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Abstract

Let R be a commutative Noetherian ring, I an ideal of R, M an R-module (not

necessary I-torsion) and K a finitely generated R-module with SuppR(K) ⊆ V(I).

It is shown that if M is I-ETH-cofinite (i.e. ExtiR(R/I,M) is finitely generated, for

all i ≥ 0) and dimM ≤ 1, then the R-module ExtnR(M,K) is finitely generated, for

all n ≥ 0. As a consequence it is shown that if M is I-ETH-cofinite and FD≤1 (or

weakly Laskerian), then the R-module ExtnR(M,K) is finitely generated, for all n ≥ 0

which removes I-torsion condition of M from [3, Corollary 3.11] and [20, Theorem

2.8]. As an application to local cohomology, let Φ be a system of ideals of R and

I ∈ Φ, if dimM/aM ≤ 1 (e.g., dimR/a ≤ 1) for all a ∈ Φ, then the R-modules

ExtjR(Hi
Φ(M),K) are finitely generated, for all i ≥ 0 and j ≥ 0. A similar result is

true for local cohomology modules defined by a pair of ideals.
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1 Introduction

Throughout this paper R is a commutative Noetherian ring with non-zero identity and I

and J two ideals of R. For an R-module M , the ith local cohomology module M with

respect to ideal I is defined as

Hi
I(M) ∼= lim−→

n

ExtiR(R/In,M).

Hartshorne in [17] defined a module M to be I–cofinite if SuppR(M) ⊆ V(I) and

ExtiR(R/I,M) is finitely generated for all i ≥ 0. and asked the following question:
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Question 1.1. Let M be a finite R–module and I be an ideal of R. When are Hi
I(M)

I–cofinite for all i ≥ 0?

This question was studied by several authors in [17, 13, 18, 14, 23, 22, 7] and [3].

The study of cofinite modules arises the following natural question:

Question 1.2. Let I be an ideal of a Noetherian ring R and M an R-module. When are

the R-modules ExtnR(M,R/I) finitely generated for all integers n ≥ 0.

Irani and the second author proved that when M is I-cofinite and dimM ≤ 1, then for

any finitely generated R-module K with SuppR(K) ⊆ V(I), instead of R/I, the R-modules

ExtnR(M,K) are finitely generated for all integers n ≥ 0. Here we will prove that the same

answer is true without I-torsion condition on M . To do this, recall that an R-module M

is called I-ETH-cofinite if ExtiR(R/I,M) is finitely generated for all integers i ≥ 0. This

class introduced in [1, Definition 2.2]. More precisely, we shall show that:

Theorem 1.3. Let R be a Noetherian local ring, I a proper non-zero ideal of R and K be

a finitely generated R-module with SuppR(K) ⊆ V (I). Also, let M be an I-ETH-cofinite

R-module (e.g., ExtiR(R/I,M) is finitely generated for all integers i ≥ 0) and dim(M) ≤ 1.

Then the R-module ExtnR(M,K) is finitely generated, for all integers n ≥ 0.

As a special case of [26, Definition 2.1] and generalization of FSF modules (see [19,

Definition 2.1]), in [3, Definition 2.1] the authors of this paper introduced the class of FD≤n

modules. A module M is said to be FD≤n module, if there exist a finitely generated sub-

module N of M such that dimM/N ≤ n. For more details about properties of this class see

[3, Lemma 2.3]. Recall that an R-module M is called weakly Laskerian if AssR(M/N) is a

finite set for each submodule N of M . The class of weakly Laskerian modules introduced

in [15]. Bahmanpour in [6, Theorem 3.3] proved that over Noetherian rings, an R-module

M is weakly Laskerian if and only if M is FSF module. Thus the class of weakly Laskerian

modules is contained in the class of FD≤1 modules. Using the class of FD≤1, we will gen-

eralize Theorem 1.3 and [3, Corollary 3.11] as below:

