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Abstract

The complete classification of right unimodal and bimodal hypersurface singular-
ities over a field of positive characteristic was given by H. D. Nguyen in form of a
classifier, which allows the concrete classification from the given equation in a step by
step procedure. The aim of this article is to characterize right unimodal and bimodal
hypersurface singularities of corank ≤ 2 by means of easy computable invariants such
as the multiplicity, the Milnor number of the given equation and its blowing up. We
also give a description of the algorithm to compute the type of right unimodal and
bimodal hypersurface singularities without computing the normal form, which we have
implemented in the computer algebra system Singular.
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1 Introduction

Let K[[x, y]] be the local ring of formal power series in two variables,M its maximal ideal,
K an algebraically closed field of characteristic p > 0 and R = Aut(K[[x, y]]), the set of all
automorphisms of K[[x, y]]. Let f and g ∈ M then f is said to be right equivalent to g,
f ∼r g if there exists an automorphism φ ∈ R such that φ(f) = g.

Classification of singularities started by Arnold in 1972 who gave a classification of simple
singularities with respect to right equivalence over the field of complex numbers [1]. These
are also the simple singularities with respect to contact equivalence. Simple hypersurface
singularities in charateristic p > 0 were classified by Greuel and Kröning [11] with respect to
contact equivalence. Greuel and Nguyen [9] classified the simple hypersurface singularities in
characteristic p > 0 with respect to right equivalence. These classifications are characterized
in [6].
In [2] Arnold and in [14] Schappert classified the unimodular plane curve singularities with
respect to right and contact equivalence respectively. Drozd and Greuel ( cf. [7]) introduced
the notion of ideal-unimodal plane curve singularities (IUS). In characteristic zero ideal-
unimodal singularities and contact unimodal singularities coincide. Nguyen in [4] introduced
some invariants for IUS and also gave pre-normal forms of all IUS by using the theorem on
parametrization finite determinacy. In [3] a sufficient condition for IUS in terms of certain
invariants is given.
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Nguyen gave the classification of right unimodal and bimodal hypersurface singularities in
positive characteristic [5].
In this article we use the results of [5] in order to characterize this classification for unimodal
and bimodal hypersurface singularities in terms of certain invariants. Moreover, we use the
names of the singularities from [5], where normal forms are given. Also we describe our
implementation of a classifier for unimodal and bimodal hypersurface singularities with
respect to right equivalence in SINGULAR [12],[8]. In some cases we use blowing up as a
tool to differentiate differentent types. We use the right-modality as defined in [9] and used
in [5].

2 Characterization of Right Uni-Modal and Bi-Modal
Hypersurface Singularities

In the following we characterize all right unimodal and bimodal hypersurface singularities
of corank ≤ 2 in terms of multiplicity, Milnor number and blowing-ups. We have only to
consider m(f) ≤ 4, since f is not uni or bimodal if m(f) > 4 (see Theorems-71, 72 and 73
in [5]). Moreover we assume p > 7.

Proposition 1. Let f ∈ K[[x, y]] such that the multiplicity m(f) = 2. Then

1. if µ(f) ≤ p− 2 then f is simple of type Aµ;

2. if p ≤ µ(f) ≤ 2p− 2 then f is unimodal of type Aµ;

3. if 2p ≤ µ(f) ≤ 3p− 2 then f is bimodal of type Aµ;

4. if µ(f) ≥ 3p then the right modality of f , rmod(f) ≥ 3.

Proof. Since m(f) = 2 then by using the right splitting lemma (Lemma-3.7 in [9]) we can
write f ∼r x2 + h(y), where h(y) = y2 if corank(f) = 0 and m(h) ≥ 3 if corank(f) = 1.

Moreover rmod(h) = bµ(h)p c (Theorem-3.1 in [9]), this gives rmod(f) = bµ(f)p c. Then clearly

if µ(f) ≤ p− 2 then f is simple of type Aµ, if p ≤ µ(f) ≤ 2p− 2 then f is unimodal of type
Aµ, if 2p ≤ µ(f) ≤ 3p− 2 then f is bimodal of type Aµ and if µ(f) ≥ 3p then rmod(f) ≥ 3.

Definition 1. Let f ∈ K[[x, y]] of order s. The number of different linear factors of js(f)
(modulo constant factor) is denoted by γs(f).

