \(s_i \neq 0\). We first consider the case \(s = 3k + 1\). If \((z(t) \in K[[t^3, y(t)]])\), we have \((t^3, y(t), z(t))\) is equivalent to \((t^3, y(t), 0)\). Then we obtain the cases (1) or (2) due to plane curve classification.

If \(z(t) \not\in K[[t^3, y(t)]]\), then we may assume \(\text{ord } z(t) = 3r + 2\). Let \(\Gamma_0 :=< 3, 3k + 1 >= \{0, 3, 6, 9, ..., 3k, 3k + 1, ..., 6k - 2, 6k, 6k + 1, 6k + 2, ...\}\). The conductor of \(\Gamma_0\) is \(6k\). The semigroup is \(\Gamma :=< 3, 3k + 1, 3r + 2 >\). If \(r \geq 2k\) then all the terms of \(z(t)\) are in \(K[[t^3, y(t)]]\).

This problem reduces to the case of plane curves and we have \((t^3, y(t), z(t))\) is equivalent to \((t^3, y(t), 0)\).

If \(k \leq r < 2k + 1\) then we obtain \((t^3, y(t), z(t)) \sim (t^3, y(t), t^{3r+2})\), since for any \(a \geq 3r + 3\), \(t^5 \in K[[t^3, y(t), z(t)]]\). The plane curve classification implies that we obtain one of the cases (5) or (8) since the conductor of \(\Gamma\) is \(3r\) and automorphisms bringing \((t^3, y(t))\) to the normal form may only produce terms above \(t^{3r+2}\).

Now we consider the case \(s = 3k + 2\). If \((z(t) \in K[[t^3, y(t)]])\), we have \((t^3, y(t), z(t))\) is equivalent to \((t^3, y(t), 0)\). Then we obtain the cases (3) or (4) due to plane curve classification.

If \(z(t) \not\in K[[t^3, y(t)]]\), then we may assume \(\text{ord } z(t) = 3r + 2\). Let \(\Gamma_0 :=< 3, 3k + 2 >= \{0, 3, 6, 9, ..., 3k, 3k + 2, ..., 6k - 3, 6k - 2, 6k, 6k + 2, ...\}\). The conductor of \(\Gamma_0\) is \(6k + 2\). The semigroup is \(\Gamma :=< 3, 3k + 2, 3r + 1 >\). If \(r \geq 2k + 1\) then all the terms of \(z(t)\) are in \(K[[t^3, y(t)]]\). This problem reduces to the case of plane curves and we have \((t^3, y(t), z(t))\) is equivalent to \((t^3, y(t), 0)\).

If \(k \leq r \leq 2k\) then we obtain \((t^3, y(t), z(t)) \sim (t^3, y(t), t^{3r+1})\), since for any \(a \geq 3r + 1\), \(t^4 \in K[[t^3, y(t), z(t)]]\). The plane curve classification implies that we obtain one of the cases (6) or (7) since the conductor of \(\Gamma\) is \(3r\) and as above automorphisms bringing \((t^3, y(t))\) to the normal form may only produce terms above \(t^{3r+1}\).

Theorem 6. Let \((x(t), y(t), z(t))\) and \(\text{ord } x(t) = 4\) and \(\text{ord } y(t) = 5\) then \((x(t), y(t), z(t))\) is equivalent to one of the following parametrizations:

1. \((t^4, t^5, 0)\)
2. \((t^4, t^5 + t^7, 0)\)
3. \((t^4, t^5, t^8)\)
4. \((t^4, t^5, t^7)\)
\[(5) \ (t^4, t^5, t^{11})
\]
\[(6) \ (t^4, t^5 + t^7, t^{11})
\]

Proof. Let \(y = \sum_{i \geq 5} b_it^i \) and \(b_5 \neq 0 \). From the classification of plane curve singularities, it follows that

\[(x(t), y(t)) \sim (t^4, t^5) \text{ or } (t^4, t^5 + t^7). \]

We assume that \(x(t) = t^4, \ y(t) = t^5 + \beta t^7 \) with \(\beta = 0 \) or \(\beta = 1 \) and \(z(t) = 0 \) or \(z(t) = \sum_{i \in \mathbb{C}, \beta > 0} c_it^i = \alpha t^6 + c_7t^7 + c_{11}t^{11} \). First we consider the case \(c_6 \neq 0 \). We obtain as semigroup \(\Gamma = <4, 5, 6, 8, \ldots> \).

