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Abstract

Let K be a field, V a finite dimensional K-vector space, E the exterior algebra
of V , and F a finitely generated graded free E-module with all basis elements of the
same degree. We prove that given any graded submodule M of F , there exists a
unique lexicographic submodule L of F such that HF/L = HF/M . As a consequence,
we are able to describe the possible Hilbert functions of graded E-modules of the type
F/M . Finally, we state that the lexicographic submodules of F give the maximal Betti
numbers among all the graded submodules of F with the same Hilbert function.
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1 Introduction

A classical problem in commutative algebra consists in studying minimal graded free reso-
lutions of finitely generated graded modules over graded rings. In particular, a lot of work
has been done to establish bounds for the Betti numbers (see, for instance, [4, 8, 7, 11, 12,
14, 15, 23, 22], and the reference therein).

Let K be a field, V a K-vector space with basis e1, . . . , en, and E the exterior algebra
of V . In [4], Aramova, Herzog and Hibi found a necessary and sufficient condition for a
function to be the Hilbert function of a graded K–algebra of the type E/I, with I graded
ideal in E (see also [18]). Moreover, they showed that the lexicographic ideals provide an
upper bound for the class of all graded ideals in E with the same Hilbert function. In
this paper, we use the rank 1 case [4] to extend the result to graded submodules of a free
E-module. More precisely, let M be the category of finitely generated Z-graded left and
right E-modules M satisfying am = (−1)deg a degmma for all homogeneous elements a ∈ E,
and m ∈ M . Let F ∈ M be a free module with homogeneous basis g1, . . . , gr, where
deg(gi) = fi for each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. A monomial submodule M of F
is a submodule of the form M = ⊕ri=1Iigi, with Ii (i = 1, . . . , r) monomial ideals in E. It is
clear that a monomial submodule is in the categoryM. A class of monomial submodules of
F playing a relevant role in combinatorial commutative algebra is the class of lexicographic
submodules (Definition 8). Such a class allows us to state a characterization of all possible
Hilbert functions of graded E-modules of the form F/M (M graded submodule of F ) with
all basis elements of F of the same degree, and consequently we get upper bounds for the
Betti numbers of the class of all graded submodules in F with the same Hilbert function.
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The outline of the paper is as follows. Section 2 contains preliminary notions and results.
In Section 3, we discuss both the class of almost lexicographic submodules (Definition 7)
and the class of lexicographic submodules of F . We prove that the almost lexicographic
submodules provide an upper bound for the Betti numbers of all graded submodules of F
with the same Hilbert function (Proposition 1). Such a bound is not maximal in general.
Finally, we give a characterization of the class of lexicographic submodules (Proposition 2).
Section 4 is devoted to the study of the Hilbert functions of graded E–modules of the form
F/M , with M graded submodule of F . We focus our attention on the case when F = Er,
i.e., F is the free E-module with homogeneous basis g1, . . . , gr, where gi (i = 1, . . . , r) is the
r-tuple whose only non zero–entry is 1 in the i–th position and such that deg(gi) = 0, for all
i. Hence, we are able to give a generalization of the Kruskal–Katona theorem (Theorem 1).
More precisely, if M is a graded submodule of Er, we give a characterization of all possible
Hilbert functions of graded E–modules of the form Er/M (r ≥ 1) (Theorem 3). The crucial
point for the statement of the theorem is the existence of a unique lexicographic submodule
of Er with the same Hilbert function as M . In Section 5, by combinatorial arguments and
using the same techniques as in [4, 5], we prove that the lexicograhic submodules of Er have
the greatest Betti numbers among all the graded submodules of Er with the same Hilbert
function (Theorem 4). Finally, Section 6 contains our conclusions and perspectives.

2 Preliminaries and notations

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra of a K-vector space
V with basis e1, . . . , en. For any subset σ = {i1, . . . , id} of {1, . . . , n} with i1 < i2 < · · · < id
we write eσ = ei1 ∧ . . . ∧ eid , and call eσ a monomial of degree d. We set eσ = 1, if σ = ∅.
The set of monomials in E forms a K-basis of E of cardinality 2n.

In order to simplify the notation, we put fg = f ∧ g for any two elements f and g in
E. An element f ∈ E is called homogeneous of degree j if f ∈ Ej , where Ej =

∧j
V . An

ideal I is called graded if I is generated by homogeneous elements. If I is graded, then
I = ⊕j≥0Ij , where Ij is the K-vector space of all homogeneous elements f ∈ I of degree j.
We denote by indeg(I) the initial degree of I, i.e., the minimum s such that Is 6= 0.

Let M be the category of finitely generated Z-graded left and right E-modules M
satisfying am = (−1)deg a degmma for all homogeneous elements a ∈ E, m ∈M . Note that
if I is a graded ideal of E, then I ∈ M and E/I ∈ M. Every E-module M ∈ M has a
minimal graded free resolution F over E:

F : . . .→ F2
d2→ F1

d1→ F0 →M → 0,

where Fi = ⊕jE(−j)βi,j(M). The integers βi,j(M) = dimK TorEi (M,K)j are called the
graded Betti numbers of M , whereas the numbers βi(M) =

∑
j βi,j(M) are called the Betti

numbers of M .