Definition 2. j{Xαi}(f), quasijet of f determined by {Xαi}, defined as follow:
Let {αi} is a system of n points defining an affine hyperplane H in Rn and v : Rn → R be
the linear form defining H with v(αi) = 1 for all i. Then j{Xαi}(f) is the image of f in
K[[X]] modulo the ideal generated by Xα, v(α) > 1.

Proposition 2. Let f ∈ K[[x, y]] such that m(f) = 3. Then rmod(f) ≥ 3 if

1. γ3(f) = 1, p = 11 and jx3,y11(f) = x3 + y11;

2. γ3(f) = 1 and jx3,y11(f) = x3;
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3. γ3(f) = 1, p > 3k, jx3,y3k(f) = x3 + x2yk and µ(f) ≥ 2p+ 3k − 2, where k = 2, 3;

4. γ3(f) = 2 and µ(h) ≥ 3p with f = x2y + h(y).

Proof. (1) is a consequence of step 24, (2) is a consequence of step 25, (3) is a consequence
of step 29 and (4) is a consequence of step 8 in the singularity determinator of [5].

Proposition 3. Let f ∈ K[[x, y]] such that m(f) = 4. Then rmod(f) ≥ 3 if

1. γ4(f) = 1, jx4,y6(f) = (x2 + y3)2 and µ(f) ≥ p+ 8;

2. γ4(f) = 1 and jx4,y7(f) = x4;

3. γ4(f) = 1, jx4,y6(f) = x4 + x2y3 and µ(f) ≥ p+ 8;

4. γ4(f) = 2 and µ(f1) ≥ p or µ(f2) ≥ 2p, where f1 and f2 are two irreducible branches
of f with 2 ≤ µ(f1) ≤ µ(f2) ;

5. γ4(f) = 2, jx3y,y7(f) = y(x3 + x2y2) and µ(f) ≥ p+ 8;

6. γ4(f) = 2 and jx3y,y9(f) = x3y;

7. j4(f) = x4 + x2y2 and µ(f) ≥ 2p+ 5.

Proof. The proof follows from the Theorems-[34, 36, 52, 53, 63, 65, 70] in [5].

Proposition 4. Let f ∈ K[[x, y]] such that m(f) = 3. If j3(f) has two linear factors one
of multiplicity 1 and one of multiplicity 2 then

1. if 4 ≤ µ(f) ≤ p− 1 then f is simple of type Dµ;

2. if µ(f) = p or p+ 1 < µ(f) ≤ 2p− 1 then f is unimodal of type Dµ;

3. if µ(f) = 2p or 2p+ 1 < µ(f) ≤ 3p− 1 then f is bimodal of type Dµ.

Proof. We may assume that f = x2y +
∑
i+j≥4 ai,jx

iyj . By using the transfomations

x→ x− a1,k−1
2

yk−2

y → y − ak,0xk−2 − ak−1,1xk−3y − · · · − a2,k−2yk−2

we can always transform f into x2y +
∑
l≥4 aly

l. Then Proposition-3.5 (i) in [9] gives if
4 ≤ µ(f) ≤ p − 1 then f is simple of type Dµ and from the Theorems 6, 7 and 8 in [5] it
follows that if µ(f) = p or p + 1 < µ(f) ≤ 2p − 1 then f is unimodal of type Dµ and if
µ(f) = 2p or 2p+ 1 < µ(f) ≤ 3p− 1 then f is bimodal of type Dµ.

Lemma 1. Let f ∈ K[[x, y]] then rmod(f) ≥ 2 + l with l ≥ 0, if either f ∈< x, y3+l >3 or
f ∈< x2, y3+l >2.
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Type Normal form modality
Dp x2y + yp−1 1
Dk x2y + ayp + yk−1 1
E12 x3 + y7 + axy5 1
E13 x3 + xy5 + ay8 1
E14 x3 + y8 + axy6 1

J10 = J2,0 = T2,3,6 x3 + y6 + ax2y2 1
J2,q x3 + ax2y2 + y6+q 1
D2p x2y + ayp + y2p−1 2
Dk x2y + a1y

p + a2y
2p + yk−1 2

E18 x3 + y10 + axy7 2
E19 x3 + xy7 + ay11 2
E20 x3 + y11 + axy8 2

J10 = J2,0 = T2,3,6 x3 + bx2y2 + y6 + ay5 2
J2,q = T2,3,6+q x3 + x2y2 + ayp + by6+q 2

J3,0 x3 + bx2y3 + cxy7 + y9 2
J3,q x3 + x2y3 + ay9+q 2

Table 1: Normal forms of unimodal and bimodal hypersurface singularities with multiplicity
3

(0,9)

(3,0)

Figure 1: Newton polygon of f ∈< x, y3 >3

Proof. See Lemma-5.5 in [5].