So by Zariski’s theorem \((x(t), y(t), z(t)) \sim (t^4, t^5 + \beta t^7, t^6 + \alpha t^7)\). We map \(t \) to \(t - \frac{\alpha}{6}t^2 \), and obtain \(((t - \frac{\alpha}{6}t^2)^4, (t - \frac{\alpha}{6}t^2)^5 + \beta(t - \frac{\alpha}{6}t^2)^7, t^6) \mod t^8 \).

It is equivalent to \((t^4 + \lambda t^7, t^5 + \gamma t^7, t^6)\). The map \(t \to t - \frac{\gamma}{4}t^3 \) gives \((t^4 + \lambda t^7, t^5, t^6) \mod t^8 \).

Now we perform the map \(t \to t - \frac{6}{4}t^4 \) to obtain \((t^4, t^5, t^6)\).

Assume now \(c_6 = 0 \) and \(c_7 \neq 0 \) then the semigroup is \(\Gamma = <4, 5, 7, \ldots> \).

It implies \((t^4, y(t), z(t)) \sim (t^4, t^5 + \alpha t^6, t^7)\). As before we obtain \((t^4, t^5, t^7)\).

Now we consider the case \(c_6 = c_7 = 0 \) and \(c_{11} \neq 0 \) then the semigroup is \(\Gamma = <4, 5, 11, \ldots> \). So we have

\[(t^4, y(t), z(t)) \sim (t^4, t^5 + \alpha t^6 + \beta t^7, t^{11}). \]

Then as before, we obtain \((t^4, t^5, t^{11})\) or \((t^4, t^5 + t^7, t^{11})\).

\[\Box \]

Theorem 7. Let \((x(t), y(t), z(t))\) be a parametrization of space curve singularities. Assume that \(\text{ord } z(t) = 4 \), \(\text{ord } y(t) = 6 \) then \((x(t), y(t), z(t))\) is equivalent to one of the following parameterizations:

\[(1) \ (t^4, t^6 + t^{2k+1}, 0) ; k \geq 3 \]
\[(2) \ (t^4, t^6, t^{2k+1}) ; k \geq 3 \]
\[(3) \ (t^4, t^6 + t^{2k-1}, t^{2k+1}) ; k \geq 4 \]
\[(4) \ (t^4, t^6 + t^{2k-3}, t^{2k+1}) ; k \geq 5 \]
\[(5) \ (t^4, t^6 + t^{2k-7}, t^{2k+1}) ; k \geq 7. \]

Proof. We may assume \(x(t) = t^4 \).

Case 1: \(y(t) \in K[[t^2]] \). We may assume \(\text{ord } z(t) = 2k + 1, k \geq 3 \) and \(y(t) = t^6 \).

Using \(t^4, t^6 \) we can kill the even terms of \(z(t) \) and the terms greater than or equal to \(2k + 5 \). We obtain \((t^4, t^6, t^{2k+1} + at^{2k+3})\). Using the map \(t \to t - \frac{\alpha}{2k+1}t^3 \), we obtain \((t^4 + \alpha t^6 + \alpha t^8 + \ldots, t^6 + \beta t^8 + \beta t^{10} + \ldots, t^{2k+1} + \gamma t^{2k+4} + \ldots)\).

The higher order terms of \(t^4 + \alpha t^6 + \alpha t^8 + \ldots \) can be killed using \(t^4 + \alpha t^6 + \alpha t^8 + \ldots \) and \(t^6 + \beta t^8 + \beta t^{10} + \ldots \), since all the exponents are even. The same holds for \(t^6 + \beta t^8 + \beta t^{10} + \ldots \). The higher order terms of \(t^{2k+1} + \gamma t^{2k+4} + \ldots \) can be killed using Zariski’s theorem since the conductor of the semigroup is \(2k + 4 \). This implies that \((x(t), y(t), z(t)) \sim (t^4, t^6, t^{2k+1})\).

Case 2: \(y(t) \not\in K[[t^2]] \).

Using the plane curve classification we may assume that \((t^4, y(t))\) is equivalent to \((t^4, t^6 + t^{2l+1})\) such that \((t^4, y(t), z(t)) \sim (t^4, t^6 + t^{2l+1}, \bar{z}(t))\), \(l \geq 3 \), \(\text{ord } z(t) \geq 7 \). Reducing \(\bar{z}(t) \) with \(t^4, t^6 + t^{2l+1} \), we may obtain \((x(t), y(t), z(t)) \sim (t^4, t^6 + t^{2l+1}, 0)\).
Assume now $\tilde{z}(t) = t^{2k+1} + \text{terms of higher order degree }, k \geq 3$.

