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Abstract

In this paper, we prove results on inequalities involving polar derivative of a poly-
nomial with restricted zeros, which generalize and sharpen some of the known results.
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1 Introduction and statement of results

The inequalities for polynomials and related classes of functions are the important and
crucial tools in obtaining inverse theorems in Approximation Theory. The progress in this
domain mostly depends upon obtaining the corresponding analogue or generalization of
Markov’s and Bernstein’s inequalities. These inequalities have been the starting point of a
considerable literature in polynomial approximations, and many mathematicians have been
working for last hundred years. Over a period, Bernstein’s inequality and its variants con-
cerning the growth of polynomials have been generalized in different domains, in different
norms, and for different classes of functions. These type of inequalities have wide appli-
cations in Numerical Analysis, Polynomial Approximation Theory and their applications
in allied sciences and engineering. Here we study some of the new inequalities centered
around Bernstein-type inequalities for polar derivatives of polynomials. Let us begin with
the famous Bernstein’s inequality.

If P (z) is a polynomial of degree n then from a well-known inequality due to Bernstein
[4], we have

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The inequality (1.1) is sharp and equality holds, if P (z) has all its zeros at the origin. If
P (z) is a polynomial of degree n, having no zeros in |z| < 1, then Erdös conjectured and
later Lax [11] proved that

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.2)

The inequality (1.2) is best possible and equality holds for P (z) = a+ bzn, where |a| = |b|.
For polynomials having no zeros in |z| > 1 the corresponding inequality was proved by

Turán [18].
Zygmund [19] extended the Bernstein’s inequality (1.1) to Lp norm as
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{∫ 2π

0

|P ′(eiθ)|pdθ
} 1
p

≤ n
{∫ 2π

0

|P (eiθ)|pdθ
} 1
p

, (1.3)

for any polynomial P (z) of degree n and for any p ≥ 1. The result (1.3) is sharp and equality
holds if P (z) has all its zeros at the origin.

The above inequality of Zygmund was further extended by Arestov [1] for 0 < p < 1. De
Bruijn [5] proved an analogue of Zygmund’s result for the class of polynomials having no
zeros in the disc |z| < 1. Rahman and Schmeisser [15] showed that de Bruijn’s result is true
for all p > 0. Govil and Rahman[10] generalized and sharpened the above inequality due to
de Bruijn for polynomials of degree n having all its zeros in |z| ≥ K ≥ 1, for any p ≥ 1.
Gardner and Weems [7] proved that the above result of Govil and Rahman[10] is true for
0 < p < 1 by proving a theorem in more generalized form, which is presented below.

Theorem 1. If P (z) = a0 +
∑n
ν=m aνz

ν 1 ≤ m ≤ n, is a polynomial of degree n having
all its zeros in |z| ≥ K ≥ 1, then for any p > 0,{∫ 2π

0

|P ′(eiθ)|pdθ
} 1
p

≤ nGp
{∫ 2π

0

|P (eiθ)|pdθ
} 1
p

, (1.4)

where Gp =

{
2π∫ 2π

0
|tn,m + eiθ|pdθ

} 1
p

, and tn,m =
n|a0|Km+1 +m|am|K2m

n|a0|+m|am|Km+1
.

As mentioned earlier, different versions of Bernstein’s inequality have appeared in the
literature in more generalized forms in which the underlying polynomials are replaced by
more general class of functions. The one such generalization is moving from the domain of
ordinary derivative of polynomials to their polar derivative. The results presented here on
polar derivatives are the natural extensions of the Bernstein’s inequality appeared in the
literature for the ordinary derivative of a complex polynomial. These inequalities have their
own significance and beauty.

Let us introduce the concept of polar derivative now. If P (z) is a polynomial of degree
n, then the polar derivative of P (z) with respect to a complex number α is defined as

DαP (z) = nP (z) + (α− z)P ′(z).