If M ∈ M, the function HM : Z→ Z given by HM (d) = dimKMd is called the Hilbert
function of M .

Let F ∈M be a free module with homogeneous basis g1, . . . , gr, where deg(gi) = fi for
each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. We write F = ⊕ri=1Egi. The elements of the form
eσgi, where eσ ∈ Mon(E), are called monomials of F , and deg(eσgi) = deg(eσ) + deg(gi).
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In particular, if F = Er and gi = (0, . . . , 0, 1, 0, . . . , 0), where 1 appears in the i-th place,
we assume, as usual, deg(eσgi) = deg(eσ), i.e., deg(gi) = fi = 0, for all i.

From now on, we will denote by F = ⊕ri=1Egi a free E-module with homogeneous basis
g1, . . . , gr, where deg(gi) = fi (i = 1, . . . , r) with f1 ≤ f2 ≤ · · · ≤ fr. Furthermore, when
we write F = Er, we mean that F is the free E-module F = ⊕ri=1Egi with homogeneous
basis g1, . . . , gr, where gi (i = 1, . . . , r) is the r-tuple where the unique non zero–entry is 1
in the i–th position, and such that deg(gi) = 0, for all i.

For any non empty subset S of E (of F , respectively), we denote by Mon(S) the set of
all monomials in S (of F , respectively), and we denote its cardinality by |S|.

Definition 1. A graded submodule M of F is a monomial submodule if M is a submodule
generated by monomials of F , i.e.,

M = I1g1 ⊕ · · · ⊕ Irgr,

with Ii a monomial ideal of E, for each i.

Moreover, if r = 1 and f1 = 0, a monomial submodule is a monomial ideal of E.
Let eσ = ei1 · · · eid 6= 1 be a monomial in E. We define

supp(eσ) = σ = {i : ei divides eσ},

and we write
m(eσ) = max{i : i ∈ supp(eσ)} = max{i : i ∈ σ}.

We set m(eσ) = 0, if eσ = 1.

Definition 2. Let I be a monomial ideal of E. I is called stable if for each monomial
eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I. I is called strongly stable if for each
monomial eσ ∈ I and each j ∈ σ one has eieσ\{j} ∈ I, for all i < j.

Definition 3. A monomial submodule M = ⊕ri=1Iigi of F is an almost (strongly) stable
submodule if Ii is a (strongly) stable ideal of E, for each i.

Definition 4. A monomial submodule M = ⊕ri=1Iigi of F is a (strongly) stable submodule
if Ii is a (strongly) stable ideal of E, for each i, and (e1, . . . , en)fi+1−fiIi+1 ⊆ Ii, for
i = 1, . . . , r − 1.

Example 1. Let E = K〈e1, e2, e3, e4〉 and F = E2. The submodule

M = (e1e2)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2

of F is an almost strongly stable submodule; whereas

N = (e1e2, e1e3)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2

is a strongly stable submodule.

If I is a monomial ideal in E, we denote by G(I) the unique minimal set of monomial
generators of I, and by G(I)d the set of all monomials u ∈ G(I) such that deg(u) = d,
d > 0. On the contrary, for every monomial submodule M = ⊕ri=1Iigi of F , we set

G(M) = {ugi : u ∈ G(Ii), i = 1, . . . , r},
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and

G(M)d = {ugi : u ∈ G(Ii)d−fi , i = 1, . . . , r}.

Now, order the monomials of F in the degree reverse lexicographic order, >degrevlexF , as
follows: let eσgi and eτgj be monomials of F , then eσgi >degrevlexF eτgj if

- deg(eσgi) > deg(eτgj), or

- deg(eσgi) = deg(eτgj), and either eσ >revlex eτ , or eσ = eτ and i < j;

>revlex is the usual reverse lexicographic order on E (see [4]).

Any element f of F is a unique linear combination of monomials with coefficients in
K. The largest monomial in this presentation with respect to >revlex is called the initial
monomial of f and denoted by in(f). If M is a graded submodule of F then the submodule
of initial terms of M , denoted by in(M), is the submodule of F generated by the initial
terms of elements of M . Using the same arguments as in the polynomial case ([10, Ch. 15],
[25, Ch. 8.3], [21]; see, also, [4] for the rank one case), one has that

HF/M = HF/ in(M) (2.1)

and

βi,j(F/M) ≤ βi,j(F/ in(M)), for all i, j. (2.2)

One can observe that, since in(M) is a monomial submodule of F with the same Hilbert
function as M , one may assume M itself to be a monomial submodule without changing
the Hilbert function.

Example 2. Let E = K〈e1, e2, e3, e4, e5〉 and F = E2. Consider the graded submodule

M = (e1e2e3 + e3e4e5, e1e3 + e4e5, e2e3e4)g1 ⊕ (e1e2 + e1e3, e4e5)g2

of F . M is not a monomial submodule and the initial module of M is

in(M) = (e1e3, e1e4e5, e2e3e4, e2e4e5, e3e4e5)g1 ⊕ (e1e2, e4e5)g2.