2.1 If $l \geq k$, we will see that $(x(t), y(t), z(t)) \sim (t^4, t^6, t^{2k+1})$.

If $l = k$ then we can kill the term t^{2l+1} in $y(t)$ using $z(t)$.

If $l = k + 1$ we map t to $t - \frac{1}{6}t^{2k-2}$ to obtain $(t^4 + \alpha_1 t^{2k+1} + \alpha_2 t^{4k-2} + ... , t^6 + \beta_1 t^{4k} + ... , t^{2k+1} + ...)$, since the term $\alpha_1 t^{2k+1}$ of $(t^4 + \alpha_1 t^{2k+1} + ...)$ can be killed using $t^{2k+1} + ...$ and the remaining higher order terms using Zariski’s Theorem (the conductor of the semigroup is $2k+4$). The same holds for $t^6 + \beta_1 t^{4k} + ... , t^{2k+1} + ...$). We obtain that $(x(t), y(t), z(t)) \sim (t^4, t^6, t^{2k+1} + \gamma t^{2k+3})$. As above we can see that this is equivalent to (t^4, t^6, t^{2k+1}).

If $l \geq k + 2$, we can reduce $t^6 + t^{2l+1}$ to t^6 using $x(t), y(t), z(t)$ since the conductor of the semigroup is $2k + 4$ we obtain $(x(t), y(t), z(t)) \sim (t^4, t^6, t^{2l+1}, 0)$, since $\Gamma =< 4, 6, 2l + 7 >$ has conductor $2l + 10 \leq 2k$ and the terms of $z(t)$ are strictly above the conductor.

2.2 If $l \leq k - 5$ then $(x(t), y(t), z(t)) \sim (t^4, t^6 + t^{2l+1}, 0)$, since $\Gamma =< 4, 6, 2l + 7 >$ has conductor $2l + 10 \leq 2k$ and the terms of $z(t)$ are strictly above the conductor.

2.3 If $l = k - 3$, we can reduce the case to $l \leq k - 4$, since $2k+1 = 2l + 7 \in \Gamma$, the semigroup of $(t^4, t^6 + t^{2l+1})$. We can reduce $z(t)$ to $\alpha_1 t^{2l+9} + \alpha_2 t^{2l+10} + ...$.

If $\alpha_1 \neq 0$ we are in the case to $l = k - 4$. If $\alpha_1 = 0$ the odd terms of $z(t)$ are strictly above the conductor and we obtain (1).

2.4 The cases $l = k - 4, l = k - 2, l = k - 1$ are the cases (5), (4) and (3). Since the conductor of Γ is less than or equal to $2l + 6$, it implies $(x(t), y(t), z(t)) \sim (t^4, t^6 + t^{2l+1}, t^{2k+1} + \alpha t^{2k+3}), a = 0$ if $l < k - 1$. We can use the map t to $t - \frac{a}{2k+1} t^3$ to obtain $(t^4, t^6 + t^{2l+1}, t^{2k+1})$ in the case $l = k - 1$.

\[\square \]

Theorem 8. Given $(x(t), y(t), z(t))$ a parametrization of a space curve and ord $x(t) = 4$ and ord $y(t) = 7$ then $(x(t), y(t), z(t))$ is equivalent to one of the following parameterizations:

1. $(t^4, t^7, 0)$
2. $(t^4, t^7 + t^9, 0)$
3. $(t^4, t^7 + t^{13}, 0)$
4. (t^4, t^7, t^9)
5. $(t^4, t^7, t^9 + t^{10})$
6. (t^4, t^7, t^{10})
7. (t^4, t^7, t^9, t^{10})
8. (t^4, t^7, t^{13})
9. $(t^4, t^7 + t^9, t^{13})$
10. (t^4, t^7, t^{17})
11. $(t^4, t^7 + t^9, t^{17})$
12. $(t^4, t^7 + t^{13}, t^{17})$

Proof. We may assume that $x(t) = t^4$. Let $y = \sum_{i \geq 7} b_i t^i$ and $b_7 \neq 0$. From the classification of plane curve singularities it follows that

$(x(t), y(t)) \sim (t^4, t^7)$ or $(t^4, t^7 + t^9)$ or $(t^4, t^7 + t^{13})$.

