The lattice structure of all lattice preradicals on modular complete lattices, and applications (I)

by

Toma Albu(1), Jaime Castro Pérez(2), José Ríos Montes(3)

Abstract

Based on the concept of a linear morphism of lattices, recently introduced in the literature, we present and investigate in this paper the latticial counterpart of the big lattice R-pr of all preradicals on the category $\text{Mod-}R$ of all unital right R-modules over an associative ring R with identity.

Key Words: modular lattice, upper continuous lattice, linear morphism of lattices, fully invariant submodule, fully invariant element, lattice preradical, big lattice, Grothendieck category, hereditary torsion theory.

2010 Mathematics Subject Classification: Primary 06C05. Secondary 06C99, 06B35, 16D80, 16S90, 18E15.

Introduction

In this paper we shall again illustrate a general strategy which consists on putting a module-theoretical definition/result into a latticial frame, in order to translate that definition/result to Grothendieck categories and to module categories equipped with a hereditary torsion theory. Thus, we provide the latticial counterpart of the big lattice R-pr of all preradicals on the category $\text{Mod-}R$ of all unital right R-modules over an associative ring R with identity.

In Section 0 we list some definitions and results about lattices, especially from [2]. We also present from [3] and [5] the concepts of a linear morphism of lattices and of a lattice preradical, respectively, and list some of their basic properties.

Section 1 is devoted to the investigation of the main properties of the big lattice L-pr of all lattice preradicals on all modular complete lattices.

In Section 2 we present the latticial counterparts of the basic operations on R-pr, as well as the relationship between them.

Applications of our latticial results to Grothendieck categories and module categories equipped with a hereditary torsion theory will be given in a subsequent paper.

0 Preliminaries

All lattices considered in this paper are assumed to be bounded, i.e., to have a least element denoted by 0 and a last element denoted by 1, and L will always denote such a lattice. If the lattices L and L' are isomorphic, we denote this by $L \simeq L'$. The opposite lattice of L
will be denoted by L^0. By a big lattice we mean any class, not necessarily a set, satisfying the usual axioms of a lattice.

We denote by \mathcal{L} (respectively, \mathcal{M}, \mathcal{C}) the class of all bounded (respectively, bounded modular, complete) lattices.

For a lattice L and elements $a \leq b$ in L we write

$$b/a := [a, b] = \{ x \in L \mid a \leq x \leq b \}.$$

A subfactor of L is any interval b/a of L with $a \leq b$, and an initial interval of b/a is any interval c/a with $a \leq c \leq b$.

A lattice L is said to be simple in case it has exactly two elements, so, L is simple if $L = \{0, 1\}$ and $0 \neq 1$. An element $a \in L$ is said to be an atom if $a \neq 0$ and $a/0 = \{0, a\}$, i.e., $a/0$ is a simple lattice. We denote by $A(L)$ the set, possibly empty, of all atoms of L. The socle $\text{Soc}(L)$ of a complete lattice L is the join of all atoms of L, i.e., $\text{Soc}(L) := \bigvee A(L)$; if L has no atoms, then $\text{Soc}(L) = 0$. Notice that the atoms of the lattice $\mathcal{L}(M_R)$ of all submodules of a right R-module M_R are precisely the simple submodules of M_R. In general, a Grothendieck category may have no simple objects, see [10]). The reader is referred to [16] and/or [8] and for basic notions and facts on Grothendieck categories. As in [12], a lattice L is said to be atomic if for every $0 \neq x \in L$ there exists an atom $a \in L$ such that $a \leq x$.

An element $m \in L$ is said to be a coatom if it is a maximal element of $L \setminus \{1\}$, i.e., m is an atom of the opposite lattice L°, and $M(L)$ will denote the set, possibly empty, of all coatoms of L, so $M(L) = A(L^\circ)$. The lattice L is called coatomic if its opposite lattice L° is atomic, i.e., for every element $x \in L \setminus \{1\}$ there exists $m \in M(L)$ such that $x \leq m$.

For basic notation and terminology on lattices the reader is referred to [1], [2], [12], and/or [16], but especially to [2]. In particular, for any $L \in \mathcal{L}$, one denotes by $D(L)$ the set of all complement elements of L (D for “Direct summand”).

As in [3], a mapping $f : L \to L'$ between a lattice L with least element 0 and greatest element 1 and a lattice L' with least element 0' and greatest element 1' is called a linear morphism if there exist $k \in L$, called a kernel of f, and $a' \in L'$ such that the following two conditions are satisfied.

- $f(x) = f(x \lor k)$, $\forall x \in L$.
- f induces a lattice isomorphism

$$\tilde{f} : 1/k \longrightarrow a'/0', \tilde{f}(x) = f(x), \forall x \in 1/k.$$

If $f : L \to L'$ is a linear morphism of lattices, then f is an increasing mapping, commutes with arbitrary joins (i.e., $f(\bigvee_{i \in I} x_i) = \bigvee_{i \in I} f(x_i)$ for any family $(x_i)_{i \in I}$ of elements of L, provided both joins exist), preserves intervals (i.e., for any $u \leq v$ in L, one has $f(v/u) = f(v)/f(u)$), and its kernel k is uniquely determined; moreover, for any $a \in L$, the restriction $f_a : a/0 \to L'$, $f_a(x) = f(x)$, $\forall x \in a/0$, of f to $a/0$ is a linear morphism with kernel $a \land k$.

As in [3], the class \mathcal{M} of all (bounded) modular lattices becomes a category, denoted by \mathcal{LM}, (for “Linear Modular”) if for any $L, L' \in \mathcal{M}$ one takes as morphisms from L to L' all the linear morphisms from L to L'.

The isomorphisms in the category \mathcal{LM} are exactly the isomorphisms in the full category \mathcal{M} of the category \mathcal{L} of all (bounded) lattices. The monomorphisms (respectively,
epimorphisms) in the category \mathcal{LM} are exactly the injective (respectively, surjective) linear morphisms. Moreover, the subobjects of $L \in \mathcal{LM}$ can be viewed as the intervals $a/0$ for any $a \in L$. For all these properties of linear morphisms of lattices the reader is referred to [3].

For any $L, L' \in \mathcal{LM}$ we denote, as in any category, by $\text{Hom}_{\mathcal{LM}}(L, L')$ the set of all linear morphisms of lattices between L and L', and by $\text{End}_{\mathcal{LM}}(L)$ the set $\text{Hom}_{\mathcal{LM}}(L, L)$ of all endomorphisms of L in the category \mathcal{LM}.

We present now after [5] the concept of a lattice preradical as a functor $r : \mathcal{LM} \to \mathcal{LM}$ satisfying the following two conditions.

- For any $L \in \mathcal{LM}$, $r(L)$ is a subobject of L, i.e., an interval $[0, a]$, $a \in L$.
- For any morphism $f : L \to L'$ in \mathcal{LM}, $r(f) : r(L) \to r(L')$ is the restriction of f to $r(L)$ and $r(L')$, i.e., $f(r(L)) \subseteq r(L')$.

In other words, a lattice preradical is nothing else than a subfunctor of the identity functor $1_{\mathcal{LM}}$ of the category \mathcal{LM}.

We denote by $0 : \mathcal{LM} \to \mathcal{LM}$ the functor defined by $0(L) = 0$, $\forall L \in \mathcal{LM}$, and by 1 the identity functor $1_{\mathcal{LM}}$ of \mathcal{LM}, which are clearly lattice preradicals.

If $r : \mathcal{LM} \to \mathcal{LM}$ is a lattice preradical, then for any $L \in \mathcal{LM}$ and $a \in L$, the subobject $r(a/0)$ of L in \mathcal{LM} is necessarily an initial interval of $a/0$. We denote

$$r(a/0) := a^r/0.$$

In particular $r(L) = 1^L/0$.

If $a \leq b$ in L, the inclusion mapping $\iota : a/0 \hookrightarrow b/0$ is clearly a linear morphism. Applying now r we obtain $r(\iota) : a^r/0 \to b^r/0$ as a restriction of ι, and so $a^r \leq b^r$.