Note that HF/M = (2, 10, 17, 7, 0, 0) = HF/ in(M). Finally, by comparing the Betti diagrams
(as displayed by the computer program Macaulay2 [17]) of M and in(M)

total 5 20 56 123 234 404 650
2 3 4 6 8 10 12 14
3 2 16 50 115 224 392 636

Betti diagram for M

total 7 25 63 132 245 417 665
2 3 6 9 12 15 18 21
3 4 19 54 120 230 399 644

Betti diagram for in(M)

one can verify that the inequality in (2.2) is satisfied.
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We close this Section with a relevant result on the Hilbert functions of graded K-algebras
of the form E/I, with I graded ideal in E.

Let a and i be two positive integers. Then a has the unique i-th Macaulay expansion

a =

(
ai
i

)
+

(
ai−1
i− 1

)
+ · · ·+

(
aj
j

)
with ai > ai−1 > · · · aj ≥ j ≥ 1. We define

a(i) =

(
ai
i+ 1

)
+

(
ai−1
i

)
+ · · ·+

(
aj
j + 1

)
.

We also set 0(i) = 0 for all i ≥ 1.
We quote next result from [4].

Theorem 1. ([4, Theorem 4.1]) Let (h1, . . . , hn) be a sequence of non–negative integers.
Then the following conditions are equivalent:

(a) 1 +
∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I;

(b) 0 < hi+1 ≤ h(i)i , 0 < i ≤ n− 1.

Theorem 1 is known as the Kruskal-Katona theorem.
From now on, if 1 +

∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I, the
sequence (1, h1, . . . , hn) will be called the Hilbert sequence of E/I, with I graded ideal in
E.

Remark 1. From the Kruskal-Katona theorem, one can deduce that a sequence of non–
negative integers (h0, h1, . . . , hn) is the Hilbert sequence of a graded K–algebra E/I, with I
graded ideal of E of initial degree ≥ 1, if h0 = 1, h1 ≤ n and condition (b) in Theorem 1
holds.

3 (Almost) Lexicographic submodules

In this Section, we analyze two special classes of monomial submodules of F that will play
a fundamental role for the development of the paper: the almost lexicographic submodules
and the lexicographic submodules.

Let Mond(E) be the set of all monomials of degree d ≥ 1 in E. Denote by >lex the
lexicographic order (lex order, for short) on Mond(E), i.e., if eσ = ei1ei2 · · · eid and eτ =
ej1ej2 · · · ejd are monomials belonging to Mond(E) with 1 ≤ i1 < i2 < · · · < id ≤ n and
1 ≤ j1 < j2 < · · · < jd ≤ n, then eσ >lex eτ if i1 = j1, . . ., is−1 = js−1 and is < js for
some 1 ≤ s ≤ d.

Definition 5. A non empty subset M of Mond(E) is called a lexicographic segment (lex
segment, for short) of degree d if for all v ∈M and all u ∈ Mond(E) such that u >lex v, we
have that u ∈M .

Definition 6. A monomial ideal I of E is called a lexicographic ideal (lex ideal, for short)
if for all monomials u ∈ I and all monomials v ∈ E with deg u = deg v and v >lex u, then
v ∈ I.
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Equivalently, a monomial ideal I of E is called a lexicographic ideal if Mond(I) is a lex
segment, for all d; Mond(I) is the set of all monomials of degree d in I.

Remark 2. Every lex ideal of E is obviously a (strongly) stable ideal.

It is well known that if I is a graded ideal of E, then there exists a unique lexsegment
ideal of E, usually denoted by I lex, such that HE/I = HE/Ilex [4, Theorem 4.1].

Now, we give the following definition.

Definition 7. A monomial submodule M = ⊕ri=1Iigi of F is an almost lexicographic sub-
module (almost lex submodule, for short) if Ii is a lex ideal of E, for each i.

Next result associates to a graded submodule M of F an almost lex submodule of F
which preserves the Hilbert function and provides an upper bound for the Betti numbers
of the class of all graded submodules of F with given Hilbert function.

For a monomial submodule M = ⊕ri=1Iigi of F , let us denote by D(M) the set of all
the monomial ideals Ii which appear in the direct decomposition of M .

Proposition 1. Let M be a graded submodule of F . Then there exists an almost lex
submodule L of F such that

(a) HF/M = HF/L;

(b) βp,q(F/M) ≤ βp,q(F/L), for all p, q.

Proof. First of all, from (2.1), (2.2), we may assume that M is a monomial submodule of
F .
Set M = ⊕rj=1Ijgj , with Ij monomial ideal of E, for all j. From Theorem 1 and [4, Theorem

4.1], for every Ij ∈ D(M) (j = 1, . . . , r) there exists a unique lex ideal I lexj of E such that

HE/Ij = HE/Ilexj
and βp,q(E/Ij) ≤ βp,q(E/I lexj ), for all p, q.