Note that Dα{P (z)} is a polynomial of degree atmost n− 1 and one could get the sense of
’generalization’ from the fact that

lim
α→∞

Dα{P (z)}
α

= P ′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
Bernstein-type inequalities have been extended from ’ordinary derivative’ to ’polar

derivative’ of complex polynomials, and a detailed chronological evolution of the results
is presented in a recently published book chapter by Govil and Kumar [8]. In this paper,
we extend the Theorem 1 involving ordinary derivative of a polynomial having all its ze-
ros in |z| ≥ K ≥ 1, to the one in more generalized form, involving polar derivative of a
polynomial having all its zeros in |z| ≥ K ≥ 1.
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Theorem 2. If P (z) = a0 +
∑n
ν=m aνz

ν 1 ≤ m ≤ n, is a polynomial of degree n having all
its zeros in |z| ≥ K ≥ 1, then for any p > 0, and for every complex number α, with |α| ≥ 1,{∫ 2π

0

|Dα{P (eiθ)}|pdθ
} 1
p

≤ n(|α|+ tn,m)Gp

{∫ 2π

0

|P (eiθ)|pdθ
} 1
p

, (1.5)

where Gp =

{
2π∫ 2π

0
|tn,m + eiθ|pdθ

} 1
p

, and tn,m is as given in Theorem 1.

In the limiting case, when p → ∞, the result is best possible and equality holds for the
polynomial (z +K)n with real α ≥ 1, and K ≥ 1.

It is equally interesting to get the analogous result involving polar derivative of a poly-
nomial whose zeros all lie in |z| ≤ K ≤ 1, which is presented below.

Theorem 3. If P (z) = anz
n +

∑n
ν=m an−νz

n−ν 0 ≤ m ≤ n− 1, is a polynomial of degree
n having all its zeros in |z| ≤ K ≤ 1, then for any complex α with |α| ≤ 1, and p > 0,{∫ 2π

0

|Dα{P (eiθ)}|pdθ
} 1
p

≤ n(1 + |α|sn,m)Hp

{∫ 2π

0

|P (eiθ)|pdθ
} 1
p

, (1.6)

where Hp =

{
2π∫ 2π

0
|sn,m + eiθ|pdθ

} 1
p

, and sn,m =
n|an|K2m +m|an−m|Km−1

n|an|Km−1 +m|an−m|
. Again in

the limiting case p → ∞, the above inequality is sharp in the case K ≤ 1, 1 ≤ m ≤ n and
equality holds for the polynomial (z +K)n with non-negative real α ≤ 1 and K ≤ 1.

Corollary 1. It is quite natural to see Theorem 1 is a special case of the result we presented
in Theorem 2. If we divide inequality (1.5) by |α| and make |α| → ∞, Theorem 2 reduces to
Theorem 1. In this way, our result is the extended version of the Theorem 1 due to Gardner
and Weems.

Corollary 2. If we make p→∞, in Theorem 2, we get the following important result that,
if P (z) = a0 +

∑n
ν=m aνz

ν 1 ≤ m ≤ n, is a polynomial of degree n having all its zeros in
|z| ≥ K ≥ 1, then for any p > 0, and for every complex number α, with |α| ≥ 1,

max
|z|=1

|Dα{P (z)}| ≤ n (|α|+ tn,m)

tn,m + 1
max
|z|=1

|P (z)|, (1.7)

where tn,m is as given in Theorem 1.

The above Corollary 1.6 was independently proved by Dewan et al. [6] as well.

Corollary 3. Note that the constant tn,m in Theorem 2 is always greater than or equal to
K. Hence by taking a = |α|, b = tn,m, c = K, d = 1 in Lemma 5, it follows easily that

(|α|+ tn,m)Gp ≤ (|α|+K)Fp.

Using this in Theorem 2 we get a result that, if P (z) is a polynomial of degree n having no
zeros in |z| < K, K ≥ 1 then for any p > 0 and for every complex number α, with |α| ≥ 1,{∫ 2π

0

|Dα{P (eiθ)}|pdθ
} 1
p

≤ n(|α|+K)Fp

{∫ 2π

0

|P (eiθ)|pdθ
} 1
p

, (1.8)
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where Fp =

{
2π∫ 2π

0
|K + eiθ|pdθ

} 1
p

. The result is best possible and equality holds for the

polynomial (z +K)n with real α ≥ 1 and K ≥ 1, in the limiting case p→∞.