Proposition 5. Let f ∈ K[[x, y]] such that f ∈< x, y3 >3 then µ(f) ≥ 16.

Proof. The Newton polygon of f is on or above the face of Figure 1. This implies that the
Newton number of f is greater or equal to the Newton number of polygon above which is
16. The theorem of Kouchnirenko ([10]) implies that the Milnor number of f is greater or
equal to 16.
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Type Normal form modality
W12 x4 + y5 + ax2y3 1
W13 x4 + xy4 + ay6 1

X9 = X1,0 = T2,4,4 x4 + y4 + ax2y2 1
X1,q = T2,4,4+q x4 + x2y2 + ay4+q 1
Yr,s = T2,4+r,4+s x4+r + ax2y2 + y4+s 1

Z11 x3y + y5 + axy4 1
Z12 x3y + xy4 + ax2y3 1
Z13 x3y + y6 + axy5 1
W17 x4 + xy5 + ay7 2
W18 x4 + y7 + ax2y4 2
W1,0 x4 + ax2y3 + y6 2
W1,q x4 + x2y3 + ay6+q 2

W1,2q−1 (x2 + y3)2 + axy4+q 2
W1,2q (x2 + y3)2 + ax2y3+q 2
Z17 x3y + axy6 + y8 2
Z18 x3y + xy6 + ay9 2
Z19 x3y + y9 + axy7 2
Z1,0 x3y + bx2y3 + cxy6 + y7 2
Z1,q x3y + x2y3 + ay7+q 2

Table 2: Normal forms of unimodal and bimodal hypersurface singularities with multiplicity
4

Proposition 6. Let f ∈ K[[x, y]] such that m(f) = 3. If j3(f) has only one linear factor
of multiplicity 3 and 9 < µ(f) ≤ 15 then f is unimodal.

Proof. We may assume that f = x3 +
∑
i+j≥4 ai,jx

iyj . Since 9 < µ(f) ≤ 15 then from

the Proposition 5 it follows that f /∈< x, y3 >3. An analysis of the proofs of Theorem-9 to
Theorem-30 in [5] shows that f is unimodal.

In the following propositions f (n) denote the strict transformation of n-th blow-up of f .

Proposition 7. Let f ∈ K[[x, y]] such that m(f) = 3. If j3(f) has only one linear factor
of multiplicity 3 and 12 ≤ µ(f) ≤ 14 then

1. if µ(f (2)) = µ(f)− 11 then f is of type J2,µ(f)−10;

2. if µ(f (2)) = µ(f)− 12 then f is of type Eµ.

Proof. We may assume that f = x3 +
∑
i+j≥4 ai,jx

iyj . Since 12 ≤ µ(f) ≤ 14 then from
the proofs of Theorem-9 to Theorem-30 in [5] it follows that f is of type Eµ or J2,µ(f)−10.
Since j3(f) ∼r x3 the transformations bringing f to normal form has 1-jet the identity.
This implies that Milnor number of the strict transform of the blowing up of f does not
change under this transformation. If we compute the Milnor number of the blowing up of
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the normal form of Eµ or J2,µ(f)−10 we obtain µ(f (2)) = µ(f)− 12 or µ(f (2)) = µ(f)− 11
respectively.