Hence, setting L = ⊕rj=1I
lex
j gj , L is an almost lex submodule of F such that

HF/M (d) =

r∑
j=1

HEgj/Ijgj (d) =

r∑
j=1

HE/Ij (d− fi) =

r∑
j=1

HE/Ilexj
(d− fi) =

=

r∑
j=1

HEgj/Ilexj gj (d) = HF/L(d), for all d,

and

βp,q(F/M) =

r∑
j=1

βp,q(Egj/Ijgj) =

r∑
j=1

βp,q−fj (E/Ij) ≤

≤
r∑
j=1

βp,q−fj (E/I
lex
j ) =

r∑
j=1

βp,q(Egj/I
lex
j gj) = βp,q(F/L), for all p, q.

The assertions (a), (b) follow.
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If M = ⊕rj=1Ijgj is a monomial submodule of F , we will denote by Malex the almost

lex submodule of F defined in Proposition 1, i.e., Malex = ⊕rj=1I
lex
j gj . Such a monomial

submodule will be called the almost lex submodule associated to M .
Note that Proposition 1 implies that if M is a graded submodule of F , we may assume M

itself to be an almost lex submodule (hence, an almost strongly stable submodule) without
changing the Hilbert function.

Example 3. Let E = K〈e1, e2, e3, e4〉 and F = E3. Consider the monomial submodule

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3

of F . Set I1 = (e1e2, e3e4), I2 = (e1e2, e2e3e4) and I3 = (e2e3e4).
If one considers the monomial ideal I1, one has HE/I1 = (1, 4, 4, 0, 0) and consequently

I lex1 = (e1e2, e1e3, e2e3e4). Furthermore, HE/I2 = (1, 4, 5, 1, 0) and I lex2 = (e1e2, e1e3e4);

whereas, HE/I3 = (1, 4, 6, 3, 0) and I lex3 = (e1e2e3). Therefore,

Malex = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2e3)g3,

and HF/Malex = (3, 12, 15, 4, 0) = HF/M . Finally, if we compare the Betti diagrams of M

and Malex

total 5 14 29 52 85 130
2 3 6 9 12 15 18
3 2 8 20 40 70 112

Betti diagram for M

total 6 18 38 68 110 166
2 3 7 12 18 25 33
3 3 11 26 50 85 133

Betti diagram for Malex

the inequalities on the Betti numbers of Proposition 1 (b) are verified.

Remark 3. It is worthy to be highlighted that if M is a graded submodule of F , then almost
lex submodules which are not equal to Malex but with the same Hilbert function as M could
exist. Indeed, let E = K〈e1, e2, e3, e4〉, F = E3 and

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3.

The almost lex submodule of F associated to M is

Malex = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2e3)g3,

and HF/Malex = (3, 12, 15, 4, 0) = HF/M . The following submodule

N = (e1e2, e1e3, e1e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2 ⊕ (e1e2e3, e1e2e4)g3,

of F is an almost lex submodule (different from Malex) such that HF/N = (3, 12, 15, 4, 0) =
HF/M .

Now, for every d, let Fd be the part of degree d of F = ⊕ri=1Egi, i.e., the K-vector space
of homogeneous elements of F of degree d. Denote by Mond(F ) the set of all monomials of
degree d of F . We order such a set by the ordering >lexF defined as follows:
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if ugi and vgj are monomials of F such that deg(ugi) = deg(vgj), then ugi >lexF vgj if
i < j or i = j and u >lex v.

For example, if E = K〈e1, e2, e3〉, the monomials of degree 2 of F = E2 are ordered as
follows (with respect to >lexF ):

e1e2g1 >lexF e1e3g1 >lexF e2e3g1 >lexF e1e2g2 >lexF e1e3g2 >lexF e2e3g2.

Definition 8. Let L be a monomial submodule of F . L is a lexicographic submodule (lex
submodule, for short) if for all u, v ∈ Mond(F ) with u ∈ L and v >lexF u, one has v ∈ L,
for every d.

Let us give the following definition.

Definition 9. A non empty subset N of Mond(F ) is called a lexicographic segment of F
(lexF segment, for short) of degree d if for all v ∈ N and all u ∈ Mond(F ) such that
u >lexF v, then u ∈ N .

Example 4. Let E = K〈e1, e2, e3〉 and F = E2. The subset N = {e1e2g1, e1e3g1, e2e3g1,
e1e2g2} is a lexF segment of degree 2 of F ; on the contrary, N ′ = {e1e2g1, e1e3g1, e1e2g2} is
not a lexF segment of degree 2. Indeed, the monomial e2e3g1 >lexF e1e2g2 does not belong
to N ′.

Remark 4. A monomial submodule L of F is a lexicographic submodule if Mond(L) is a
lexF segment of degree d, for each degree d; Mond(L) is the set of all monomials of degree
d of L.

Next characterization holds.

Proposition 2. Let L be a graded submodule of F . Then L is a lex submodule of F if and
only if

(i) L = ⊕ri=1Iigi, with Ii lex ideals of E , for i = 1, . . . , r, and

(ii) (e1, . . . , en)ρi+fi−fi−1 ⊆ Ii−1, for i = 2, . . . , r, with ρi = indegIi.

