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Abstract

We introduce new analogues of the Ramanujan sums, denoted by c̃q(n), associ-
ated with unitary divisors, and obtain results concerning the expansions of arithmetic
functions of several variables with respect to the sums c̃q(n). We apply these results
to certain functions associated with σ∗(n) and φ∗(n), representing the unitary sigma
function and unitary phi function, respectively.
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1 Introduction

Let cq(n) denote the Ramanujan sums, defined by

cq(n) =
∑

1≤k≤q
(k,q)=1

exp(2πikn/q),

where q, n ∈ N = {1, 2, . . .}. Let σ(n) be, as usual, the sum of divisors of n. Ramanujan’s
[7] classical identity

σ(n)

n
= ζ(2)

∞∑
q=1

cq(n)

q2
(n ∈ N), (1.1)

where ζ is the Riemann zeta function, can be generalized as

σ((n1, . . . , nk))

(n1, . . . , nk)
= ζ(k + 1)

∞∑
q1,...,qk=1

cq1(n1) · · · cqk(nk)

[q1, . . . , qk]k+1
(n1, . . . , nk ∈ N), (1.2)

valid for any k ∈ N. See the author [15, Eq. (28)]. Here (n1, . . . , nk) and [n1, . . . , nk] stand
for the greatest common divisor and the least common multiple, respectively, of n1, . . . , nk.
For k = 2 identity (1.2) was deduced by Ushiroya [18, Ex. 3.8].
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By making use of the unitary Ramanujan sums c∗q(n), we also have

σ((n1, . . . , nk))

(n1, . . . , nk)
= ζ(k + 1)

∞∑
q1,...,qk=1

φk+1([q1, . . . , qk])

[q1, . . . , qk]2(k+1)
c∗q1(n1) · · · c∗qk(nk) (n1, . . . , nk ∈ N),

(1.3)
for any k ∈ N. See [15, Eq. (30)]. The notations used here (and throughout the paper),
which are not explained in the text, are included in Section 2.1. In fact, (1.2) and (1.3) are
special cases of the following general result, which can be applied to several other special
functions, as well.

Theorem 1 ([15, Th. 4.3]). Let g : N→ C be an arithmetic function and let k ∈ N. Assume
that

∞∑
n=1

2k ω(n)
|(µ ∗ g)(n)|

nk
<∞.

Then for every n1, . . . , nk ∈ N,

g((n1, . . . , nk)) =

∞∑
q1,...,qk=1

aq1,...,qkcq1(n1) · · · cqk(nk),

g((n1, . . . , nk)) =

∞∑
q1,...,qk=1

a∗q1,...,qkc
∗
q1(n1) · · · c∗qk(nk)

are absolutely convergent, where

aq1,...,qk =
1

Qk

∞∑
m=1

(µ ∗ g)(mQ)

mk
,

a∗q1,...,qk =
1

Qk

∞∑
m=1

(m,Q)=1

(µ ∗ g)(mQ)

mk
,

with the notation Q = [q1, . . . , qk].

Recall that d is a unitary divisor of n if d | n and (d, n/d) = 1. Notation d ‖ n.
Let σ∗(n), defined as the sum of unitary divisors of n, be the unitary analogue of σ(n).
Properties of the function σ∗(n), compared to those of σ(n) were investigated by several
authors. See, e.g., Cohen [1], McCarthy [6], Sitaramachandrarao and Suryanarayana [10],
Sitaramaiah and Subbarao [11], Trudgian [16]. For example, one has

∑
n≤x

σ∗(n) =
π2x2

12ζ(3)
+O(x(log x)5/3).

In this paper we are looking for unitary analogues of formulas (1.1) and (1.2). Theorem
1 can be applied to the function g(n) = σ∗(n)/n. However, in this case (µ ∗ g)(p) = 1/p,
(µ ∗ g)(pν) = (1 − p)/pν for any prime p and any ν ≥ 2. Hence the coefficients of the
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corresponding expansion can not be expressed by simple special functions, and we consider
the obtained identities unsatisfactory.