Notice that $a^r = b^r$ for two elements a, b in L does not necessarily imply $a = b$, as one may see with the following simple example: L is the lattice of all subgroups of the Abelian group $\mathbb{Z}[i]$ of Gaussian integers, $a = \mathbb{Z}[i]$, $b = \mathbb{Z}$, and r is the Jacobson radical Jac on the class of all Abelian groups. Then $a^r = b^r = 0$, but $a \neq b$.

As in [6], a non-empty class \mathcal{H} of lattices is said to be weakly hereditary if $a/0 \in \mathcal{H}$ for any $L \in \mathcal{H}$ and $a \in L$. According to [9], an abstract class of lattices is a subclass $\mathcal{H} \subseteq \mathcal{L}$ which is closed under lattice isomorphisms, i.e., if $L, K \in \mathcal{L}$, $K \cong L$, and $L \in \mathcal{H}$, then $K \in \mathcal{H}$. Thus, a hereditary class of lattices as defined in [9] is nothing else than a weakly hereditary class which additionally is an abstract class.

For any non-empty subclass \mathcal{D} of \mathcal{M} we shall denote by \mathcal{LD} the full subcategory of \mathcal{LM} having \mathcal{D} as the class of its objects. We shall also use the notation $\mathcal{M}_\mathcal{D}$ for the class $\mathcal{M} \cap \mathcal{C}$ of all modular complete lattices.

Let \mathcal{H} be a weakly hereditary subclass of \mathcal{M}. As in [6], a weakly lattice preradical on \mathcal{H} is any functor $r : \mathcal{LH} \to \mathcal{LH}$ satisfying the following two conditions.

- $r(L)$ is an initial interval of L for any $L \in \mathcal{LH}$.
- For any morphism $f : L \to L'$ in \mathcal{LH}, $r(f) : r(L) \to r(L')$ is the restriction and corestriction of f to $r(L)$ and $r(L')$, respectively.

The lattice preradicals defined in [5] are precisely the weakly lattice preradicals on hereditary classes $\mathcal{H} \subseteq \mathcal{M}$. As in the case of “true” lattice preradicals, for a weakly lattice preradical r on the weakly hereditary class $\mathcal{H} \subseteq \mathcal{M}$, we set $r(a/0) := a^r/0$ for any $a \in L$ and $L \in \mathcal{H}$.

If \(a \leq b \) in \(L \) then \(a/0, b/0 \) are both in \(\mathcal{H} \) because \(\mathcal{H} \) is weakly hereditary. The inclusion mapping \(\iota: a/0 \to b/0 \) is clearly a linear morphism, so it is a morphism in \(\mathcal{L}\mathcal{H} \).

Applying now \(\mathcal{L} \) we obtain \(r(\iota): a^r/0 \to b^r/0 \) as a restriction of \(\iota \), and so \(a^r \leq b^r \).

The latticial counterpart of the concept of a fully invariant submodule of a module is that of a fully invariant element introduced in [7] as follows. Let \(L \in \mathcal{M} \). An element \(a \in L \) is said to be fully invariant, abbreviated \(FI \), if \(f(a) \leq a \) for any \(f \in \text{End}_{\mathcal{L}\mathcal{M}}(L) \), and the set of all fully invariant elements of \(L \) will be denoted by \(\text{FI}(L) \).

Throughout this paper \(R \) will denote an associative ring with non-zero identity element, and \(\text{Mod-}R \) the category of all unital right \(R \)-modules. The notation \(M_R \) will be used to designate a unital right \(R \)-module \(M \), and \(N \leq M \) will mean that \(N \) is a submodule of \(M \). The lattice of all submodules of a module \(M_R \) will be denoted by \(\mathcal{L}(M_R) \). The reader is referred to [17] for basic notation, notions, and facts on rings, modules and categories.

As in [11] or [16], a preradical on \(\text{Mod-}R \) is a subfunctor \(q \) of the identity functor \(1_{\text{Mod-}R} \) of \(\text{Mod-}R \). This means that \(q \) assigns to each right \(R \)-module \(M \) a submodule \(q(M) \) of \(M \) such that each morphism \(f : M \to N \) in \(\text{Mod-}R \) induces by restriction a morphism \(q(f) : q(M) \to q(N) \), i.e., \(f(q(M)) \leq q(N) \). We call these preradicals module preradicals.

Notice that any lattice preradical naturally induces a module preradical, or more generally a preradical on any locally small Abelian category, but not conversely (see [4]).

\section{The big lattice \(\mathcal{L}\text{-pr} \)}

In this section we show that the class of all lattice preradicals on all modular complete lattices is a big complete lattice, we shall denote \(\mathcal{L}\text{-pr} \).

\begin{lemma}
Let \(f : L \to L' \) be a linear morphism of lattices, and let \(a < b \) in \(L \) and \(c' \in L' \) such that \(f(b) \leq c' \). Then the restriction \(f_\mid : b/a \to c'/f(a) \) of \(f \) is a linear morphism of lattices.
\end{lemma}

\begin{proof}
If \(k \) is the kernel of \(f \), then \(\overline{f} = a \lor (b \land k) \) is the kernel of \(f_\mid \) because

\[f_\mid(x \lor \overline{k}) = f((x \lor a) \lor (b \land k)) = f(x \lor a) \lor f(b \land k) = f(x) = f_\mid(x), \quad \forall x \in b/a. \]

As \(\overline{k} = a \lor (b \land k) = b \land (a \lor k) \) by modularity, and \(f(b) \leq c' \), we claim that \(f_\mid \) induces the lattice isomorphism

\[f_\mid : b/(b \land (a \lor k)) \to f(b)/f(a), \quad f_\mid(x) = f(x), \quad \forall x \in b/(b \land (a \lor k)), \]

which means exactly that \(f_\mid \) is a linear morphism of lattices.

In order to prove our claim, observe first that, by modularity, we have the canonical lattice isomorphism

\[\varphi : b/(b \land (a \lor k)) \cong (b \lor (a \lor k))/(a \lor k), \quad \varphi(x) := x \lor (a \lor k), \quad \forall x \in b/(b \land (a \lor k)). \]

Now, observe that \(\varphi(x) = x \lor k, \quad \forall x \in b/(b \land (a \lor k)) \). Indeed, by modularity, we have \(b \land (a \lor k) = a \lor (b \land k) \), so \(b/(b \land (a \lor k)) = b/(a \lor (b \land k)) \). Thus, \(x \in b/(a \lor (b \land k)) \) for any \(x \in b/(b \land (a \lor k)) \), and then \(a \lor (b \land k) \leq x \leq b \). It follows that \(a \leq x \). Consequently

\[\varphi(x) = x \lor (a \lor k) = (x \lor a) \lor k = x \lor k, \]

\end{proof}
as desired.

On the other hand, since f is a linear morphism of lattices, f induces the lattice isomorphism

$$
\overline{f} : 1/k \longrightarrow f(1)/0', \overline{f}(x) = f(x), \forall x \in 1/k,
$$

where $0'$ is the least element of L'. Using now the properties, presented in Preliminaries, of linear morphisms of lattices, we deduce that the restriction of the linear isomorphism \overline{f} to the subinterval $(b \lor k)/(a \lor k)$ of $1/k$ produces a lattice isomorphism

$$
\psi : (b \lor k)/(a \lor k) \longrightarrow f(b)/f(a), \psi(x) = f(x), \forall x \in (b \lor k)/(a \lor k),
$$

and clearly

$$
\overline{f}| = \psi \circ \varphi,
$$

so

$$
\overline{f}|(x) = (\psi \circ \varphi)(x) = (\psi(\varphi(x)) = \psi(x \lor k) = f(x \lor k) = f(x), \forall x \in b/(b \land (a \lor k)),
$$

and we are done. \qed

We denote by \mathcal{L}-pr the class of all lattice preradicals on all modular complete lattices. For any family $(r_i)_{i \in I}$ in \mathcal{L}-pr, I any set, we set

$$
\bigvee_{i \in I} r_i : \mathcal{LM}_c \longrightarrow \mathcal{LM}_c \quad \text{and} \quad \bigwedge_{i \in I} r_i : \mathcal{LM}_c \longrightarrow \mathcal{LM}_c
$$

by

$$
(\bigvee_{i \in I} r_i)(L) := (\bigvee_{i \in I} 1^{r_i})/0 \quad \text{and} \quad (\bigwedge_{i \in I} r_i)(L) := (\bigwedge_{i \in I} 1^{r_i})/0, \forall L \in \mathcal{LM}_c.
$$

Instead of considering families $(r_i)_{i \in I}$ of lattice preradicals we may consider classes S of lattice preradicals, and denote

$$
\bigvee S : \mathcal{LM}_c \longrightarrow \mathcal{LM}_c \quad \text{and} \quad \bigwedge S : \mathcal{LM}_c \longrightarrow \mathcal{LM}_c
$$

by

$$
(\bigvee S)(L) := (\bigvee_{r \in S} 1^r)/0 \quad \text{and} \quad (\bigwedge S)(L) := (\bigwedge_{r \in S} 1^r)/0, \forall L \in \mathcal{LM}_c.
$$

Notice that though S is a class and not necessarily a set, for each $L \in \mathcal{M}_c$, $\{r(L) \mid r \in S\}$ is a set.