Proof. The proof is verbatim the same as [15, Proposition 3.8]. We include it to make the
paper self contained.

Let L be a lex submodule of F .
(i) Since L is a monomial submodule of F , one has L = ⊕ri=1Iigi, with Ii monomial ideal of
E, for every i. Let u, v ∈ Mond(E) with u ∈ Ii and v >lex u. It follows that vei >lexF uei.
Since ugi ∈ Iigi and L is a lex submodule of F , vgi ∈ Iigi, and so v ∈ Ii, i.e., Ii is a lex
ideal of E for every i.
(ii) Since Ii is a lex ideal of E, then e1e2 · · · eρi ∈ Ii, ρi = indegIi, and consequently
e1e2 · · · eρigi ∈ Iigi. On the other hand, L is a lex submodule of F , then for all u ∈
(e1, . . . , en)ρi+fi−fi−1 , we have that ugi−1 >lexF e1e2 · · · eρigi. Hence, ugi−1 ∈ Ii−1gi−1,
i.e., u ∈ Ii−1.

Conversely, let L be a graded submodule of F satisfying (i) and (ii).
Since every ideal Ii is a lex ideal, we have only to prove that for any pair (i, j) of integers
with 1 ≤ i < j ≤ r, if ugi, vgj ∈ Mond(L), then vgj ∈ L implies ugi ∈ L, where Mond(L) is
the set of all monomials of degree d of L.
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(Case 1). i = j − 1. Let ugj−1, vej ∈ Mond(L) with vgj ∈ L.
Since d = deg ugj−1 = deg vgj , it follows that deg u = deg v + fj − fj−1 ≥ ρj + fj − fj−1
and so u ∈ (e1, . . . , en)ρj+fj−fj−1 ⊆ Ij−1.
(Case 2). i ≤ j − 2. Let ugi >lexF vgj with ugi, vgj ∈ Mond(L) and vgj ∈ L.
For t = i+ 1, . . . , j − 1, set wt = e1e2 · · · ed−ft . It is

ugi >lexF wi+1gi+1 >lexF wi+2gi+2 >lexF · · · >lexF wj−1gj−1 >lexF vgj .

Since d = deg ugi = degwtgt = deg vgj , for t = i + 1, . . . , j − 1, then, from (Case 1),
wj−1 ∈ Ij−1, wj−2 ∈ Ij−2, . . ., wi+1 ∈ Ii+1 and finally u ∈ Ii.

The result above immediately yields that every lex submodule of F is a strongly stable
submodule (see [15, Proposition 3.9]). Moreover, it is clear that a lex submodule is an
almost lex submodule. The converse does not hold, as next example illustrates.

Example 5. (1) Let E = K〈e1, e2, e3, e4, e5〉 and F = E3. The submodule

M =(e1e2, e1e3, e1e4e5, e2e3e4e5)g1 ⊕ (e1e2, e1e3e4, e1e3e5, e2e3e4e5)g2⊕
(e1e2e3, e1e2e4, e1e3e4e5)g3

of F is not a lex submodule of F even if the ideals (e1e2, e1e3, e1e4e5, e2e3e4e5), (e1e2, e1e3e4,
e1e3e5, e2e3e4e5), (e1e2e3, e1e2e4, e1e3e4e5) are lex ideals of E. In fact, e1e2g2 ∈ M2 but
e2e3g1 >lexF e1e2g2 and e2e3g1 /∈M2. Observe that (e1, e2, e3, e4, e5)2 * (e1e2, e1e3, e1e4e5,
e2e3e4e5). M is an almost lex submodule of F .

(2) Let E = K〈e1, e2, e3, e4, e5〉 and F = E3. The submodule

L =(e1e2, e1e3, e1e4, e2e3e4, e2e3e5, e2e4e5, e3e4e5)g1⊕
(e1e2e3, e1e2e4, e1e2e5, e1e3e4e5, e2e3e4e5)g2 ⊕ (e1e2e3e4, e1e2e3e5, e1e2e4e5, e1e3e4e5)g3

is a lex submodule of F .

4 A generalization of the Kruskal-Katona theorem

Let M be a graded submodule of F . The purpose of this Section is to describe the possible
Hilbert functions of F/M when F = Er, r ≥ 1.

Theorem 2. ([4, Theorem 4.2]) Let J be a lex ideal generated in degree s with dimK Es/Js
= a. Then dimK Es+1/Js+1 = a(s).

For a graded submodule M = ⊕j≥0Mj of F , the initial degree of M , denoted by
indeg(M), is the minimum s such that Ms 6= 0.

Let F = Er, r ≥ 1. If M is a set of monomials of degree d < n of F , we denote by
Shad(M) the following set of monomials of degree d+ 1 of F :

Shad(M) = {(−1)α(σ,j)ejeσgi : eσgi ∈M, j /∈ supp(eσ), j = 1, . . . , n, i = 1, . . . r},

α(σ, j) = |{t ∈ σ : t < j}|. Such a set is called the shadow of M (see [14], for the r=1 case).
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Furthermore, if M is a monomial submodule of F and Md (d ≥ 1) is the K-vector space
generated by all monomials of degree d belonging toM , we set Shad(Md) = Shad(Mon(Md))
and by E1Md the K-vector space spanned by Shad(Md).