Let (k, n)∗∗ denote the greatest common unitary divisor of k and n. Note that d ‖
(k, n)∗∗ holds true if and only if d ‖ k and d ‖ n. Bi-unitary analogues of the Ramanujan
sums may be defined as follows:

c∗∗q (n) =
∑

1≤k≤q
(k,q)∗∗=1

exp(2πikn/q) (q, n ∈ N),

but the function q 7→ cq(n) is not multiplicative, and its properties are not parallel to the
sums cq(n) and c∗q(n). The function c∗∗q (q) = φ∗∗(q), called bi-unitary Euler function was
investigated in our paper [13].

Therefore, we introduce in Section 2.3 new analogues of the Ramanujan sums, denoted
by c̃q(n), also associated with unitary divisors, and show that

σ∗((n1, . . . , nk)∗k)

(n1, . . . , nk)∗k
= ζ(k + 1)

∞∑
q1,...,qk=1

φk+1([q1, . . . , qk])

[q1, . . . , qk]2(k+1)
c̃q1(n1) · · · c̃qk(nk), ni ∈ N,

(1.4)
where (n1, . . . , nk)∗k denotes the greatest common unitary divisor of n1, . . . , nk ∈ N. Now
formulas (1.2), (1.3) and (1.4) are of the same shape. In the case k = 1, identity (1.4) gives

σ∗(n)

n
= ζ(2)

∞∑
q=1

φ2(q)

q4
c̃q(n) (n ∈ N),

which may be compared to (1.1).
We also deduce a general result for arbitrary arithmetic functions f of several variables

(Theorem 2), which is the analogue of [15, Th. 4.1], concerning the Ramanujan sums cq(n)
and their unitary analogues c∗q(n). We point out that in the case k = 1, Theorem 2 is the
analogue of the result of Delange [2], concerning classical Ramanujan sums. As applications,
we consider the functions f(n1, . . . , nk) = g((n1, . . . , nk)∗k), where g belongs to a large class
of functions of one variable, including σ∗(n)/n and φ∗(n)/n, where φ∗ is the unitary Euler
function (Theorem 3).

For background material on classical Ramanujan sums and Ramanujan expansions
(Ramanujan-Fourier series) of functions of one variable we refer to the book by Schwarz
and Spilker [9] and to the survey papers by Lucht [5] and Ram Murty [8]. Section 2 in-
cludes some general properties on arithmetic functions of one and several variables defined
by unitary divisors, needed in the present paper.

2 Preliminaries

2.1 Notations

• P is the set of (positive) primes,
• the prime power factorization of n ∈ N is n =

∏
p∈P p

νp(n), the product being over the
primes p, where all but a finite number of the exponents νp(n) are zero,
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• (f ∗g)(n) =
∑
d|n f(d)g(n/d) is the Dirichlet convolution of the functions f, g : N→ C,

• ids is the function ids(n) = ns (n ∈ N, s ∈ R),
• 1 = id0 is the constant 1 function,
• µ is the Möbius function,
• ω(n) stands for the number of distinct prime divisors of n,
• φs is the Jordan function of order s given by φs(n) = ns

∏
p|n(1− 1/ps) (s ∈ R),

• φ = φ1 is Euler’s totient function,
• d ‖ n means that d is a unitary divisor of n, i.e., d | n and (d, n/d) = 1 (we remark

that this is in concordance with the standard notation pν ‖ n used for prime powers pν),
• (k, n)∗ = max{d : d | k, d ‖ n},
• c∗q(n) =

∑
1≤k≤q,(k,q)∗=1 exp(2πikn/q) are the unitary Ramanujan sums (q, n ∈ N),

• (n1, . . . , nk)∗k denotes the greatest common unitary divisor of n1, . . . , nk ∈ N,
• (n1, n2)∗∗ = (n1, n2)∗2,
• σ∗s (n) =

∑
d‖n d

s (s ∈ R),

• σ∗(n) = σ∗1(n) is the sum of unitary divisors of n,
• τ∗(n) = σ∗0(n) is the number of unitary divisors of n, which equals 2ω(n).