Corollary 4. Again, as is easy to observe that the constant sn,m in our Theorem 2 is
always greater than or equal to 1

K . Then taking a = 1
|α| , b = sn,m, c = 1

K , d = 1 in Lemma

5, one easily arrives at

(1 + |α|sn,m)Hp ≤ (|α|+K)Fp,

which establishes a result that if P (z) is a polynomial of degree n having all its zeros in
|z| ≤ K, K ≤ 1 then for any p > 0 and for every complex number α, with |α| ≤ 1,

{∫ 2π

0

|Dα{P (eiθ)}|pdθ
} 1
p

≤ n(|α|+K)Fp

{∫ 2π

0

|P (eiθ)|pdθ
} 1
p

, (1.9)

where Fp is same as in Corollary 3. Again in the limiting case, when p → ∞, the above
inequality is sharp and equality holds for P (z) = (z + K)n,K ≤ 1 with non-negative real
α ≤ 1.

The results derived in Corollaries 3 and 4 were independently proved by Rather [17] (see
also [16]).

Corollary 5. If we make p → ∞ in Theorem 3 we get the following interesting result. If
P (z) = anz

n +
∑m
ν=0 aνz

ν 0 ≤ m ≤ n− 1, is a polynomial of degree n having all its zeros
in 0 < |z| ≤ K ≤ 1, then

max
|z|=1

|Dα{P (z)}| ≤ n (1 + |α|sn,m)

1 + sn,m
max
|z|=1

|P (z)|, (1.10)

where sn,m is as given in Theorem 3. the above inequality is sharp in the case K ≤ 1, 1 ≤
m ≤ n and equality holds for the polynomial (z + K)n with non-negative real α ≤ 1 and
K ≤ 1.

2 Lemmas

We need following lemmas for proving our theorems. The following lemma is due to Govil
and Kumar [9].

Lemma 1. Let z1, z2 be two complex numbers independent of α, where α being real. Then
for p > 0 ∫ 2π

0

|z1 + z2e
iα|pdα =

∫ 2π

0

||z1|+ |z2|eiα|pdα. (2.1)

The next Lemma is also given in the paper due to Govil and Kumar [9], but we present
a different proof for it.
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Lemma 2. Let p, q be any two positive real numbers such that p ≥ qx where x ≥ 1. If γ is
any real such that 0 ≤ γ ≤ 2π, then

(p+ qy)|x+ eiγ | ≤ (x+ y)|p+ qeiγ |, (2.2)

for any y ≥ 1.

Proof. We have ∣∣∣∣ x+ eiγ

p+ qeiγ

∣∣∣∣2 =
x2 + 1 + 2x cos γ

p2 + q2 + 2pq cos γ
.

It is easily seen that the hypotheses p ≥ qx, and x ≥ 1, imply x2+1+2x cos γ
p2+q22pq cos γ is a non-

decreasing function of cos γ and hence∣∣∣∣ x+ eiγ

p+ qeiγ

∣∣∣∣2 ≤ x2 + 1 + 2x

p2 + q2 + 2pq
=

(
x+ 1

p+ q

)2

,

which implies ∣∣∣∣ x+ eiγ

p+ qeiγ

∣∣∣∣ ≤ (x+ 1

p+ q

)
.

One can also easily check with the hypothesis that,(
x+ 1

p+ q

)
≤
(
x+ y

p+ qy

)
.

Thus we have ∣∣∣∣ x+ eiγ

p+ qeiγ

∣∣∣∣ ≤ ( x+ y

p+ qy

)
,

which proves the lemma.

Next lemma is due to Quazi [14, p. 338] (see also [3]).

Lemma 3. If P (z) = a0 +
∑n
ν=m aνz

ν 1 ≤ m ≤ n, is a polynomial of degree n having all
its zeros in |z| ≥ K ≥ 1, then

tn,m|P ′(z)| ≤ |Q′(z)|,

on |z| = 1, where tn,m =
n|a0|Km+1 +m|am|K2m

n|a0|+m|am|Km+1
, and Q(z) = znP (1/z).

The following result is due to Aziz (see [2]).