We assume that $x(t) = t^4$, $y(t) = t^7 + \beta t^i$ with $\beta = 0$ or $\beta = 1$ and $i = 9$ or $i = 13$ and $z(t) = 0$ or $z(t) = \sum_{i \geq 4, 7 >} c_i t^i = c_9 t^9 + c_{10} t^{10} + c_{13} t^{13} + c_{17} t^{17}$. First we consider the case $c_9 \neq 0$. We obtain as semigroup $\Gamma =< 4, 7, 9 >$, since the conductor of the semigroup is 11. By Zariski’s Theorem, we have $(x(t), y(t), z(t)) \sim (t^4, t^7 + \beta t^{10}, t^9 + \alpha t^{10})$. We map t to $t - \frac{\beta}{7} t^4$ and obtain that $(x(t), y(t), z(t)) \sim (t^4, t^7, t^9 + \alpha t^{10})$. If $\alpha \neq 0$
we can use the map t to $\frac{1}{α}t$ to obtain $(t^4, t^7, t^9 + t^{10})$.

Assume $c_9 = 0$ and $c_{10} \neq 0$, then the semigroup is $Γ =< 4, 7, 10 >= \{0, 4, 7, 8, 10, 12, 14, ...\}$.

We have

$$ (x(t), y(t), z(t)) \sim (t^4, t^7 + αt^9 + α_2t^{13}, t^{10} + αt^{13}). $$

We map t to $t - \frac{α}{10}t^4$ and obtain $(t^4 + a_1t^7 + a_2t^{10} + a_3t^{13} + ..., t^7 + b_1t^9 + b_2t^{10} + b_3t^{13} + b_4t^{13} + ..., t^{10} + c_1t^{15} + ...).$ This is equivalent to $(t^4 - a_1b_1t^9 + (a_2 - a_1b_2)t^{10} + a_1b_3t^{12} + (a_3 - a_1b_4)t^{13} + ..., t^7 + ..., t^{10} + ...).$

Now we use the transformation t to $t + \frac{α}{6}t^6$ to kill the term $-a_1b_1t^9$. Using Zariski’s theorem, we obtain as equivalent parametrization $(t^4 + αt^{13}, t^7 + b_1t^9 + b_2t^{13}, t^{10})$. We map t to $t - \frac{α}{7}t^4$ then $y(t)$ will reduce to $t^7 + αt^{13}$. As above we obtain parametrization $(x(t), y(t), z(t))$ is equivalent to (6) or (7).

Now we consider the next case $c_9 = c_{10} = 0$ and $c_{13} \neq 0$, the semigroup is $Γ =< 4, 7, 13 >= \{0, 4, 7, 8, 11, 13, ...\}$. By Zariski’s Theorem $(x(t), y(t), z(t))$ will be equivalent to the $(t^4, y(t), t^{13})$ where $y(t) = t^7 + αt^9 + βt^{10}$. By mapping t to $t - \frac{β}{7}t^4$, we obtain $(x(t), y(t), z(t)) \sim (t^4, t^7, t^{13})$ or $(t^4, t^7 + t^9, t^{13})$. We consider now the case $c_9 = c_{10} = c_{13} = 0$ and $c_{17} \neq 0$. The semigroup is $Γ =< 4, 7, 17 >= \{0, 4, 7, 8, 11, 12, 14, ...\}$. As before we obtain (10), (11) or (12).

Now we are ready to prove Theorem 1:

Proof. We fix the order of $x(t)$ and assume $ord_4x(t) < ord_4y(t) < ord_4z(t)$. If $ord_4x(t) = 1$ is one we obtain $(t, 0, 0)$. If $ord_4x(t) = 2$ we obtain $(t^2, t^k, 0)$, $k \geq 3$, odd. If $ord_4x(t) = 3$ the classification is given by Theorem 4. Theorem 5, 6 and 7 treat the cases $ord_4x(t) = 4$ and $ord_4y(t) = 5$, 6 and 7. From Corollary 1, we know that the classification is completed since parametrized space curve singularities with $5 \leq ord_4x(t)$ respectively $ord_4x(t) = 4$ and $ord_4y(t) \geq 8$ are not simple and the properly $ord_4x(t) \leq 4$, $ord_4y(t) \leq 7$ is kept under deformation.

Acknowledgement. The authors gratefully acknowledges the support from the ASSMS G.C. University Lahore, Pakistan. The authors thank the anonymous referee for his useful comments.

References

Received: 01.02.2019
Revised: 24.03.2019
Accepted: 25.03.2019

(1) Abdus Salam School of Mathematical Sciences, GC University, Lahore, 68-B, New Muslim Town, Lahore 54600, Pakistan
E-mail: nimrajaved16@gmail.com

(2) Abdus Salam School of Mathematical Sciences, GC University, Lahore, 68-B, New Muslim Town, Lahore 54600, Pakistan
E-mail: afshansadiq6@gmail.com