For istance, if E = K〈e1, e2, e3, e4〉, F = E2 and M = (e1e2, e1e3)g1 ⊕ (e1e2, e2e3e4)g2,
thenM2 = 〈e1e2g1, e1e3g1, e1e2g2〉 (asK-vector space) and E1M2 = 〈Shad(M2)〉= 〈e1e2e3g1,
e1e2e4g1, e1e3e4g1, e1e2e3g2, e1e2e4g2〉 (as K-vector space).

Next result generalizes the Kruskal-Katona theorem (Theorem 1).

Theorem 3. Let (h1, . . . , hn) be a sequence of non negative integers. Then the following
conditions are equivalent:

(a) r +
∑n
i=1 hit

i is the Hilbert series of a graded E-module Er/M , r ≥ 1;

(b) hi =
∑r
j=1 hi,j, for i = 1, . . . , n, and (h1,j , h2,j , . . . , hn,j) is an n-tuple of non negative

integers such that 0 < hi+1,j ≤ h(i)i,j , for 0 < i ≤ n− 1 and j = 1, . . . , r, r ≥ 1;

(c) there exists a unique lexicographic submodule L of F such that r +
∑n
i=1 hit

i is the
Hilbert series of Er/L, r ≥ 1.

Proof. First of all, note that for r = 1 the required equivalences follow from Theorem 1.
Hence, let r > 1.
(a) ⇒ (b). From (2.1), we may assume that M is a monomial submodule of Er. Set
M = ⊕rj=1Ijgj , with Ij (j = 1, . . . , r) monomial ideals of E; gj = (0, . . . , 0, 1, . . . , 0), with
1 in the j-th position. By assumption, indeg(M) ≥ 1 and hi = HEr/M (i) (1 ≤ i ≤ n). On
the other hand, the additivity of the Hilbert function implies the existence of an r-tuple of
integers (hi,1, . . . , hi,r) such that

hi =

r∑
j=1

hi,j , 1 ≤ i ≤ n.

More in details, hi,j = HE/Ij (i) (1 ≤ j ≤ r), i.e., (1, h1,j , h2,j , . . . , hn,j) is the Hilbert

sequence of E/Ij . Hence, from Theorem 1 (b), hi+1,j ≤ h
(i)
i,j (0 < i ≤ n − 1, 1 ≤ j ≤ r).

The assertion follows.
(b) ⇒ (c). Set F = Er. We construct a lexicographic submodule L of F such that
HF/L = r +

∑n
i=1 hit

i.
Assume dimK F1 = h1 and let L1 = 0. Hence, h1 = rn. Suppose Lk, k ≤ i, has already
been constructed. Let s be the smallest integer such that Ls 6= ∅. One has

Mon(Ls+p) = Shad(Ls+p−1) ∪ Ts+p, p = 1, . . . , i− s,

where Mon(Ls+p) is the set of all the monomial generators of Ls+p (as a K-vector space) and
Ts+p is a subset of Mons+p(F ) such that Ts+p∩Shad(Ls+p−1) = ∅. It is worth to underline
that the sets Shad(Ls+p−1) ∪ Ts+p 6= ∅ are lexF segments of degree s+ p, p = 1, . . . , i− s.

Let L′ be the monomial submodule of F , with minimal set of monomial generators
defined as follows:

G(L′) = Mon(Ls) ∪
(
∪i−sp=1Ts+p

)
.
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We can write L′ as
L′ = I1g1 ⊕ · · · ⊕ Irgr,

with

- Ij lexicographic ideals, for j = 1, . . . , r,

- min{deg(ugj) : u ∈ G(Ij), j = 1, . . . , r} = s,

- max{deg(ugj) : u ∈ G(Ij), j = 1, . . . , r} = i.

Note that hi = HF/L(i) = HF/L′(i) =
∑r
j=1HE/Ij (i). Setting hi,j = HE/Ij (i) (j =

1, . . . , r), from Theorem 2, one has:

hi+1,j = HE/Ij (i+ 1) ≤ h(i)i,j = dimK Ei+1/E1Ij,i,

where Ij,i is the part of degree i of the monomial ideal Ij . Hence, E1Ij,i ⊆ Ij,i+1 and
consequently E1Li = E1L′i ⊆ Li+1. It follows that L = ⊕p≥sLp is a submodule of F which
is lex. Finally, the uniqueness is clear by the definition of lex submodules.
(c)⇒ (a). It follows immediately.

If M is a submodule of Er, we will denote by M lex the unique lex submodule of Er such
that HEr/M = HEr/M lex .

Example 6. Let E = K〈e1, . . . , e4〉. Consider the following submodule of E3:

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3.

M is a monomial submodule with HE3/M = (3, 12, 15, 4, 0). One has that

M lex = (e1e2, e1e3, e1e4, e2e3e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3e4)g3.

We can notice that HE3/M = HE3/M lex . Finally, one can observe that M lex 6= Malex

(Example 3).