Corollary 1.4. Let R be a Noetherian ring and I be an ideal of R. Let M be an FD≤1

(or weakly Laskerian) and I-ETH-cofinite R-module. Then, the R-modules ExtnR(M,K)

are finitely generated, for all finitely generated R-modules K with SuppR(K) ⊆ V (I) and

all integers n ≥ 0.
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There is in [9], a generalization of ordinary local cohomology modules defined by Bijan-

Zadeh. Let Φ be a non-empty set of ideals of R. We call Φ a system of ideals of R if,

whenever I1, I2 ∈ Φ, then there is an ideal J ∈ Φ such that J ⊆ I1I2. For such a system,

for every R-module M , one can define

ΓΦ(M) = { x ∈M | Ix = 0 for some I ∈ Φ}.

Then ΓΦ(−) is a functor from C (R) to itself (where C (R) denotes the category of all R-

modules and all R-homomorphisms). The functor ΓΦ(−) is additive, covariant, R-linear and

left exact. In [10], ΓΦ(−) is denoted by LΦ(−) and is called the ”general local cohomology

functor with respect to Φ”. For each i ≥ 0, the i-th right derived functor of ΓΦ(−) is

denoted by Hi
Φ(−). The functor Hi

Φ(−) and lim−→
I∈Φ

Hi
I(−) (from C (R) to itself) are naturally

equivalent (see [9]). For an ideal I of R, if Φ = {In|n ∈ N0}, then the functor Hi
Φ(−)

coincides with the ordinary local cohomology functor Hi
I(−). It is shown that, the study of

torsion theory over R is equivalent to study the general local cohomology theory (see [10]).

As a special case of general local cohomology and generalization of ordinary local coho-

mology modules, R. Takahashi, Y. Yoshino, and T. Yoshizawa [24], introduced local coho-

mology modules with respect to a pair of ideals. The (I, J)-torsion submodule ΓI,J(M) of

M is a submodule of M consists of all elements x of M with Supp(Rx) ⊆W (I, J), in which

W (I, J) = { p ∈ Spec(R) | In ⊆ p + J for an integer n ≥ 1}.

For an integer i, the i-th local cohomology functor Hi
I,J with respect to (I, J) is the i-th

right derived functor of ΓI,J . The R-module Hi
I,J(M) is called the i-th local cohomology

module of M with respect to (I, J). In the case J = 0, Hi
I,J(−) coincides with the ordinary

local cohomology functor Hi
I(−). Also, we are concerned with the following set of ideals of

R:

W̃ (I, J) = { a E R | In ⊆ a + J for an integer n ≥ 0}.

As an application to local cohomology, we prove the following corollaries:

Corollary 1.5. Let I ∈ Φ be an ideal of a Noetherian ring R, M a non-zero finite R-

module such that Hi
Φ(M) are FD≤1(or weakly Laskerian) R-modules for all i ≥ 0. Then

for each finite R-module K with SuppR(K) ⊆ V (I), the R-modules ExtjR(Hi
Φ(M),K) are

finitely generated for all i ≥ 0 and j ≥ 0.

Corollary 1.6. Let Φ be a system of ideals of R and I ∈ Φ. If dimM/aM ≤ 1 (e.g.,

dimR/a ≤ 1) for all a ∈ Φ, then for each finite R-module K with SuppR(K) ⊆ V (I), the
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R-modules ExtjR(Hi
Φ(M),K) are finitely generated for all i ≥ 0 and j ≥ 0.

Similar corollaries are true for local cohomology modules defined by a pair of ideals

because it is a special case of local cohomology with respect to a system of ideals.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero

identity and I will be an ideal of R. We denote {p ∈ SpecR : p ⊇ I} by V (I). For any

unexplained notation and terminology we refer the reader to [11], [12] and [21].

2 Main results

The following lemma is needed in the proof of Lemma 2.4.