Lemma 4. If P (z) is a polynomial of degree n then for every complex α with |α| 6= 0

|Dα{Q(eiθ)}| = |α||D 1
α
{P (eiθ)}|

where Q(z) is as given in Lemma 3.
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Lemma 5. If a ≥ 1, b ≥ c ≥ 1 and p > 0 then for any 1 ≤ d ≤ a, we have

(a+ b)

{∫ 2π

0

|deiθ + c|pdθ|
}1/p

≤ (a+ c)

{∫ 2π

0

|deiθ + b|pdθ
}1/p

. (2.3)

Proof. If b = c, the result is trivial. It is a simple exercise that for any a ≥ 1, b > c ≥
1, 1 ≤ d ≤ a, ∣∣∣∣deiθ + c

deiθ + b

∣∣∣∣ ≤ d+ c

d+ b
≤ a+ c

a+ b
,

by which it follows that for any p > 0,

(a+ b)p|deiθ + c|p ≤ (a+ c)p|deiθ + b|p.

Now the result follows by the well-known property of the integrals.

Definition 1. For γ = (γ0, . . . , γn) ∈ Cn+1 and P (z) =
∑n
k=0 ckz

k, define

ΛγP (z) =

n∑
k=0

γkckz
k.

The operator Λγ is said to be admissible if it preserves one of the following properties:
(a) P (z) has all its zeros in {z ∈ C : |z| ≤ 1}.
(b) P (z) has all its zeros in {z ∈ C : |z| ≥ 1}.

Lemma 6. Let φ(x) = ψ(log x) where ψ is a convex non-decreasing function on R. Then
for all polynomials P (z) of degree n and each admissible operator Λγ∫ 2π

0

φ(|ΛγP (eiθ)|)dθ ≤
∫ 2π

0

φ(c(γ, n)|P (eiθ)|)dθ,

where c(γ, n) = max(|γ0|, |γn|).

The proof of the above lemma was given by Arestov [1].
Next we state a famous theorem due to Laguerre [12].

Lemma 7. If P (z) is a polynomial of degree n having no zeros in the circular domain C
and if η ∈ C then

(η − z)P ′(z) + nP (z) 6= 0

for z ∈ C.

3 Proofs of the theorems

Proof of the Theorem 2. We have for any p > 0∫ 2π

0

|Dα{P (eiθ)}|pdθ
∫ 2π

0

|tn,m + eiγ |pdγ

=

∫ 2π

0

∫ 2π

0

|(tn,m + eiγ)|p|Dα{P (eiθ)}|pdθdγ
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=

∫ 2π

0

∫ 2π

0

|(tn,m + eiγ)|p|nP (eiθ)− eiθP ′(eiθ) + αP ′(eiθ)|pdθdγ

≤
∫ 2π

0

∫ 2π

0

|(tn,m + eiγ)|p
[
|nP (eiθ)− eiθP ′(eiθ)|+ |αP ′(eiθ)|

]p
dθdγ

≤
∫ 2π

0

∫ 2π

0

|(tn,m + eiγ)|p
[
|Q′(eiθ)|+ |α||P ′(eiθ)|

]p
dθdγ,

which implies∫ 2π

0
|Dα{P (eiθ)}|pdθ

∫ 2π

0
|tn,m + eiγ |pdγ

≤
∫ 2π

0

∫ 2π

0

∣∣(tn,m + eiγ)
[
|Q′(eiθ)|+ |α||P ′(eiθ)|

]∣∣p dθdγ. (3.1)

Since the zeros of P (z) satisfy |z| ≥ K ≥ 1, it follows by Lemma 3, that on |z| = 1,

tn,m|P ′(eiθ)| ≤ |Q′(eiθ)|.

The above by using Lemma 2 and the fact that∣∣|Q′(eiθ)|+ eiγ |P ′(eiθ)|
∣∣ =

∣∣|P ′(eiθ)|+ eiγ |Q′(eiθ)|
∣∣ , clearly gives that for every α with

|α| ≥ 1. we have[
|Q′(eiθ)|+ |α||P ′(eiθ)|

]
|tn,m + eiγ | ≤ (tn,m + |α|)

∣∣|P ′(eiθ)|+ eiγ |Q′(eiθ)|
∣∣ . (3.2)

Now, if we use the above inequality (3.2) in (3.1), we get∫ 2π

0

|Dα{P (eiθ)}|pdθ
∫ 2π

0

|tn,m + eiγ |pdγ

≤ (|α|+ tn,m)p
∫ 2π

0

∫ 2π

0

∣∣|P ′(eiθ)|+ eiγ |Q′(eiθ)|
∣∣p dθdγ. (3.3)

Since P (z) has no zeros in |z| < 1, by Lemma 7, it follows that for any complex number
η, with |η| < 1, nP (z)− (z − η)P ′(z) 6= 0 for |z| < 1.