The class \mathcal{L}-pr becomes clearly a big poset with respect to the following order relation:

$$
r \leq s \quad \overset{\text{def}}{\iff} \quad r(L) \subseteq s(L), \forall L \in \mathcal{L}.
$$

Clearly $0 \leq r \leq 1, \forall r \in \mathcal{L}$-pr, i.e., 0 is the least element of the big poset \mathcal{L}-pr, and 1 is the last element of \mathcal{L}-pr.

Lemma 1.2. For any $\emptyset \neq S \subseteq \mathcal{L}$-pr we have $\bigvee S \in \mathcal{L}$-pr and $\bigwedge S \in \mathcal{L}$-pr.

Proof. For every $r \in S$ we have $r(L) = 1^r/0 \subseteq L$, and so, because L is a set,

$$
(\bigvee S)(L) := (\bigvee_{r \in S} 1^r)/0
$$
is an initial interval of L.

Now, if $f : L \rightarrow L'$ is a linear morphism of complete modular lattices, then, by definition, $f(r(L)) \subseteq r'(L')$. Since $r(L) = r(1/0) = 1'/0$ and $r(L') = r(1/0') = 1'/0'$, we have $f(1') \leq 1'$, $\forall r \in S$. Using the fact that f commutes with arbitrary joins, we deduce that

$$f(\bigvee_{r \in S} 1') = \bigvee_{r \in S} f(1') \leq \bigvee_{r \in S} 1'^r,$$

so, by Lemma 1.1, the restriction

$$(\bigvee S)(f) : (\bigvee_{r \in S} 1')/0 \rightarrow (\bigvee_{r \in S} 1'^r)/0'$$

of f is a linear morphism of lattices, hence $\bigvee S \in L\text{-pr}$. As above,

$$(\bigwedge S)(L) := (\bigwedge_{r \in S} 1')/0$$

is an initial interval of L.

Now, if $f : L \rightarrow L'$ is a linear morphism of complete modular lattices, then, by definition $f(r(L)) \subseteq r'(L')$, and, as above $f(1') \leq 1'$, $\forall r \in S$. It follows that

$$\bigwedge_{r \in S} f(1') \leq \bigwedge_{r \in S} 1'^r.$$

On the other hand, we have $\bigwedge_{r \in S} 1^r \leq 1'$, $\forall r \in S$. Therefore

$$f(\bigwedge_{r \in S} 1') = f(\bigwedge_{r \in S} 1^r) \leq \bigwedge_{r \in S} f(1').$$

We deduce that $f(\bigwedge_{r \in S} 1') \leq \bigwedge_{r \in S} 1'^r$.

Again by Lemma 1.1, the restriction

$$(\bigwedge S)(f) : (\bigwedge_{r \in S} 1')/0 \rightarrow (\bigwedge_{r \in S} 1'^r)/0'$$

of f is a linear morphism of lattices, which shows that $\bigwedge S \in L\text{-pr}$, as desired. \qed

The next result shows even more, that $L\text{-pr}$ is a complete modular big lattice.

Proposition 1.3. The class $L\text{-pr}$ is a complete modular big lattice with respect to the operations \bigvee and \bigwedge defined above, having 0 as least element and 1 as last element.

Proof. Let $\emptyset \neq S \subseteq L\text{-pr}$ and $t \in L\text{-pr}$ be such that $r \leq t$, $\forall r \in S$. For $L \in \mathcal{M}_c$ we have $$(\bigvee S)(L) = (\bigvee_{r \in S} 1^r)/0.$$ As $r \leq t$, we have $r(L) \leq t(L)$, so $1'/0 \subseteq 1'/0$, $\forall r \in S$, and then $1' \leq 1'$, $\forall r \in S$. Therefore $\bigvee_{r \in S} 1' \leq 1'$. It follows that $$(\bigvee_{r \in S} 1')/0 \subseteq 1'/0.$$ This shows that $(\bigvee S)(L) \subseteq t(L)$, $\forall L \in \mathcal{M}_c$, i.e., $\bigvee S \leq t$. Since $r \subseteq \bigvee S$, $\forall r \in S$, we deduce that $\bigvee S$ is the supremum of S. In a similar way one shows that $\bigwedge S$ is the infimum of S.

We are now going to prove that the lattice $L\text{-pr}$ is modular. To do that, let $r, s, t \in L\text{-pr}$ with $r \leq s$. We have to show the equality $r \vee (s \wedge t) = s \wedge (r \vee t)$. For any $L \in \mathcal{M}_c$ we have

$$(r \vee (s \wedge t))(L) = (1' \vee (1^s \wedge 1^t))/0.$$

Because $1' \leq 1^s$ and L is a modular lattice, it follows that

$$(r \vee (s \wedge t))(L) = (1' \vee (1^s \wedge 1^t))/0 = (1^s \wedge (1' \vee 1^t))/0 = (s \wedge (r \vee t))(L).$$
This shows that \(r \lor (s \land t) = s \land (r \lor t) \). We conclude that \(\mathcal{L}\text{-pr} \) is a complete modular big lattice. \(\square \)

Remarks 1.4. (1) The big poset structure of \(\mathcal{L}\text{-pr} \) is exactly the one induced by its big lattice structure above.

(2) If we consider now the subclass \(\mathcal{U}\text{-pr} \) of \(\mathcal{L}\text{-pr} \) consisting of all lattice preradicals on all upper continuous modular lattices, then it is clear that \(\mathcal{U}\text{-pr} \) is a big sublattice of \(\mathcal{L}\text{-pr} \) that is modular and upper continuous. \(\square \)

2 Operations on \(\mathcal{L}\text{-pr} \)

In this section we present the latticial counterparts of the basic operations on \(R\text{-pr} \) (see [13], [14], [15]) as well as the relationship between them.

For any \(r, s \in \mathcal{L}\text{-pr} \) we define \(r \cdot s \) and \(r : s \) as follows:

\[
(r \cdot s)(L) := r(s(L))
\]

and

\[
(r : s)(L) = 1^{(r \cdot s)}/0, \quad \text{where } 1^{(r \cdot s)} \text{ is defined by } 1^{(r \cdot s)}/1^r = s(1/1^r), \forall L = 1/0 \in \mathcal{M}_c.
\]

Recall that for any \(L, K \in \mathcal{LM} \) and \(f \in \text{Hom}_{\mathcal{LM}}(K,L) \) we denote, as usually, by \(f^{-1}(A) \), \(A \subseteq L \), the inverse image of the subset \(A \) of \(L \) under the mapping \(f \), i.e.,

\[
f^{-1}(A) := \{ b \in K \mid f(b) \in A \};
\]

in particular, for any \(a \in L \),

\[
f^{-1}(a/0) = \{ b \in K \mid f(b) \in a/0 \} = \{ b \in K \mid f(b) \leq a \}.
\]

Proposition 2.1. For any set \(r, s \in \mathcal{L}\text{-pr} \) we have \(r \cdot s \in \mathcal{L}\text{-pr} \) and \(r : s \in \mathcal{L}\text{-pr} \).