Lemma 2.1. Let I be an ideal of a Noetherian ring R and M be an R-module such that

M = IM . Let K be a finitely generated R-module with SuppR(K) ⊆ V (I). Then we have

HomR(M,K) = 0.

Proof. Since SuppR(K) ⊆ V (I) and K is finitely generated it follows that InK = 0 for

some positive integer n. Moreover, from the hypothesis M = IM it follows that InM = M .

So, we have

HomR(M,K) ∼= HomR(M,HomR(R/In,K))

∼= HomR(M ⊗R R/I
n,K)

∼= HomR(M/InM,K)

∼= HomR(0,K)

∼= 0.

The following lemma is a generalization of [23, Theorem 2.1] in the sense of Serre

subcategory of the category of R-modules.

Lemma 2.2. Let R be a Noetherian ring and I = (x1, ..., xn) be an ideal of R and let M

be an R-module. Let S be a Serre subcategory of the category of R-modules. Then the

following statements are equivalent:

(i) The R-module ExtiR(R/I,M) belongs to S , for all integers i ≥ 0,

(ii) The R-module TorRi (R/I,M) belongs to S , for all integers i ≥ 0,
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(iii) The Koszul cohomology module Hi(x1, ..., xn;M) belongs to S , for all integers i =

0, ..., n.

Proof. Follows from the method of the proof [25, Theorem 2].

The equivalent conditions in the following lemma is quite useful in the proof of Lemma

2.4.

Lemma 2.3. Let R be a Noetherian ring and I a proper non-zero ideal of R. Then for an

R-module M , the following statements are equivalent:

(i) Hn
I (M) = 0, for all integers n ≥ 0,

(ii) ExtnR(R/I,M) = 0, for all integers n ≥ 0,

(iii) TorRn (R/I,M) = 0, for all integers n ≥ 0.

Proof. (i)⇔(ii) Follows applying [5, Theorem 2.9 (i)⇔(ii)] to the zero Serre category.

(ii)⇔(iii) Follows applying Lemma 2.2, getting S equal to the zero Serre category.

The next result is of assistance in the proof of the main theorems in this paper.

Lemma 2.4. Let R be a Noetherian ring, I a proper non-zero ideal of R and K be a finitely

generated R-module with SuppR(K) ⊆ V (I). Also, let M be an R-module satisfying in the

equivalent conditions of Lemma 2.3. Then we have ExtnR(M,K) = 0, for all integers n ≥ 0.

Proof. We argue using induction on n. For n = 0, the assertion follows from Lemma 2.1.

Now, let n > 0, and assume that inductively the assertion holds for all R-modules satisfying

the equivalent conditions of Lemma 2.3, and for all integers smaller than n. Then we must

prove the assertion for n. Since SuppR(K) ⊆ V (I) and K is finitely generated it follows

that IsK = 0, for some positive integer s. Since by hypothesis we have Hn
I (M) = 0, for

all integers n ≥ 0, it follows that Hn
Is(M) = 0, for all integers n ≥ 0. So, M satisfies the

equivalent conditions of Lemma 2.3, for the ideal Is instead of I. So, replacing I by Is,

without lose of generality we may assume that IK = 0. Now, let I = (a1, ..., at). We define

the R-homomorphism f : ⊕t
i=1M −→M as follows:

f(x1, x2, ..., xt) = Σt
i=1aixi.

Then we have Im(f) = IM = M . So, f is an epimorphism. Let N = Ker(f). Then from

the exact sequence

0→ N → ⊕t
i=1M

f→M → 0, (∗)



222 Finiteness of extension functors of ETH-cofinite modules

it follows that R-module N , satisfies the equivalent conditions of Lemma 2.3 and so by

inductive hypothesis we have Extn−1
R (N,K) = 0. For each 1 ≤ j ≤ t, let ιj : M →

⊕t
i=1M and πj : ⊕t

i=1M → M be the natural monomorphism and natural epimorphism,

respectively. Then, for each 1 ≤ j ≤ t, the R-homomorphism f ◦ ιj : M → M is the R-

homomorphism M
aj→ M . In particular, since aj ∈ AnnR(K) and the functor ExtnR(−,K)

is R-linear, it follows that

ExtnR(ιj ,K) ◦ ExtnR(f,K) = ExtnR(f ◦ ιj ,K) = 0.