5 Upper bounds for the Betti numbers

In this Section, we show that lex submodules give upper bounds for the Betti numbers of
any graded submodule of Er with the same Hilbert function by generalizing the techniques
of the rank one case [4, 5]. More precisely, we prove that a lex submodule of Er has the
largest Betti numbers among all graded submodules of Er with the same Hilbert function.

Let us introduce some notations. For a monomial eσgi of F = ⊕ri=1Egi, let

mF (eσgi) = m(eσ), 1 ≤ i ≤ r,

and if M is a monomial submodule of F , let us define

G(M : j) = {eσgi ∈ G(M) : mF (eσgi) = j, i = 1, . . . , r}, (5.1)
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mF
j (M) = |G(M : j)|, 1 ≤ j ≤ n, mF

≤t(M) =

t∑
j=1

mF
j (M), 1 ≤ t ≤ n. (5.2)

One can observe that mF
≤n(M) = |G(M)|.

If M is a monomial ideal of E, then (5.1) and (5.2) can be rewritten as follows ([4]):

G(M : j) = {eσ ∈ G(M) : m(eσ) = j},

mj(M) = |G(M : j)|, 1 ≤ j ≤ n, m≤t(M) =

t∑
j=1

mj(M), 1 ≤ t ≤ n.

Next remark will be crucial for the proof of the main result in this Section.

Remark 5. Recall that a set T of monomials of degree d ≥ 1 in E is called strongly stable
(of degree d) if for each monomial eσ ∈ T and each j ∈ σ one has that (−1)α(σ,i)eieσ\{j} ∈
T , where α(σ, i) = |{t ∈ σ : t < i}|, for all i < j.

Due to the nature of a lex segment, one can quickly verify that if T is a strongly stable
set of degree d and L is a lex segment of degree d such that |T | = |L|, then m≤i(L) = |{eσ ∈
L : m(eσ) ≤ i}| ≤ m≤i(T ) = |{eσ ∈ T : m(eσ) ≤ i}|, for all i ≤ n.

One can also note that |L| = m≤n(L) = m≤n(T ) = |T |.
As as consequence, one has that if I is a strongly stable ideal of E generated in degree

d and J is a lex ideal of E generated in degree d with |G(I)| = |G(J)|, then |G(J)| =
m≤n(J) = m≤n(I) = |G(I)|, and m≤i(J) ≤ m≤i(I), for all i ≤ n− 1.

Let us consider an almost strongly stable submodule M = ⊕ri=1Iigi of Er generated in
degree d, and let L = ⊕ri=1Ligi be the lex submodule of Er generated in degree d such that
dimMd = dimLd. Every monomial ideal Ii ∈ D(M) is generated by a strongly stable set
Ti (i = 1, . . . n) of degree d. The construction of the lex submodule L of F with |G(L)| =
|G(M)| implies that mF

n (L) ≥ mF
n (M). Hence, mF

≤i(L) ≤ mF
≤i(M), for all i ≤ n− 1.

By using combinatorial arguments one can quickly prove the following lemma.

Lemma 1. Let M be an almost strongly stable submodule of Er generated in degree d. If
M〈d+1〉 is the submodule of Er generated by the elements of Md+1, then

mF
i (M〈d+1〉) = mF

≤i−1(M), for all i.

If M = ⊕ri=1Iigi is an (almost) stable submodule of F , then we can use the Aramova-
Herzog-Hibi formula [4, Corollary 3.3] for computing the graded Betti numbers of M :

βk,k+`(M) =

r∑
i=1

βk, k+`(Iigi) =

r∑
i=1

 ∑
u∈G(Ii)`−f`

(
m(u) + k − 1

m(u)− 1

) , for all k ≥ 0.

Theorem 4. Let M be a graded submodule of Er. Then

βi,j(M) ≤ βi,j(M lex), for all i, j.



Luca Amata, Marilena Crupi 249

Proof. From Proposition 1, we may assume that M is an almost lex submodule, and con-
sequently an almost stable submodule, of Er. Therefore, setting F = Er, one has:

βi,i+j(M) =
∑

u∈G(M)j

(
mF (u) + i− 1

mF (u)− 1

)
, for all i ≥ 1. (5.3)

Since G(M)j = G(M〈j〉)−G(M〈j−1〉){e1, . . . , en}, due to Lemma 1, the above sum can
be written as a difference βi,i+j(M) = C −D, with

C =
∑

u∈G(M〈j〉)

(
mF (u) + i− 1

mF (u)− 1

)

=

n∑
t=1

∑
u∈G(M〈j〉;t)

(
t+ i− 1

t− 1

)
=

n∑
t=1

mF
t (M〈j〉)

(
t+ i− 1

t− 1

)

=

n∑
t=1

(mF
≤t(M〈j〉)−mF

≤t−1(M〈j〉))

(
t+ i− 1

t− 1

)
= mF

≤n(M〈j〉)

(
n+ i− 1

n− 1

)
+

n−1∑
t=1

mF
≤t(M〈j〉)

[(
t+ i− 1

t− 1

)
−
(
t+ 1 + i− 1

t

)]

= mF
≤n(M〈j〉)

(
n+ i− 1

n− 1

)
−
n−1∑
t=1

mF
≤t(M〈j〉)

(
t+ i− 1

t

)
,

and

D =
∑

u∈G(M〈j−1〉){e1,...,en}

(
mF (u) + i− 1

mF (u)− 1

)

=

n∑
t=2

mF
≤t−1(M〈j−1〉)

(
t+ i− 1

t− 1

)
.