Proposition 8. Let f ∈ K[[x, y]] such that m(f) = 3 and µ(f) ≥ 16. If j3(f) has only
one linear factor of multiplicity 3 then

1. if µ(f) < p + 4 and the j3(f (1)) has two linear factors one of multiplicity 1 and one
of multiplicity 2 then f is unimodal of type J2,µ(f)−10;

2. if p+ 4 < µ(f) < 2p+ 4 and the j3(f (1)) has two linear factors one of multiplicity 1
and one of multiplicity 2 then f is bimodal of type J2,µ(f)−10;

3. if µ(f) < p+ 7 and the j3(f (1)) has only one linear factor of multiplicity 3 then f is
bimodal of type J3,µ(f)−16;

Proposition 9. Let f ∈ K[[x, y]] such that m(f) = 3. If j3(f) has only one linear factor
of multiplicity 3 and 18 ≤ µ(f) ≤ 20 then

1. if µ(f (2)) = µ(f)− 12 and µ(f (3)) = µ(f)− 17 then f is bimodal of type J3,µ(f)−16;

2. if µ(f (2)) = µ(f)− 12 and µ(f (3)) = µ(f)− 18 then f is bimodal of type Eµ.

The proof of Proposition 8 and Proposition 9 is similar to the proof of Proposition 7.

Proposition 10. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has two linear factors of
multiplicity 2 then the Milnor number of its branches can be computed by using blowing ups.

Proof. Assume f = x2y2 +
∑
i+j≥5 ai,jx

iyj then f = f1f2 such that m(f1) = 2 = m(f2).
After using the transformations

x→ x− 1

2
[a1,k−1y

k−3 + a2,k−2xy
k−4 + · · ·+ ak−3,3x

k−4y]

y → y − 1

2
[ak−1,1x

k−3 + ak−2,2x
k−4y]

we can assume
f(x, y) = x2y2 +

∑
r≥1

arx
r+4 +

∑
s≥1

bsy
s+4

with r ≤ s. Consider the blowing up in the first chart defined by x→ xy, y → y.

f(xy, y) = x2y4 +
∑
r≥1

arx
r+4yr+4 +

∑
s≥1

bsy
s+4.

The strict transform is

f(xy, y)

y4
= x2 +

∑
r≥1

arx
r+4yr +

∑
s≥1

bsy
s.

Which has obviously Milnor number s − 1. Similarly we can obtain r − 1 from the other
chart. Then µ(f1) = r + 1 and µ(f2) = s+ 1.
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Proposition 11. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has two linear factors of
multiplicity 2 and r = µ(f1) − 1 ≤ s = µ(f2) − 1, where f1 and f2 are two branches of f .
Then

1. if µ(f2) < p then f is unimodal of type Yr,s;

2. if µ(f1) < p and if p ≤ µ(f2) < 2p then f is bimodal of type Yr,s;

Proof. By using Proposition 10 we can find the Milnor number of each branch of f and
hence the type of f .

Proposition 12. Let f ∈ K[[x, y]] such that f ∈< x2, y3 >2 then µ(f) ≥ 15.

(0,6)

(4,0)

Figure 2: Newton polygon of f ∈< x2, y3 >2

Proof. The Newton polygon of f is on or above the face of Figure 2. Then similar arguments
as in Proposition 5 give µ(f) ≥ 15.

Proposition 13. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has only one linear factor
of multiplicity 4 and µ(f) = 12 or µ(f) = 13 then f is unimodal of type Wµ.

Proof. We may assume that f = x4 +
∑
i+j≥5 ai,jx

iyj . Since µ(f) = 12 or µ(f) = 13

then from the Proposition 12 it follows that f /∈< x2, y3 >2. An analysis of the proofs of
Theorem-54 to Theorem-60 in [5] gives f is unimodal of type Wµ.

Proposition 14. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has four linear factors
and µ(f) = 9 then f is unimodal of type X1,0.

Proposition 15. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has one linear factor
of multiplicity 2 and two linear factors of multiplicity 1 and 9 < µ(f) < p + 5 then f is
unimodal of type X1,µ(f)−9.
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The proof of the Propositions 14 and 15 directly follows from the proofs of Theorem-31
to Theorem-34 in [5].

Proposition 16. Let f ∈ K[[x, y]] such that m(f) = 4 and µ(f) = 16. If j4(f) has only
one linear factor of multiplicity 4. Then

1. if j2(f (1)) has only one linear factor of multiplicity 2 then f is bimodal of type W ]
1,1,

2. if j2(f (1)) = 0 and j3(f (1)) has three linear factors each of multiplicity 1 then f is
bimodal of type W1,1.