On the other hand since Σt
j=1ιj ◦ πj = 1

⊕t
i=1

M
and the functor ExtnR(−,K) is additive, it

follows that

ExtnR(f,K) = 1
Extn

R
(⊕t

i=1
M,K)

◦ ExtnR(f,K)

= ExtnR(1
⊕t

i=1
M
,K) ◦ ExtnR(f,K)

= ExtnR(Σt
j=1ιj ◦ πj ,K) ◦ ExtnR(f,K)

= (Σt
j=1 ExtnR(ιj ◦ πj ,K)) ◦ ExtnR(f,K)

= (Σt
j=1 ExtnR(πj ,K) ◦ ExtnR(ιj ,K)) ◦ ExtnR(f,K)

= Σt
j=1 ExtnR(πj ,K) ◦ ExtnR(ιj ,K) ◦ ExtnR(f,K)

= Σt
j=1 ExtnR(πj ,K) ◦ 0

= 0.

Now, the exact sequence (∗) yields an exact sequence

Extn−1
R (N,K) −→ ExtnR(M,K)

ExtnR(f,K)−→ ExtnR(⊕t
i=1M,K),

which implies that ExtnR(M,K) = 0, as required. This completes the proof of inductive

step.

We are now ready to state and prove the main theorem of this paper. The following

theorem is a generalization of [20, Theorem 2.8]. In fact, we remove I-torsion condition

from R-module M in this theorem.

Theorem 2.5. Let R be a Noetherian ring, I a proper non-zero ideal of R and K be a

finitely generated R-module with SuppR(K) ⊆ V (I). Also, let M be an I-ETH-cofinite

R-module (e.g. ExtiR(R/I,M) is finitely generated for all integers i ≥ 0) and dim(M) ≤ 1.

Then the R-module ExtnR(M,K) is finitely generated, for all integers n ≥ 0.
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Proof. Using the exact sequence

0→ ΓI(M)→M →M/ΓI(M)→ 0, (∗)

it is easy to see that the R-modules HomR(R/I,ΓI(M)) and Ext1
R(R/I,ΓI(M)) are finitely

generated and so by [8, Proposition 2.6], it follows that ΓI(M) is I-cofinite with dimension

at most one. So, by [20, Theorem 2.8], it follows that the R-module ExtnR(ΓI(M),K) is

finitely generated, for all integers n ≥ 0. So, considering the exact sequence, without lose

of generality we may assume that ΓI(M) = 0, then we have ΓI(ER(M)) = 0. In fact since

ER(M) is injective it follows that Hi
I(ER(M)) = 0, for all integers i ≥ 0 and hence by

Lemma 2.4, it follows that ExtnR(ER(M),K) = 0, for all integers n ≥ 0. Next, consider the

exact sequence

0→M → ER(M)→ N → 0, (∗∗)

Then H1
I(M) ∼= ΓI(N). If p ∈ SuppR(H1

I(M)) ⊆ SuppR(M), then H1
IRp

(Mp) ∼= H1
I(M)p 6=

0. Since dimM ≤ 1, it is easy to see that dimR/p = 0 or dimR/p = 1. If dimR/p = 1 then

Mp is a zero dimensional Rp-module that implies H1
IRp

(Mp) = 0 by using Grothendieck

vanishing theorem [11, Theorem 6.1.2] which is a contradiction. Thus dimR/p = 0 and so

p is a maximal ideal. So we have the following inclusion

SuppR(H1
I(M)) ⊆ MaxR.