On the other hand, since the number of generators of M〈d〉 and M lex
〈d〉 are equal for all d,

we have mF
≤n(M〈d〉) = mF

≤n(M lex
〈d〉). Moreover, from Remark 5, mF

≤i(M
lex
〈d〉) ≤ mF

≤i(M〈d〉) for
1 ≤ i ≤ n− 1. Hence,

βi,i+j(M) = mF
≤n(M〈j〉)

(
n+ i− 1

n− 1

)
−
n−1∑
t=1

mF
≤t(M〈j〉)

(
t+ i− 1

t

)

−
n∑
t=2

mF
≤t−1(M〈j−1〉)

(
t+ i− 1

t− 1

)

≤ mF
≤n(M lex

〈j〉 )

(
n+ i− 1

n− 1

)
−
n−1∑
t=1

mF
≤t(M

lex
〈j〉 )

(
t+ i− 1

t

)

−
n∑
t=2

mF
≤t−1(M lex

〈j−1〉)

(
t+ i− 1

t− 1

)
= βi,i+j(M

lex).
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Finally, from Proposition 1 and Theorem 4 the next result follows.

Corollary 1. Let M be a graded submodule of Er. Then

βi,j(M) ≤ βi,j(Malex) ≤ βi,j(M lex), for all i, j.

Example 7. Let E = K〈e1, e2, e3, e4, e5〉 and F = E3. The submodule

M = (e1e2, e1e4, e3e4e5)g1 ⊕ (e1e3, e1e4e5, e2e3e4)g2 ⊕ (e1e2e4, e1e3e5)g3

of F is not an almost lex submodule of F . It is sufficient to observe that the ideal (e1e2, e1e4,
e3e4e5) is not a lex ideals of E. Consider the almost lex submodule

Malex =(e1e2, e1e3, e1e4e5, e2e3e4e5)g1 ⊕ (e1e2, e1e3e4, e1e3e5, e2e3e4e5)g2⊕
(e1e2e3, e1e2e4, e1e3e4e5)g3,

which is not a lex submodule of F (see Example 5), and the lex submodule

M lex =(e1e2, e1e3, e1e4, e2e3e4, e2e3e5, e2e4e5, e3e4e5)g1⊕
(e1e2e3, e1e2e4, e1e2e5, e1e3e4e5, e2e3e4e5)g2

⊕ (e1e2e3e4, e1e2e3e5, e1e2e4e5, e1e3e4e5)g3

One can quickly verify that HF/M = (3, 15, 27, 17, 1, 0) = HF/Malex = HF/M lex .
Moreover, using the computer program Macaulay2, if one compares the Betti diagrams

of the submodules above considered, one has the Corollary 1:

total 8 26 59 113 195 313 476
2 3 7 12 18 25 33 42
3 5 18 42 80 135 210 308
4 − 1 5 15 35 70 126

Betti diagram for M

total 11 43 113 243 460 796 1288
2 3 7 12 18 25 33 42
3 5 21 56 120 225 385 616
4 3 15 45 105 210 378 630

Betti diagram for Malex

total 16 69 190 419 805 1406 2289
2 3 9 19 34 55 83 119
3 7 31 86 190 365 637 1036
4 6 29 85 195 385 686 1134

Betti diagram for M lex
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6 Conclusions and perspectives

In this paper, we have discussed some classes of monomial submodules of a finitely generated
graded free E–module F . Functions for computing monomial ideals in a polynomial ring
are available in many computer algebra system, CAS, (for instance, CoCoA [1], Macaulay2
[17] and Singular [16]); on the contrary, to the best of our knowledge, specific packages for
manipulating classes of monomial ideals in an exterior algebra have not been implemented
yet. Forced by this situation, the authors of this paper have developed a new package
[2], written for Macaulay2 [17], for manipulating classes of monomial ideals in an exterior
algebra of a finite dimensional vector space over a field. Currently, the authors are trying
to implement such a package for monomial submodules over an exterior algebra.

Furthermore, Theorem 3 describes the possible Hilbert functions of graded E-modules
of the type F/M with M graded submodule of F , when F ' Er, r > 1. It would be nice
to generalize such a result in the case when the basis elements of the finitely generated free
E-module F have different degrees. The following question is currently under investigation.

Open 1. Let F = ⊕ri=1Egi be a finitely generated graded free E-module with homogeneous
basis g1, . . . , gr such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr and let H = (h1, . . . , ht), t ≥ n, be
a sequence of non negative integers. Under which conditions for the hi’s does there exist a
graded submodule M of F such that H = HM?

A generalization of the Kruskal–Katona Theorem for finitely generated modules can be
found in [19, Theorem 4.3].
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