Proof. Since \(s(L) = 1^s/0 \), by the definition of \(r \cdot s \), we deduce that

\[
(r \cdot s)(L) = r(s(L)) = r(1^s)/0 = (1^s)/0
\]

is an initial interval of \(1^s/0 \subseteq L \), so \(r \cdot s)(L) \) is a subobject of \(L \). Now, if \(f : L \rightarrow L' \) is a linear morphism of lattices, then \(s(f) : s(L) \rightarrow s(L') \) is a linear morphism of lattices which shows that \(r(s(f)) : r(s(L)) \rightarrow r(s(L')) \), and so, \(r \cdot s \in \mathcal{L}\text{-pr} \).

We are now going to prove that \(r : s \in \mathcal{L}\text{-pr} \). Remember that \(r(L) = r(1/0) = 1^r/0 \). By [5, Example 0.2(2)], the mapping

\[
p : 1/0 \rightarrow 1/1^r, \quad p(x) = x \lor 1^r, \forall x \in L,
\]

is a surjective linear morphism with kernel \(1^r \). Notice that, by definition, \(1^r \leq 1^{(r \cdot s)} \), hence \(p(1^{(r \cdot s)}/0) = 1^{(r \cdot s)}/1^r = s(1/1^r) \). Therefore \(1^{(r \cdot s)}/0 \leq p^{-1}(s(1/1^r)) \).

Denote \(z_p := \bigvee_{x \in p^{-1}(1^{(r \cdot s)}/1^r)} x \). We claim that
Indeed, let \(y \in p^{-1}(1^{(rs)}/1^r) \). Then \(p(y) \in 1^{(rs)}/1^r \), so \(y \leq \bigvee_{x \in p^{-1}(1^{(rs)}/1^r)} x = z_p \), i.e., \(y \in z_p/0 \). It follows that \(p^{-1}(1^{(rs)}/1^r) \subseteq z_p/0 \).

For the opposite inclusion, let \(y \in z_p/0 \). Then, \(y \leq z_p = \bigvee_{x \in p^{-1}(1^{(rs)}/1^r)} x \). As \(p \) is a linear morphism, then

\[
p(y) \leq p\left(\bigvee_{x \in p^{-1}(1^{(rs)}/1^r)} x\right) = \bigvee_{x \in p^{-1}(1^{(rs)}/1^r)} p(x) \leq 1^{(rs)},
\]

so \(y \in p^{-1}(1^{(rs)}/1^r) \) because clearly \(p(y) \geq 1^r \). This shows that \(z_p/0 \subseteq p^{-1}(1^{(rs)}/1^r) \) and proves our claim.

We have \(p^{-1}(s(1/1^r)) = z_p/0 \). Indeed, \(s(1/1^r) = 1^{(rs)}/1^r \), and so

\[
p^{-1}(s(1/1^r)) = p^{-1}(1^{(rs)}/1^r) = z_p/0.
\]

Thus

\[
1^{(rs)}/1^r = s(1/1^r) = p(z_p/0) = (z_p \lor 1^r)/1^r.
\]

So \(z_p \lor 1^r \leq 1^{(rs)} \), and then \(z_p \leq 1^{(rs)} \). Hence \(p^{-1}(s(1/1^r)) = z_p/0 \subseteq 1^{(rs)}/0 \), which implies that

\[
1^{(rs)}/0 = p^{-1}(s(1/1^r)).
\]

Thus, the linear morphism

\[
\overline{p} : 1^{(rs)}/0 \rightarrow s(1/1^r), \overline{p}(x) = p(x) = x \lor 1^r,
\]

is the restriction of the linear morphism \(p \).

Now let \(f : L \rightarrow L' \) be a linear morphism, where \(L' = 1'/0' \), and let

\[
p' : 1'/0' \rightarrow 1'/1'^r, \ p'(x') := x' \lor 1'^r, \forall x' \in L',
\]

be the surjective linear morphism with kernel \(1'^r \). So, \(p' \circ f : 1/0 \rightarrow 1'/1'^r \) is a linear morphism, and \((p' \circ f)(x) = p'(f(x)) = f(x) \lor 1'^r, \forall x \in L \).

On the other hand as \(r \) is a preradical, \(f(r(L)) \subseteq r(L') \). Thus \(f(1^r/0) \subseteq 1'^r/0' \), so \(f(1') \leq 1'^r \). Hence \((p' \circ f)(1') = f(1') \lor 1'^r = 1'^r \). Because \(1'^r \) is the least element of the lattice \(L'' = 1'/1'^r \), by [5, Proposition 0.3(3)], \(p' \circ f \) induces the linear morphism

\[
f' : 1'/1'^r \rightarrow 1'/1'^r, f'(x) = (p' \circ f)(x) = f(x) \lor 1'^r, \forall x \in 1'/1'^r,
\]

Since \(s \) is a preradical, \(s(f') : s(1/1^r) \rightarrow s(1'/1'^r) \) is the restriction of the linear morphism \(f' \).

Hence

\[
s(f')(x) = f'(x) = f(x) \lor 1'^r, \forall x \in s(1/1^r) = 1^{(rs)}/1^r.
\]

We claim that

\[
(r : s)(f) : (r : s)(L) \rightarrow (r : s)(L')
\]

is the restriction of the linear morphism \(f : L \rightarrow L' \).

Since \((r : s)(L) = (r : s)(1/0) = 1^{(rs)}/0 \) and \((r : s)(L') = 1^{(rs)}/0' \), it follows that \(f(1^{(rs)}/0) \subseteq 1^{(rs)}/0' \). Indeed, let \(x \in 1^{(rs)}/0 \) and consider the linear morphism
T. Albu, J. Castro Pérez, J. Ríos Montes

 Proposition 2.2. For any \(T \).

 Let \(s \) morphism, then \(s \).

 It follows that \(p' f(x) = f(x) \vee 1'^r \in s (1'/1'^r) \) so, \(f(x) \in p'^{-1}(s (1'/1'^r)) \). Notice that \(p'^{-1}(s (1'/1'^r)) = 1^{(r:s)} / 0' \).

 Indeed, we have seen above in this proof, just before defining the linear morphism \(p \), that \(1^{(r:s)} / 0 = p^{-1}(s (1')) \) for any \(r, s \in \mathcal{L}-\text{pr} \) and any \(L \in \mathcal{M}_c \). Specialize now this equality for \(L' = 1'/0' \) and the linear morphism \(p \) we considered above in this proof:

 \[p' : 1'/0' \longrightarrow 1'/1'^r, \quad p' (x) := x \vee 1'^r, \quad \forall x \in L', \]

to obtain \(p'^{-1}(s (1'/1'^r)) = 1^{(r:s)} / 0' \), as desired.

 Resume now the proof of our claim. From the equality we have just established, we deduce that \(f(x) \in 1^{(r:s)} / 0' \), hence \(f(1^{(r:s)} / 0) \leq 1^{(r:s)} / 0' \), which proves our claim. \(\square \)

 Proposition 2.2. For any \(r, s \in \mathcal{L}-\text{pr} \) we have \(r \cdot s \leq r \lor s \leq r \lor s \leq r : s \).

 Proof. Let \(L \in \mathcal{M}_c \). As \(s (L) \subseteq L \), we have \(r (s (L)) \subseteq r (L) \), so \(r \cdot s \leq r \). Moreover, \(r (s (L)) \subseteq s (L) \) because \(r \) is a preradical, so \(r \cdot s \leq s \), and then \(r \cdot s \leq r \lor s \). Clearly \(r \lor s \leq r \) and \(r \lor s \leq r \lor s \), so \(r \lor s \leq r \lor s \).

 We are now going to prove that \(r \leq r : s \) and \(s \leq r : s \). Since \((r : s) (L) = 1^{(r:s)} / 0 \), where \(s (1'/1'^r) = 1^{(r:s)} / 1'^r \), we have \(1'^r \leq 1^{(r:s)} \). Therefore \(1'/0 \leq 1^{(r:s)} / 0 \). It follows that \(r (L) \subseteq (r : s) (L) \), so \(r \subseteq r : s \).

 On the other hand, if \(p : 1 / 0 \longrightarrow 1 / 1'^r \), \(p (x) := x \lor 1'^r, \forall x \in L \), is the surjective linear morphism, then \(s (p) : s (1/0) \longrightarrow s (1'/1'^r) \) is the restriction of \(p \), so \(p (s (1/0)) \subseteq s (1'/1'^r) \). It follows that \(s (L) = s (1/0) \subseteq p^{-1}(s (1'/1')) = 1^{(r:s)} / 0 = (r : s) (L) \) (see the proof of Proposition 2.1). Thus \(s (L) \subseteq (r : s) (L) \), so \(s \leq r : s \), and then \(r \lor s \leq r : s \), as desired. \(\square \)

 The concepts from the definition below are exactly the ones introduced in [5] without refereeing to the operations \(\cdot \) and \(: \) we defined at the beginning of this section.