2.2 Functions defined by unitary divisors

The study of arithmetic functions defined by unitary divisors goes back to
Vaidyanathaswamy [17] and Cohen [1]. The function σ∗(n) was already defined above. The
analog of Euler’s φ function is φ∗, defined by φ∗(n) = #{k ∈ N : 1 ≤ k ≤ n, (k, n)∗ = 1}.
The functions σ∗ and φ∗ are multiplicative and σ∗(pν) = pν + 1, φ∗(pν) = pν − 1 for any
prime powers pν (ν ≥ 1).

The unitary convolution of the functions f and g is

(f × g)(n) =
∑
d‖n

f(d)g(n/d) (n ∈ N),

it preserves the multiplicativity of functions, and the inverse of the constant 1 function
under the unitary convolution is µ∗, where µ∗(n) = (−1)ω(n), also multiplicative. The set
A of arithmetic functions forms a unital commutative ring with pointwise addition and the
unitary convolution, having divisors of zero.

2.3 Modified unitary Ramanujan sums

For q, n ∈ N we introduce the functions c̃q(n) by the formula

∑
d‖q

c̃d(n) =

{
q, if q ‖ n,

0, if q ∦ n.
(2.1)

It follows that c̃q(n) is multiplicative in q,

c̃pν (n) =

{
pν − 1, if pν ‖ n,

−1, if pν ∦ n,
(2.2)
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for any prime powers pν (ν ≥ 1) and

c̃q(n) =
∑

d‖(n,q)∗∗

dµ∗(q/d) (q, n ∈ N).

We will need the following result.

Proposition 1. For any q, n ∈ N,∑
d‖q

|c̃d(n)| = 2ω(q/(n,q)∗∗)(n, q)∗∗, (2.3)

∑
d‖q

|c̃d(n)| ≤ 2ω(q)n. (2.4)

Proof. If q = pν (ν ≥ 1) is a prime power, then we have by (2.2),

∑
d‖pν
|c∗d(n)| = |c∗1(n)|+ |c∗pν (n)| =

{
1 + pν − 1 = pν , if pν ‖ n,

1 + 1 = 2, otherwise.

Now (2.3) follows at once by the multiplicativity in q of the involved functions, while
(2.4) is its immediate consequence.

For classical Ramanujan sums the inequality corresponding to (2.4) is crucial in the
proof of the theorem of Delange [2], while the identity corresponding to (2.3) was pointed
out by Grytczuk [3]. In the case of unitary Ramanujan sums the counterparts of (2.3) and
(2.4) were proved by the author [15, Prop. 3.1].

Proposition 2. For any q, n ∈ N,

c̃q(n) =
φ∗(q)µ∗(q/(n, q)∗∗)

φ∗(q/(n, q)∗∗)
. (2.5)

Proof. Both sides of (2.5) are multiplicative in q. If q = pν (ν ≥ 1) is a prime power, then

φ∗(pν)µ∗(pν/(n, pν)∗∗)

φ∗(pν/(n, pν)∗∗)
=

{
φ∗(pν)µ∗(1)

φ∗(1) = pν − 1, if pν ‖ n,
φ∗(pν)µ∗(pν)

φ∗(pν) = −1, otherwise.
= cpν (n),

by (2.2).

For the Ramanujan sums cq(n) the identity similar to (2.5) is usually attributed to
Hölder, but was proved earlier by Kluyver [4]. In the case of the unitary Ramanujan sums
c∗q(n) the counterpart of (2.5) was deduced by Suryanarayana [12].