Proof. The proof is similar to the proof of Proposition 7.

Proposition 17. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has only one linear factor
of multiplicity 4. Then

1. if µ(f) = 17, j2(f (1)) = 0, j3(f (1)) has two linear factors, one of multiplicity 1 and
one of multiplicity 2 and f has two branches f1, f2 such that m(f1) = 1, m(f2) = 3
and µ(f1) = 0, µ(f2) = 8 then f is bimodal of type W17,

2. if µ(f) = 17, j2(f (1)) = 0, j3(f (1)) has two linear factors, one of multiplicity 1 and
one of multiplicity 2 and f has two branches f1, f2 such that m(f1) = 2, m(f2) = 2
and µ(f1) = 2, µ(f2) = 4 then f is bimodal of type W1,2,

3. if µ(f) = 17, j2(f (1)) has only one linear factors of multiplicity 2 and f has two
branches f1, f2 such that m(f1) = 2, m(f2) = 2 and µ(f1) = 2, µ(f2) = 2 then f is

bimodal of type W ]
1,2.

Proof. We may assume that f = x4 +
∑
i+j≥5 ai,jx

iyj . If µ(f) = 17 then from the proof of

the classification follows that f is of type W17, W1,2 or W ]
1,2. Moreover we can differentiate

these types by computing the second and third jet of the strict transform of first blow up,
number of branches, multiplicity of each branch and their Milnor numbers.

Proposition 18. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has only one linear factor
of multiplicity 4. Then

1. if µ(f) = 18, f is irreducible, j2(f (1)) has one linear factor of multiplicity 2 then f is

bimodal of type W ]
1,3,

2. if µ(f) = 18, f is irreducible, j2(f (1)) = 0 and j3(f (1)) has only one linear factor of
multiplicity 3 then f is bimodal of type W18.

3. if µ(f) = 18, f has three branches, two of multiplicity 1 and one of multiplicity 2,
j2(f (1)) = 0 and j3(f (1)) has two linear factors one of multiplicity 1 and one of
multiplicity 2 then f is bimodal of type W1,3.

Proof. The proof is similar to the proof of Proposition 17.
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Proposition 19. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has only one linear factor
of multiplicity 4. Then

1. if 19 ≤ µ(f) < p + 9 , j2(f (1)) = 0 and j3(f (1)) has two linear factors one of
multiplicity 2 and one of multiplicity 1 then f is bimodal of type W1,µ(f)−15,

2. if 19 ≤ µ(f) < 2p + 6 and j2(f (1)) has one linear factor of multiplicity 2 then f is

bimodal of type W ]
1,µ(f)−15.

Proof. The proof is similar to the proof of Proposition 17.

Proposition 20. Let f ∈ K[[x, y]] such that m(f) = 4. If j4(f) has two linear factors one
of multiplicity 1 and one of multiplicity 3 then

1. if 11 ≤ µ(f) ≤ 13 then f is unimodal of type Zµ,

2. if µ(f) = 15 then f is bimodal of type Z1,0,

3. if 16 ≤ µ(f) < p+ 8 and µ(f (2)) = µ(f)− 16 then f is bimodal of type Z1,µ(f)−15,

4. if 17 ≤ µ(f) ≤ 19 and µ(f (2)) = µ(f)− 17 then f is bimodal of type Zµ.

Proof. The proof is similar to the proof of Proposition 17.

3 Singular Examples:

We have implemented the Algorithm in the computer algebra system SINGULAR [8]. Code
can be download from mathcity.org/junaid.

LIB"classifyReq.lib";

> ring R=11,(x,y),ds;

> poly f=4x2+xy-2y2+4x11-4y11+x15-4x14y-5x13y2-4x12y3+x11y4-x4y11

+4x3y12+5x2y13+4xy14-y15;

> uniBimodalReq(f);

f is unimodal of type A_14:x2+3y11+y15

> ring R=13,(x,y),ds;

> poly f=-4x4-x3y+x2y2-2xy3-3y4-x6+4x5y+2x4y2+4x3y3-2x2y4+4xy5

+y6-5x15+4x14y-6x13y2+2x2y13+xy14+5y15;

> uniBimodalReq(f);

f is bimodal of type Y_2,11:-3x2y2+x6+y15
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