 Definitions 2.3. Let \(r \in \mathcal{L}-\text{pr} \). We say that:

(1) \(r \) is an idempotent preradical if \(r \cdot r = r \).

(2) \(r \) is a radical if \(r : r = r \).

(3) \(r \) is a left exact (or hereditary) preradical if \(a^r = a \lor 1'^r, \forall L \in \mathcal{L} \mathcal{M}, a \in L \).

 Next we present the latticial counterparts of the properties of basic operations on \(R-\text{pr} \) (see [13], [14], [15]), as well as the relationship between them.
Lemma 2.4. Let \(r \) be a lattice radical, let \(L = 1/0 \in \mathcal{L} \mathcal{M} \), and let \(A \subseteq L \) be a subobject of \(L \), i.e., \(A = a/0 \) for some \(a \in L \).

If \(a \leq b \), where \(r(L) = 1^r/0 = b/0 \), then \(r(1/a) = b/a \).

Proof. By [5, Example 0.2(2)], the mapping
\[
p : L \rightarrow 1/a, \quad p(x) := x \lor a, \quad \forall x \in L,
\]
is a surjective linear morphism with kernel \(a \), that induces the linear morphism
\[
r(p) : b/0 = r(L) \rightarrow r(1/a)
\]
with kernel \(a \), so \(b/a \subseteq r(1/a) \).

Again by [5, Example 0.2(2)], the mapping
\[
q : 1/a \rightarrow 1/b, \quad q(x) := x \lor b, \quad \forall x \in 1/a,
\]
has the kernel \(b \) and induces the zero morphism on \(r(1/a) \). Indeed, we have
\[
r(L) = r(1/0) = 1^r/0 = b/0,
\]
and moreover \(r(1/b) = r(1/1^r) = 1^r/1^r = b/b \) since \(r \) is a radical. This shows that \(r(1/a) \subseteq b/a \), and we are done. \(\Box \)

Proposition 2.5. The following assertions hold for \(r, s, t \in \mathcal{L} \text{-pr} \) and a family \((r_i)_{i \in I}\) of elements of \(\mathcal{L} \text{-pr} \).

1. \((\bigwedge_{i \in I} r_i) \cdot s = \bigwedge_{i \in I} (r_i \cdot s) \).
2. \((\bigvee_{i \in I} r_i) \cdot s = \bigvee_{i \in I} (r_i \cdot s) \).
3. \((r : s) : t = r : (s : t) \) and \((r \cdot s) \cdot t = r \cdot (s \cdot t) \).
4. \(t : (\bigwedge_{i \in I} r_i) = \bigwedge_{i \in I} (t : r_i) \).
5. \(t : (\bigvee_{i \in I} r_i) = \bigvee_{i \in I} (t : r_i) \).
6. \((s : t) \cdot r \leq (s \cdot r) \cdot (t : r) \), and \(r \) is a radical \(\iff (s : t) \cdot r = (s \cdot r) \cdot (t : r) \), \(\forall s, t \in \mathcal{L} \text{-pr} \).
7. \((r : s) \cdot (r : t) \leq r : (s \cdot t) \), and \(r \) is idempotent \(\iff (r : s) \cdot (r : t) = r : (s \cdot t) \), \(\forall s, t \in \mathcal{L} \text{-pr} \).

Proof. (1) Let \(L \in \mathcal{M}_c \). Then \((r_i \cdot s)(L) = r_i(s(L)) = r_i(s(1/0)) = r_i(1^\vee/0) = (1^\vee)^{r_i}/0 \).
Thus \((\bigwedge_{i \in I} (r_i \cdot s))(L) = (\bigwedge_{i \in I} (1^\vee)^{r_i})/0 \).
Now
\[
((\bigwedge_{i \in I} r_i) \cdot s)(L) = (\bigwedge_{i \in I} r_i)(s(L)) \left((\bigwedge_{i \in I} r_i)(1^\vee/0) = (\bigwedge_{i \in I} (1^\vee)^{r_i})/0 \right).
\]
It follows that \((\bigwedge_{i \in I} (r_i \cdot s))(L) = (\bigwedge_{i \in I} (r_i \cdot s))(L) \).
Therefore \((\bigwedge_{i \in I} r_i) \cdot s = \bigwedge_{i \in I} (r_i \cdot s) \).

(2) Let \(L \in \mathcal{M}_c \). Then \((r_i \cdot s)(L) = r_i(s(L)) = r_i(s(1/0)) = r_i(1^\vee/0) = (1^\vee)^{r_i}/0 \).
Thus \((\bigvee_{i \in I} (r_i \cdot s))(L) = (\bigvee_{i \in I} (1^\vee)^{r_i})/0 \), so
\[
((\bigvee_{i \in I} r_i) \cdot s)(L) = (\bigvee_{i \in I} r_i)(s(L)) = (\bigvee_{i \in I} r_i)(1^\vee/0) = (\bigvee_{i \in I} (1^\vee)^{r_i})/0.
\]
It follows that \((\bigvee_{i \in I} (r_i \cdot s))(L) = ((\bigvee_{i \in I} r_i) \cdot s)(L)\), so \((\bigvee_{i \in I} r_i) \cdot s = \bigvee_{i \in I} (r_i \cdot s)\).

(3) Let \(L = 1/0 \in \mathcal{M}_c\). In order to calculate \((r : (s : t))(1/0)\), we have first to do it for \((s : t)(1/1')\). By definition, \(s(1/1') = 1^{(r:s)}/1'\). Remember that when calculating \((s : t)(1/1')\), we are working inside the lattice \(1/1'\), so \(t(1/1^{(r:s)}) = 1^{(r:s)}/1^{(r:s)}\), and then
\[(s : t)(1/1') = 1^{(r:s)}/1'.\]

By definition,
\[(r : (s : t))(1/0) = 1^{(r:s)}/0 \quad \text{and} \quad ((r : s) : t)(1/0) = 1^{(r:s)}/0,
\]
so \((r : (s : t))(1/0) = ((r : s) : t)(1/0)\). Therefore \((r : s) : t = r : (s : t)\).

(4) For \(L \in \mathcal{M}_c\), we have \((t : r_i)(L) = 1^{(t : r_i)}/0\), with \(r_i(1/1') = 1^{(t : r_i)}/1'\) by definition, hence \((\bigwedge_{i \in I} r_i)(1/1') = (\bigwedge_{i \in I} 1^{(t : r_i)})/1'\), and then
\[(t : (\bigwedge_{i \in I} r_i))(L) = (\bigwedge_{i \in I} 1^{(t : r_i)})/0.\]

Indeed, if we denote \(u := \bigwedge_{i \in I} r_i\), then \((t : (\bigwedge_{i \in I} r_i))(L) = (t : u)(L) = 1^{(t : u)}/0\), where \(1^{(t : u)}/1' = u(1/1') = (\bigwedge_{i \in I} r_i)(1/1') = (\bigwedge_{i \in I} 1^{(t : r_i)})/1'\), so \(1^{(t : u)} = \bigwedge_{i \in I} 1^{(t : r_i)}\). Thus
\[(t : (\bigwedge_{i \in I} r_i))(L) = (t : u)(L) = 1^{(t : u)}/0 = (\bigwedge_{i \in I} 1^{(t : r_i)})/0.\]

On the other hand, since \((t : r_i)(L) = 1^{(t : r_i)}/0\), we have
\[(\bigwedge_{i \in I} (t : r_i))(L) = (\bigwedge_{i \in I} 1^{(t : r_i)})/0.\]
Hence \((t : (\bigwedge_{i \in I} r_i))(L) = (\bigwedge_{i \in I} (t : r_i))(L), \forall L \in \mathcal{M}_c\), and so \(t : (\bigwedge_{i \in I} r_i) = \bigwedge_{i \in I} (t : r_i)\).