Basic properties (including those mentioned above) of the classical Ramanujan sums
cq(n), their unitary analogues c∗q(n) and the modified sums c̃q(n) can be compared by the
next table.
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cq(n) =
∑

d|(n,q)
dµ(q/d) c∗q(n) =

∑
d|(n,q)∗

dµ∗(q/d) c̃q(n) =
∑

d‖(n,q)∗∗

dµ∗(q/d)

cq(n) =
φ(q)µ(q/(n, q))

φ(q/(n, q)
c∗q(n) =

φ∗(q)µ∗(q/(n, q)∗)

φ∗(q/(n, q)∗)
c̃q(n) =

φ∗(q)µ∗(q/(n, q)∗∗)

φ∗(q/(n, q)∗∗)

cpν (n) =


pν − pν−1, if pν | n,
−pν−1, if pν−1 ‖ n,
0, if pν−1 - n

c∗pν (n) =

{
pν − 1, if pν | n,
−1, if pν - n

c̃pν (n) =

{
pν − 1, if pν ‖ n,
−1, if pν ∦ n

∑
d|q

cd(n) =

{
q, if q | n,
0, if q - n

∑
d‖q

c∗d(n) =

{
q, if q | n,
0, if q - n

∑
d‖q

c̃d(n) =

{
q, if q ‖ n,
0, if q ∦ n∑

d|q
|cd(n)| = 2ω(q/(n,q))(n, q)

∑
d‖q
|c∗d(n)| = 2ω(q/(n,q)∗)(n, q)∗

∑
d‖q
|c̃d(n)| = 2ω(q/(n,q)∗∗)(n, q)∗∗

Table: Properties of cq(n), c∗q(n) and c̃q(n)

2.4 Arithmetic functions of several variables

For every fixed k ∈ N the set Ak of arithmetic functions f : Nk → C of k variables is a
unital commutative ring with pointwise addition and the unitary convolution defined by

(f × g)(n1, . . . , nk) =
∑

d1‖n1,...,dk‖nk

f(d1, . . . , dk)g(n1/d1, . . . , nk/dk), (2.6)

the unity being the function δk, where

δk(n1, . . . , nk) =

{
1, if n1 = · · · = nk = 1,

0, otherwise.

The inverse of the constant 1 function under (2.6) is µ∗k, given by

µ∗k(n1, . . . , nk) = µ∗(n1) · · ·µ∗(nk) = (−1)ω(n1)+···+ω(nk) (n1, . . . , nk ∈ N).

A function f ∈ Ak is said to be multiplicative if it is not identically zero and

f(m1n1, . . . ,mknk) = f(m1, . . . ,mk)f(n1, . . . , nk)

holds for any m1, . . . ,mk, n1, . . . , nk ∈ N such that (m1 · · ·mk, n1 · · ·nk) = 1.
If f is multiplicative, then it is determined by the values f(pν1 , . . . , pνk), where p is

prime and ν1, . . . , νk ∈ N ∪ {0}. More exactly, f(1, . . . , 1) = 1 and for any n1, . . . , nk ∈ N,

f(n1, . . . , nk) =
∏
p∈P

f(pνp(n1), . . . , pνp(nk)).

Similar to the one dimensional case, the unitary convolution (2.6) preserves the multi-
plicativity of functions. See our paper [14], which is a survey on (multiplicative) arithmetic
functions of several variables.
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3 Main results

First we prove the following general result.

Theorem 2. Let f : Nk → C be an arithmetic function (k ∈ N). Assume that

∞∑
n1,...,nk=1

2ω(n1)+···+ω(nk) |(µ
∗
k × f)(n1, . . . , nk)|

n1 · · ·nk
<∞. (3.1)

Then for every n1, . . . , nk ∈ N,

f(n1, . . . , nk) =

∞∑
q1,...,qk=1

ãq1,...,qk c̃q1(n1) · · · c̃qk(nk), (3.2)

where

ãq1,...,qk =

∞∑
m1,...,mk=1

(m1,q1)=1,...,(mk,qk)=1

(µ∗k × f)(m1q1, . . . ,mkqk)

m1q1 · · ·mkqk
, (3.3)

the series (3.2) being absolutely convergent.