Moreover, since ΓI(M) = 0 so by [23, Lemma 7.9] or [5, Corollary 4.3], we have

HomR(R/I,H1
I(M)) ∼= Ext1

R(R/I,M).

Thus HomR(R/I,H1
I(M)) is finitely generated with support in Max(R). So, the R-module

HomR(R/I,H1
I(M)) is of finite length. Now it follows from Melkersson result ([23, Propo-

sition 4.1]) that H1
I(M) ∼= ΓI(N) is I-cofinite and so by Irani-Bahmanpour result [20,

Theorem 2.8], it follows that the R-module ExtnR(ΓI(N),K) is finitely generated, for all

integers n ≥ 0. From the exact sequence (∗∗) we can deduce that Hi
I(N/ΓI(N)) = 0, for all

integers i ≥ 0 and so by Lemma 2.4 it follows that ExtnR(N/ΓI(N),K) = 0, for all integers

n ≥ 0. Now it follows from the exact sequence

0→ ΓI(N)→ N → N/ΓI(N)→ 0,

that the R-module ExtnR(N,K) is finitely generated, for all integers n ≥ 0. Now, it follows

from the exact sequence (∗∗) that the R-module ExtnR(M,K) is finitely generated, for all

integers n ≥ 0. This completes the proof.
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The following corollary is a generalization of [3, Corollary 3.11] which also generalizes

Theorem 2.5 to a more larger class of modules.

Corollary 2.6. Let R be a Noetherian ring and I be an ideal of R. Let M be an FD≤1

(or weakly Laskerian) and I-ETH-cofinite R-module. Then, the R-modules ExtnR(M,K)

are finitely generated, for all finitely generated R-modules K with SuppR(K) ⊆ V (I) and

all integers n ≥ 0.

Proof. The assertion follows from the definition of FD≤1 modules using Theorem 2.5.

As applications to local cohomology we prove the following corollaries which generalize

[20, Theorem 2.9].

Corollary 2.7. Let I ∈ Φ be an ideal of a Noetherian ring R, M a non-zero finite R-

module such that Hi
Φ(M) are FD≤1(or weakly Laskerian) R-modules for all i ≥ 0. Then

for each finite R-module K with SuppR(K) ⊆ V (I), the R-modules ExtjR(Hi
Φ(M),K) are

finitely generated for all i ≥ 0 and j ≥ 0.

Proof. By [2, Theorem 2.7 (i)], it follows that Hi
Φ(M) is I-ETH-cofinite for all i ≥ 0. Now

the assertion follows by Corollary 2.6.

Corollary 2.8. Let Φ be a system of ideals of R and I ∈ Φ. If dimM/aM ≤ 1 (e.g.,

dimR/a ≤ 1) for all a ∈ Φ, then for each finite R-module K with SuppR(K) ⊆ V (I), the

R-modules ExtjR(Hi
Φ(M),K) are finitely generated for all i ≥ 0 and j ≥ 0.

Proof. Since by [9, Lemma 2.1],

Hi
Φ(M) ∼= lim−→

a∈Φ

Hi
a(M),

it is easy to see that SuppR(Hi
Φ(M)) ⊆

⋃
a∈Φ

SuppR(Hi
a(M)) and therefore

dimSupp Hi
Φ(M) ≤ sup{dimSupp Hi

a(M)|a ∈ Φ} ≤ 1,

thus Hi
Φ(M) is FD≤1 R-module and the assertion follows by Corollary 2.7.
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Remark 2.9. Let I and J be two ideals of R. Replacing Φ by W̃ (I, J) and Hi
Φ(M) by

Hi
I,J(M), the Corollaries 2.7 and 2.8 are true for local cohomology modules defined by a

pair of ideals. Because by [24, Definition 3.1 and Theorem 3.2], it is easy to see that the

local cohomology modules defined by a pair of ideals is a special case of local cohomology

modules with respect to a system of ideals.
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