(5) The proof is similar with that in (4) just by replacing \(\bigwedge\) with \(\bigvee\). Indeed, as above, for \(L \in \mathcal{M}_c\) we have \((t : r_i)(L) = 1^{(t : r_i)}/0\), so \(r_i(1/1') = 1^{(t : r_i)}/1'\), and then \((\bigvee_{i \in I} r_i)(1/1') = (\bigvee_{i \in I} 1^{(t : r_i)})/1'\). As in (4), we have
\[(t : (\bigvee_{i \in I} r_i))(L) = (\bigvee_{i \in I} 1^{(t : r_i)})/0.\]
Since \((t : r_i)(L) = 1^{(t : r_i)}/0\), we deduce that
\[(\bigvee_{i \in I} (t : r_i))(L) = (\bigvee_{i \in I} 1^{(t : r_i)})/0,
\]
so
\[(t : (\bigvee_{i \in I} r_i))(L) = (\bigvee_{i \in I} (t : r_i))(L), \forall L \in \mathcal{M}_c.\]
Therefore \(t : (\bigvee_{i \in I} r_i) = \bigvee_{i \in I} (t : r_i)\), as desired.

(6) We claim that if \(r \in \mathcal{L}_{pr}\), \(a \in L = 1/0\) with \(a \preceq 1'\), then \(1'/a \preceq r(1/a)\). Indeed if \(p_a : 1/0 \to 1/a, p_a(x) := x \lor a, \forall x \in L,\)
is the surjective linear morphism with kernel \(a\), then \(r(p_a) : 1'/0 \to r(1/a)\) is the restriction of \(p_a\). As \(a \preceq 1'\), the kernel of \(r(p_a)\) is \(a\). So \(r(p_a)\) induces the linear morphism \(h : 1'/a \to r(1/a), h(x) = (r(p_a))(x) = p_a(x) = x \lor a, \forall x \in 1'/a.\)
Hence we have \(h(1'/a) \subseteq r(1/a)\). As \(x \succeq a\), then \(h(x) = x\). Thus \(1'/a = h(1'/a) \subseteq r(1/a)\).

On the other hand, consider the surjective linear morphism
\[p : 1/0 \rightarrow 1/1', \ p(x) := x \lor 1', \ \forall x \in L, \]

with kernel \(k = 1' \). Since \(a \leq 1' \), we have \(p(a) = a \lor 1' = 1' \), hence \(p \) induces the linear morphism

\[g : 1/a \rightarrow 1/1', \ g(x) := p(x) = x \lor 1', \ \forall x \in 1/a. \]

Moreover, if \(r \) is radical, then \(r(g) : r(1/a) \rightarrow r(1/1') = 1'/1' \), so \(r(g)(x) = x \lor 1' = 1' \). Consequently, by [5, Proposition 0.3(2)], we have \(x \leq k = 1', \forall x \in r(1/a) \), so \(r(1/a) \subseteq 1'/a \). Therefore \(r(1/a) = 1'/a \).

We are now going to prove the inequality

\[(s : t) \cdot r \leq (s \cdot r) : (t \cdot r). \]

We have \((s : t) \cdot r)(1/0) = (s : t)(1'/0) = (1')(s : t)/0, \) with \(t(1'(1')) = (1'(1'))(s : t)/(1'). \)

As \((1') = 1' \), we have \(1'(1') \subseteq r(1'(1')) \). Indeed we have proved above that for any \(a \in L = 1/0 \) with \(a \leq 1' \), we have \(1'/a \subseteq r(1/a) \). Now take \(a = (1') \); then \(a = (1') \subseteq 1' \), hence \(1'(1') = 1'/a \subseteq r(1/a) = r(1'(1')). \) Thus \(1'(1') \subseteq r(1'(1')). \)

It follows that \(t(1'(1')) \subseteq t(r(1'(1'))) \), and then

\[(1')(1') = t(r(1'(1'))) = (t \cdot r)(1'(1')) = (s : t)(s : t) : (t \cdot r)/(1'). \]

Consequently \((1')(1') \subseteq (s : t)/(t \cdot r) \), and then \((1')(1')/0 \subseteq 1'(1')/(t \cdot r)/0. \) Therefore

\[(s \cdot t) : (s \cdot r) \cdot (t \cdot r). \]

Note that in case \(r \) is a radical, then \(1'(1') \subseteq r(1'(1')) \) by Lemma 2.4 with \(a = (1') \).

We deduce that \(t(1'(1')) = t(r(1'(1')) \) and so \((s : t) \cdot r = (s \cdot r) : (t \cdot r) \).

Conversely, assume that \((s : t) \cdot r = (s \cdot r) \cdot (t \cdot r), \ \forall s, t \in L-pr. \) If we take \(s = t = 1 \), then, as one can easily check, we have \(1 : 1 = 1 \) and \(1 \cdot r = r \), so

\[(1 : 1) \cdot r = (1 \cdot r) : (1 \cdot r) = r : r, \]

i.e., \(r \) is a radical, as desired.

(7) We have

\[1'(s : t)/1' = (s : t)(1/1') = s(t(1/1')) = s(1'(1')). \]

As \(1'(1') \subseteq 1' \subseteq 1'(1') \), we deduce that \(1'(1') \subseteq 1'(1') \), and then

\[s(1'(1') \subseteq s(1'(1') \subseteq 1'(1') \)

because \(s \) is a preradical. By definition, we have \(s(1'(1')/(1'(1')) \) and \((r : s)(1'(1')/0) = (r : s)(1'(1')/0) = (r : s)(1'(1')/0) = (r : s)(1'(1')/0). \) It follows that

\[1'(s : t)/1' = s(1'(1') \subseteq s(1'(1') \subseteq 1'(1') \)

where \(s \) is a preradical. By definition, we have \(s(1'(1')/(1'(1')) \) and \((r : s)(1'(1')/0) = (r : s)(1'(1')/0) = (r : s)(1'(1')/0). \) It follows that

\[1'(s : t)/1' = s(1'(1') \subseteq s(1'(1') \subseteq 1'(1') \)
Then \(1^{r(s+t)}/1^r \subseteq 1^{(r \cdot s) \cdot (r \cdot t)}/0\), and then \(1^{r(s+t)}/0 \subseteq 1^{(r \cdot s) \cdot (r \cdot t)}/0\). Thus \(1^{r(s+t)}/0 \subseteq 1^{(r \cdot s) \cdot (r \cdot t)}/0\). We deduce that \((r : (s \cdot t))(0/1) \subseteq ((r : s) \cdot (r : t))(0/1)\). Therefore \(r : (s \cdot t) \subseteq (r : s) \cdot (r : t)\).

We claim that if \(r\) is an idempotent preradical, then \(r = r \cdot t\) for any preradical \(t\) such that \(r \leq t\). Indeed, \(r \cdot t \leq r\) by Proposition 2.2. For any \(L \in M_c\) we have \(r(L) \subseteq t(L)\), and so, \(r(r(L)) \subseteq r(t(L))\). Then \(r(L) = (r \cdot r)(L) \subseteq (r \cdot t)(L)\) because \(r\) is idempotent. It follows that \(r \leq r \cdot t\). Consequently \(r = r \cdot t\), which proves our claim.

Suppose now that \(r\) is an idempotent preradical. Since \(r \leq r : t\), then \(r = r \cdot (r : t)\) by using the claim above. It follows that

\[1^r/0 = r(1/0) = (r \cdot (r : t))(1/0) = 1^{r(r : t)}/0.\]

We deduce that \(1^{r(r : t)}/1^r = 1^{(r : t)}/1^{r(r : t)}\), and so

\[s(1^{r(r : t)}/1^r) = s(1^{(r : t)}/1^{r(r : t)}).\]

But \(1^{r(s+t)}/1^r = s(1^{r(r : t)}/1^r)\) and \(s(1^{r(r : t)}/1^{r(r : t)}) = 1^{(r : s) \cdot (r : t)}/0\), hence

\[1^{r(s+t)}/1^r = 1^{(r : s) \cdot (r : t)}/0.\]

This implies that

\[1^{r(s+t)} = 1^{(r : s) \cdot (r : t)}.\]

Indeed, we have proved above that \(1^{r(s+t)}/1^r \subseteq 1^{(r : s) \cdot (r : t)}/0\), so \(1^{r(s+t)} \leq 1^{(r : s) \cdot (r : t)}\). Now, \(1^{r(s+t)}/1^r = 1^{(r : s) \cdot (r : t)}/0\) implies that \(1^{(r : s) \cdot (r : t)} \subseteq 1^{r(s+t)}/1^r\), and then \(1^{(r : s) \cdot (r : t)} \leq 1^{r(s+t)}\).