Proof. We have for any n1, . . . , nk ∈ N, by using property (2.1),

f(n1, . . . , nk) =
∑

d1‖n1,...,dk‖nk

(µ∗k × f)(d1, . . . , dk)

=

∞∑
d1,...,dk=1

(µ∗k × f)(d1, . . . , dk)

d1 · · · dk

∑
q1‖d1

c̃q1(n1) · · ·
∑
qk‖dk

c̃qk(nk)

=

∞∑
q1,...,qk=1

c̃q1(n1) · · · c̃qk(nk)

∞∑
d1,...,dk=1

q1‖d1,...,qk‖dk

(µ∗k × f)(d1, . . . , dk)

d1 · · · dk
,

leading to expansion (3.2) with the coefficients (3.3), by denoting d1 = m1q1, . . . , dk = mkqk.
The rearranging of the terms is justified by the absolute convergence of the multiple series,
shown hereinafter:

∞∑
q1,...,qk=1

|ãq1,...,qk ||c̃q1(n1)| · · · |c̃qk(nk)|

≤
∞∑

q1,...,qk=1
m1,...,mk=1

(m1,q1)=1,...,(mk,qk)=1

|(µ∗k × f)(m1q1, . . . ,mkqk)|
m1q1 · · ·mkqk

|c̃q1(n1)| · · · |c̃qk(nk)|

=

∞∑
t1,...,tk=1

|(µ∗k × f)(t1, . . . , tk)|
t1 · · · tk

∑
m1q1=t1
(m1,q1)=1

|c̃q1(n1)| · · ·
∑

mkqk=tk
(mk,qk)=1

|c̃qk(nk)|
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≤ n1 · · ·nk
∞∑

t1,...,tk=1

2ω(t1)+···+ω(tk)
|(µ∗k × f)(t1, . . . , tk)|

t1 · · · tk
<∞,

by using inequality (2.4) and condition (3.1).

Next we consider the case f(n1, . . . , nk) = g((n1, . . . , nk)∗k). The following result is the
analogue of Theorem 1.

Theorem 3. Let g : N→ C be an arithmetic function and let k ∈ N. Assume that

∞∑
n=1

2k ω(n)
|(µ∗ × g)(n)|

nk
<∞.

Then for every n1, . . . , nk ∈ N,

g((n1, . . . , nk)∗k) =

∞∑
q1,...,qk=1

ãq1,...,qk c̃q1(n1) · · · c̃qk(nk),

is absolutely convergent, where

ãq1,...,qk =
1

Qk

∞∑
m=1

(m,Q)=1

(µ∗ × g)(mQ)

mk
, (3.4)

with the notation Q = [q1, . . . , qk].

Proof. We apply Theorem 2. Taking into account the identity

g((n1, . . . , nk)∗k) =
∑

d‖n1,...,d‖nk

(µ∗ × g)(d)

we see that now

(µ∗k × f)(n1, . . . , nk) =

{
(µ∗ × g)(n), if n1 = · · · = nk = n,

0, otherwise.

Therefore the coefficients of the expansion are

ãq1,...,qk =

∞∑
n=1

m1q1=···=mkqk=n
(m1,q1)=1,...,(mk,qk)=1

(µ∗k × f)(m1q1, . . . ,mkqk)

m1q1 · · ·mkqk

=

∞∑
n=1

q1‖n,...,qk‖n

(µ∗ × g)(n)

nk
,

and we use that q1 ‖ n, . . . , qk ‖ n holds if and only if [q1, . . . , qk] = Q ‖ n, that is, n = mQ
with (m,Q) = 1.
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Corollary 1. For every n1, . . . , nk ∈ N the following series are absolutely convergent:

σ∗s ((n1, . . . , nk)∗k)

(n1, . . . , nk)s∗k
= ζ(s+ k)

∞∑
q1,...,qk=1

φs+k(Q)c̃q1(n1) · · · c̃qk(nk)

Q2(s+k)
(s ∈ R, s+ k > 1),

(3.5)

τ∗((n1, . . . , nk)∗k) = ζ(k)

∞∑
q1,...,qk=1

φk(Q)c̃q1(n1) · · · c̃qk(nk)

Q2k
(k ≥ 2). (3.6)

Proof. Apply Theorem 3 to g(n) = σ∗s (n)/ns. Here

µ∗ × g = µ∗ × 1× ids
ids

= (µ∗ × 1)× 1

ids
=

1

ids
,

hence (µ∗ × g)(n) = 1/ns (n ∈ N). We deduce by (3.4) that

ãq1,...,qk =
1

Qs+k

∞∑
m=1

(m,Q)=1

1

ms+k
= ζ(s+ k)

φs+k(Q)

Q2(s+k)
,

which completes the proof.