Therefore setting η = −ze−iγ , γ ∈ R, the operator Λ defined by

ΛP (z) = (eiγ + 1)zP ′(z)− neiγP (z)

is admissible and so by Lemma 6 with ψ(x) = epx, and for p > 0,∫ 2π

0

|(eiγ + 1)eiθP ′(eiθ)− neiγP (eiθ)|pdθ ≤ np
∫ 2π

0

|P (eiθ)|pdθ.

Therefore∫ 2π

0

|eiθP ′(eiθ) + eiγ [eiθP ′(eiθ)− nP (eiθ)]|pdθ ≤ np
∫ 2π

0

|P (eiθ)|pdθ.
Hence∫ 2π

0

∫ 2π

0

|eiθP ′(eiθ) + eiγ [eiθP ′(eiθ)− nP (eiθ)]|pdθdγ ≤ 2πnp
∫ 2π

0

|P (eiθ)|pdθ.

By applying Lemma 1 to the left hand side of the above inequality, we will have∫ 2π

0

∫ 2π

0

||P ′(eiθ)|+ eiγ |eiθP ′(eiθ − nP (eiθ)||pdθdγ ≤ 2πnp
∫ 2π

0

|P (eiθ)|pdθ

which is equivalent to
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∫ 2π

0

∫ 2π

0

||P ′(eiθ)|+ eiγ |Q′(eiθ)||pdθdγ ≤ 2πnp
∫ 2π

0

|P (eiθ)|pdθdγ. (3.4)

Combining (3.3) and (3.4), it follows that

∫ 2π

0

|Dα{P (eiθ)}|pdθ
∫ 2π

0

|tn,m + eiγ |pdγ ≤ (|α|+ tn,m)p2πnp
∫ 2π

0

|P (eiθ)|pdθ, (3.5)

and the inequality (1.5) can now be obtained by raising the power 1
p on both the sides of

(3.5), and then doing some rearrangement of terms.

Proof of the Theorem 3. Since P (z) has all its zeros in 0 < |z| ≤ K, K ≤ 1 the
polynomial Q(z) = znP (1/z) has zeros in | 1z | ≥

1
K ≥ 1. Therefore applying Theorem 2 to

the polynomial Q(z), we get for |α| ≥ 1, and p > 0

{∫ 2π

0

|Dα{Q(eiθ)}|pdθ
} 1
p

≤ n(|α|+ sn,m)Hp

{∫ 2π

0

|Q(eiθ)|pdθ
} 1
p

.

If |α| ≤ 1 then 1
|α| ≥ 1 and hence by replacing α by 1

α in the above equation, we get for

|α| ≤ 1,

{∫ 2π

0

|D 1
α
{Q(eiθ)}|pdθ

} 1
p

≤ n
(

1

|α|
+ sn,m

)
Hp

{∫ 2π

0

|Q(eiθ)|pdθ
} 1
p

,

which by Lemma 4 is equivalent to

{∫ 2π

0

|Dα{P (eiθ)}|pdθ
} 1
p

≤ n(1 + |α|sn,m)Hp

{∫ 2π

0

|Q(eiθ)|pdθ
} 1
p

.

From the fact that |Q(eiθ)| = |P (eiθ)|, the above inequality reduces to (1.6), and the proof
of Theorem 3 is thus complete.

Remark 1. A result due to Aziz and Rather [3, Lemma 2, page 19] played a significant
role and used many times in proving such integral inequalities by several researchers. But
the proof of this result given by Aziz and Rather [3] heavily depends on a result due to Melas
[13], whose proof is quite indirect in the present context. In the proof of Theorem 2 of this
paper, we established a straight forward proof (see equation (3.4)) to [3, Lemma 2, page 19]
by using Arestov’s result (see Lemma 6). The proof of main theorem in the paper due to
Govil and Kumar [9] can also be re-presented using Arestov’s Lemma (Lemma 6) without
using [3, Lemma 2, page 19] explicitly.
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