Consequently

\[1^{r(s+t)} = 1^{(r : s) \cdot (r : t)}.\]

Then \((r : (s \cdot t))(1/0) = ((r : s) \cdot (r : t))(1/0)\), i.e., \(r : (s \cdot t) = (r : s) \cdot (r : t)\).

For the converse take \(s = t = 0\). Then \(r = r : 0 = r : (0 \cdot 0) = (r : 0) \cdot (r : 0) = r \cdot r\), so \(r\) is idempotent, as desired.

\[\square\]

Remarks 2.6. (1) The operations \(\lor\) and \(\land\) are associative, commutative, and order-preserving.

(2) The operations \(\cdot\) and \(\lor\) are order preserving, but not necessarily commutative. \(\square\)

Proposition 2.7. If \((r_i)_{i \in I}\) is any family of idempotents lattice preradicals, then so is \(\lor_{i \in I} r_i\).

Proof. Remember that we have proved in Proposition 2.5(7) that if \(r\) is an idempotent preradical, then \(r = r \cdot t\) for any preradical \(t\) such that \(r \leq t\).

We are now going to prove the equality \((\lor_{i \in I} r_i) \cdot (\lor_{i \in I} r_i) = \lor_{i \in I} r_i\). Since \(r_i \leq \lor_{i \in I} r_i\) and \(r_i\) is idempotent, we have \(r_i = r_i \cdot (\lor_{i \in I} r_i)\), \(\forall i \in I\). By Proposition 2.5(2) we deduce that

\[(\lor_{i \in I} r_i) \cdot (\lor_{i \in I} r_i) = \lor_{i \in I} r_i \cdot (\lor_{i \in I} r_i).\]

It follows that \((\lor_{i \in I} r_i) \cdot (\lor_{i \in I} r_i) = \lor_{i \in I} r_i\), i.e., \(\lor_{i \in I} r_i\) is a preradical, as desired. \(\square\)
Proposition 2.8. If \((r_i)_{i \in I} \) is any family of lattice radicals, then so is \(\bigwedge_{i \in I} r_i \).

Proof. If \(r,s,t \in \mathcal{L}\)-pr are such that \(r \leq s \) then \(r : t \leq s : t \) by Remarks 2.6(2). Since \(\bigwedge_{i \in I} r_i \leq r_j \), \(\forall j \in I \), we have \((\bigwedge_{i \in I} r_i) : r_j \leq r_j : r_j \), and so

\[
(\bigwedge_{i \in I} r_i) : (\bigwedge_{i \in I} r_i) = (\bigwedge_{i \in I} (r_i : r_i)) \leq \bigwedge_{i \in I} r_i
\]

by Proposition 2.5(4).

On the other hand, for any \(u,v \in \mathcal{L}\)-pr, we have \(u \leq v : u \), so \(r_j \leq (\bigwedge_{i \in I} r_i) : r_j \), \(\forall j \in I \).

We deduce that

\[
\bigwedge_{i \in I} r_i \leq \bigwedge_{i \in I} (\bigwedge_{i \in I} r_i) : r_i = (\bigwedge_{i \in I} r_i) : (\bigwedge_{i \in I} r_i).
\]

Consequently \((\bigwedge_{i \in I} r_i) : (\bigwedge_{i \in I} r_i) = (\bigwedge_{i \in I} r_i) \), i.e., \((\bigwedge_{i \in I} r_i) \) is a radical, as desired. \(\square \)

We define now the latticial counterparts of the module preradicals \(\alpha^M_N \) and \(\omega^M_N \) defined in [13] for any module \(M_R \) and any fully invariant submodule \(N \) of \(M \).

Definitions 2.9. Let \(L \in \mathcal{M}_c \) and \(a \in FI(L) \). For any \(K \in \mathcal{M}_c \) we set

\[
\alpha^L_a(K) := \left(\bigvee \{ f(a) \mid f \in \text{Hom}_{\mathcal{L}M}(L,K) \} \right) / 0
\]

and

\[
\omega^L_a(K) := \left(\bigwedge \{ f^{-1}(a/0) \mid f \in \text{Hom}_{\mathcal{L}M}(K,L) \} \right) / 0.
\]

\(\square \)

For any \(f \in \text{Hom}_{\mathcal{L}M}(K,L) \) we denote \(z_f := \bigvee_{x \in f^{-1}(a/0)} x \). We claim that

\[
z_f / 0 = f^{-1}(a/0).
\]

Indeed, let \(y \in f^{-1}(a/0) \). Then \(f(y) \in a/0 \), so \(y \leq \bigvee_{x \in f^{-1}(a/0)} x = z_f \), i.e., \(y \in z_f / 0 \). It follows that \(f^{-1}(a/0) \subseteq z_f / 0 \).

For the opposite inclusion, let \(y \in z_f / 0 \). Then \(y \leq z_f = \bigvee_{x \in f^{-1}(a/0)} x \), so

\[
f(y) \leq f(\bigvee_{x \in f^{-1}(a/0)} x) = \bigvee_{x \in f^{-1}(a/0)} f(x) \leq a,
\]

i.e., \(y \in f^{-1}(a/0) \). This shows that \(z_f / 0 \subseteq f^{-1}(a/0) \) and proves our claim.

Consequently

\[
\omega^L_a(K) = \left(\bigwedge_{f \in \text{Hom}_{\mathcal{L}M}(K,L)} z_f \right) / 0.
\]

Proposition 2.10. For any \(L \in \mathcal{M}_c \) and \(a \in FI(L) \) we have \(\alpha^L_a \in \mathcal{L}\)-pr, \(\omega^L_a \in \mathcal{L}\)-pr, and

\[
\alpha^L_a(L) = a/0 = \omega^L_a(L).
\]

Proof. Let \(K \in \mathcal{M}_c \). By definition, \(\alpha^L_a(K) \) is clearly a subobject of \(K \). Let \(h : K \to K' \) be a linear morphism of lattices. For any \(f \in \text{Hom}_{\mathcal{L}M}(L,K) \) we have \(h \circ f \in \text{Hom}_{\mathcal{L}M}(L,K') \).

Since \(h \) commutes with arbitrary joins,

\[
h(\bigvee_{f \in \text{Hom}_{\mathcal{L}M}(L,K)} f(a)) = \bigvee_{f \in \text{Hom}_{\mathcal{L}M}(L,K)} (h \circ f)(a) \leq \bigvee_{g \in \text{Hom}_{\mathcal{L}M}(L,K')} g(a).
\]
Because h is an increasing mapping, we have

$$h\left(\bigvee \{f(a) \mid f \in \text{Hom}_{\mathcal{L}}(L, K)\}\right)/0 \subseteq \bigvee \{g(a) \mid g \in \text{Hom}_{\mathcal{L}}(L, K')\}/0',$$

i.e., $h(\alpha^L_a(K)) \subseteq \alpha^L_a(K')$. So, by Lemma 1.1 we deduce that the restriction of h to $\alpha^L_a(K)$ is a linear morphism of lattices. Therefore $\alpha^L_a \in \mathcal{L}$-pr.

In order to prove that $\omega^L_a \in \mathcal{L}$-pr, let $K \in \mathcal{M}_e$. Then

$$\omega^L_a(K) = \bigwedge_{f \in \text{Hom}_{\mathcal{L}}(K, L)} z_f/0$$

is clearly a subobject of K. Let $h : K \longrightarrow K'$ be a linear morphism of lattices. For any $g \in \text{Hom}_{\mathcal{L}}(K', L)$ we have $g \circ h \in \text{Hom}_{\mathcal{L}}(K, L)$. Let $x \in \omega^L_a(K)$. Then

$$x \leq \bigwedge_{g \in \text{Hom}_{\mathcal{L}}(K', L)} z_g.$$

Hence $x \leq z_{goh} = \bigwedge_{y \in (goh)^{-1}(a/0)} y$, so $x \leq y$ for all $y \in (g \circ h)^{-1}(a/0)$. As $g \circ h$ is an increasing mapping, $(g \circ h)(x) \leq (g \circ h)(y) \in a/0$. Thus $(g \circ h)(x) \in a/0$, so $h(x) \in g^{-1}(a/0)$. It follows that $h(x) \leq z_g$, $\forall g \in \text{Hom}_{\mathcal{L}}(K', L)$.