In the case s = 1 identity (3.5) reduces to (1.4). Now let consider the function φ∗s(n) =∏
pν‖n(psν − 1), representing the unitary Jordan function of order s. Here φ∗s = µ∗ × ids,

and φ∗1 = φ∗ is the unitary Euler function, already mentioned in Section 2.2.

Corollary 2. For every n1, . . . , nk ∈ N the following series are absolutely convergent:

φ∗s((n1, . . . , nk)∗k)

(n1, . . . , nk)s∗k
= ζ(s+ k)

∏
p∈P

(
1− 2

ps+k

)
× (3.7)

×
∞∑

q1,...,qk=1

µ∗(Q)φs+k(Q)c̃q1(n1) · · · c̃qk(nk)

Q2(s+k)
∏
p|Q(1− 2/ps+k)

(s ∈ R, s+ k > 1),

φ∗((n1, . . . , nk)∗k)

(n1, . . . , nk)∗k
= ζ(k + 1)

∏
p∈P

(
1− 2

pk+1

)
×

×
∞∑

q1,...,qk=1

µ∗(Q)φk+1(Q)c̃q1(n1) · · · c̃qk(nk)

Q2(k+1)
∏
p|Q(1− 2/pk+1)

(k ≥ 1).

Proof. Apply Theorem 3 to g(n) = φ∗s(n)/ns. Here

µ∗ × g = µ∗ × µ∗ × ids
ids

= (µ∗ × 1)× µ∗

ids
=
µ∗

ids
,

that is, (µ∗ × g)(n) = µ∗(n)/ns (n ∈ N). We deduce by (3.4) that

ãq1,...,qk =
1

Qs+k

∞∑
m=1

(m,Q)=1

µ∗(mQ)

ms+k
=
µ∗(Q)

Qs+k

∞∑
m=1

(m,Q)=1

µ∗(m)

ms+k



222 Expansions of arithmetic functions

=
µ∗(Q)

Qs+k
ζ(s+ k)

∏
p∈P

(
1− 2

ps+k

)∏
p|Q

(
1− 1

ps+k

)(
1− 2

ps+k

)−1
,

leading to (3.7).

For m ∈ N, m ≥ 2 consider the function g(n) = mω(n), which is the unitary analogue of
the Piltz divisor function τm(n). Here mω(n) =

∑
d‖n(m− 1)ω(d) for any n ∈ N. We obtain

by similar arguments:

Corollary 3. For every n1, . . . , nk ∈ N the following series is absolutely convergent:

mω((n1,...,nk)∗k) = ζ(k)
∏
p∈P

(
1 +

m− 2

pk

)
× (3.8)

×
∞∑

q1,...,qk=1

φk(Q)(m− 1)ω(Q)c̃q1(n1) · · · c̃qk(nk)

Q2k
∏
p|Q(1 + (m− 2)/pk)

(m, k ≥ 2),

For m = 2 identity (3.8) reduces to (3.6).

Remark 1. It is possible to formulate the results of Theorem 2 in the case of multiplicative
functions f of k variables, and Theorem 3 in the case of multiplicative functions g of
one variable. Note that if g is multiplicative, then f(n1, . . . , nk) = g((n1, . . . , nk)∗k) is
multiplicative, viewed as a function of k variables. See also Delange [2] and the author
[15]. Furthermore, it is possible to apply the above results to other special (multiplicative)
functions. We do not go into more details.
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