Therefore $h(x) \leq \bigwedge_{g \in \text{Hom}_{\mathcal{L}}(K', L)} z_g/0$, so

$$h(\omega^L_a(K)) \subseteq \bigwedge_{g \in \text{Hom}_{\mathcal{L}}(K', L)} z_g/0.$$

Consequently $h(\omega^L_a(K)) \subseteq \omega^L_a(K')$. So, by Lemma 1.1, we deduce that the restriction of h to $\omega^L_a(K)$ is a linear morphism of lattices. Therefore $\omega^L_a \in \mathcal{L}$-pr.

We are now going to prove the equality $\alpha^L_a(L) = a/0 = \omega^L_a(L)$. Since the identity mapping 1_L on L is in $\text{Hom}_{\mathcal{L}}(L, L)$ and $f(a) \leq a$, $\forall f \in \text{Hom}_{\mathcal{L}}(L, L)$, we have

$$\bigvee \{f(a) \mid f \in \text{Hom}_{\mathcal{L}}(L, L)\} = a,$$

i.e., $\alpha^L_a(L) = a/0$.

Let $x \in \omega^L_a(L)$. Then $f(x) \leq a$, $\forall f \in \text{Hom}_{\mathcal{L}}(L, L)$. As the identity mapping 1_L of L is in $\text{Hom}_{\mathcal{L}}(L, L)$, it follows that $x = 1_L(x) \leq a$. Thus $\omega^L_a(L) \subseteq a/0$. Now, if $x \leq a$ and $f \in \text{Hom}_{\mathcal{L}}(L, L)$, then $f(x) \leq f(a)$. As $a \in FI(L)$, we have $f(x) \leq f(a) \leq a$. Hence $a/0 \subseteq \omega^L_a(L)$. We conclude that $a/0 = \omega^L_a(L)$, as desired.

Corollary 2.11. Let $L \in \mathcal{M}_e$ and $a \in L$. Then $a \in FI(L) \iff \exists r \in \mathcal{L}$-pr with $r(L) = a/0$.

Proof. \implies follows at once from Proposition 2.10.

\iff Let $r \in \mathcal{L}$-pr be such that $r(L) = r(1/0) = 1'/0 = a/0$. Then $a = 1'$. Let $f \in \text{Hom}_{\mathcal{L}}(L, L)$. As r is a lattice preradical, we have $r(f) : r(L) \longrightarrow r(L)$, so

$$f(r(L)) = f(a/0) \subseteq r(L) = a/0,$$
and hence \(f(a) \leq a \), i.e., \(a \in FI(L) \).

Proposition 2.12. Let \(L \in \mathcal{M}_c \), \(r \in \mathcal{L}_{-pr} \), and \(a \in FI(L) \). Then

\[
r(L) = a/0 \iff \alpha_a^L \leq r \leq \omega_a^L.
\]

Proof. \(\implies \) For any \(K \in \mathcal{M}_c \), we have \(f(r(L)) = f(a/0) \subseteq r(K) \), \(\forall f \in \text{Hom}_{\mathcal{L}_{-pr}}(L, K) \). Thus \(f(a) \in r(K) \), \(\forall f \in \text{Hom}_{\mathcal{L}_{-pr}}(L, K) \), hence

\[
(\bigvee \{ f(a) \mid f \in \text{Hom}_{\mathcal{L}_{-pr}}(L, K) \})/0 \subseteq r(K).
\]

Indeed, \(r(K) \) is a subobject of \(K \), so \(r(K) = b/0 \) for some \(b \in K \). Since \(f(a) \in r(K) \), we have \(f(a) \leq b \), and then \(f(a)/0 \subseteq b/0 = r(K) \). So \(\alpha_a^L(K) \subseteq r(K) \), i.e., \(\alpha_a^L \leq r \).

Since

\[
g(r(K)) \subseteq r(L) = a/0, \forall g \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L),
\]

it follows that \(g(x) \in a/0, \forall x \in r(K) \), and \(g \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L) \). Therefore

\[
x \in g^{-1}(a/0), \forall g \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L).
\]

We claim that \(x \in \omega_a^L(K) \), which will clearly imply \(r \leq \omega_a^L \), and so, it will prove the implication \(\implies \).

In order to prove our claim, remember that, just before the statement of Proposition 2.10, we established the relation

\[
\omega_a^L(K) = (\bigwedge_{f \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L)} z_f)/0,
\]

where \(z_f := \bigvee_{x \in f^{-1}(a/0)} x \), and showed that \(z_f/0 = f^{-1}(a/0) \).

Since \(x \in g^{-1}(a/0), \forall g \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L) \), we have \(x \leq z_g, \forall g \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L) \). It follows that \(x \leq \bigwedge_{f \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L)} z_f \), and then \(x \in (\bigwedge_{f \in \text{Hom}_{\mathcal{L}_{-pr}}(K, L)} z_f)/0 = \omega_a^L(K) \), as claimed.

\(\iff \) As \(\alpha_a^L \leq r \leq \omega_a^L \), we have \(\alpha_a^L(L) \leq r(L) \leq \omega_a^L(L) \). By Proposition 2.10, we deduce that \(a/0 \leq r(L) \leq a/0 \). Therefore \(r(L) = a/0 \), and we are done.

Our final aim in this paper is to discuss a latticial counterpart of [13, Theorem 7] saying that \(R_{-pr} \) is an atomic big lattice having \(\{ \alpha_S^{E_R(S)} \mid S \in \text{R-simp} \} \) as the set of all atoms, where \(R_{-simp} \) is an irredundant representative set of the class of all simple right \(R \)-modules, and \(E_R(S) \) is the injective hull of \(S \), as well as saying that \(R_{-pr} \) is a coatomic big lattice having \(\{ \omega_I^R \mid I \text{ is a maximal ideal of } R \} \) as its set of coatoms.

Remarks 2.13. (1) When passing from \(R_{-pr} \) to \(\mathcal{L}_{-pr} \) we should consider simple lattices instead of simple right \(R \)-modules, and for any simple lattice \(S \), one should consider the injective hull \(\mathcal{E}(S) \) of \(S \) (see [3, Section 3]), in case it exists. Moreover, notice that a lattice may have no simple subobjects, as one can see, e.g., by considering the lattice of all subobjects of any non-zero object of the Grothendieck category \(\mathcal{G} \) presented in [10, p. 1539, \(\ell \) 1-5]. So, the set \(\mathcal{A}(\mathcal{L}_{-pr}) \) could be empty, and then, clearly the class \(\mathcal{L}_{-pr} \) cannot be atomic.
We guess that the subclass of \mathcal{L}-pr consisting of all lattice preradicals on the class \mathcal{M}_{cg} of all compactly generated modular lattices is a coatomic big lattice. The reason to consider the subclass \mathcal{M}_{cg}-pr instead of the class \mathcal{L}-pr is that we need to involve compactly generated lattices, that allow us to obtain coatoms by using the Krull’s Lemma (see, e.g., [5, Remarks 4.2]).}

Acknowledgement. This paper was started during the first’s author stay at the Instituto de Matemáticas, UNAM in April-May 2017. He want to thank this institution for the warm hospitality and financial support offered by the grant UNAM-DGAPA-PAPIIT IN 100517.

References

Received: November 8, 2018
Revised: December 24, 2018
Accepted: January 20, 2019

(1) Simion Stoilow Institute of Mathematics of the Romanian Academy, IMAR
P.O. Box 1-764, RO - 010145 Bucharest 1
Romania
E-mail: Toma.Albu@imar.ro

(2) Instituto Tecnológico y de Estudios Superiores de Monterrey
ITESM, México
E-mail: jcastrop@itesm.mx

(3) Instituto de Matemáticas,
Universidad Nacional Autónoma de México
UNAM, México
E-mail: jrios@matem.unam.mx