
Bull. Math. Soc. Sci. Math. Roumanie
Tome 61 (109) No. 2, 2018, 167–171

Three lemmas on commutators
by

Marian Deaconescu

To Lyubomir Boyadzhiev

Abstract

A group G, two subgroups H,K of G and a subgroup A of Aut(G) are considered.
One looks for conditions on G,H,K, and A ensuring that the set of all commutators
[g, a] with g ∈ G and a ∈ A is contained in the union H ∪K.
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1 Introduction

If G is a group and if H,K,M 6 G such that M ⊆ H ∪ K it is well known that either
M 6 H or M 6 K; in particular, if H and K are proper subgroups of G, then G 6= H ∪K.
For x, y ∈ G we write [x, y] = x−1xy for the commutator of x and y and we denote by C
the set of all commutators in G. The set C is not always a subgroup of G and if C ⊆ H ∪K
for subgroups H,K of G one may ask whether C ⊆ H or C ⊆ K.

The situation where C is contained in the union of a family of subgroups of G was
considered before in the literature – see [3] for a recent example. We are interested here
in the very particular case of a union of just two subgroups. In a letter to the author, M.
Isaacs proved that if H,K are normal subgroups of G and if C ⊆ H∪K, then either C ⊆ H
or C ⊆ K.

We consider here a more general situation as follows. Let A 6 Aut(G). For g ∈ G, a ∈ A
let [g, a] = g−1ga and L(G,A)) = {[g, a] | g ∈ G, a ∈ A}. The set L(G,A) is an A-invariant
subset of G and the fact that C = L(G, Inn(G)) where Inn(G) is the group of the inner
automorphisms of G shows that L(G,A) is not always a subgroup of G.

From now on, we will consider a group G, two subgroups H,K of G and a subgroup A
of Aut(G). Two natural questions are addressed in this note.

Q1 What conditions on G,H,K and A ensure that L(G,A) ⊆ H ∪K?

Q2 If L(G,A) ⊆ H ∪K is it true that either L(G,A) ⊆ H or L(G,A) ⊆ K?

Isaacs’ result gives an affirmative answer for Q2 when A = Inn(G) and both H and K
are A-invariant subgroups of G. If one defines coreA(H) =

⋂
a∈A Ha, then coreA(H) 6 H

and H is A-invariant if and only if H = coreA(H). Another way to verify the A-invariance
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for a subgroup H of G is to consider NA(H) = {a ∈ A |Ha = H}. Observe that NA(H) 6 A
and that A = NA(H) if and only if H is A-invariant.

When H is an A-invariant subgroup of G, consider the set G/H of the left cosets of H
in G and observe that A acts on G/H via (gH)a = gaH. When G is finite the number
tA(G/H) of the orbits of A in the set G/H will be important. We write tA(G) = tA(G/1)
to denote the number of orbits of A in G. For an A-invariant subgroup H of G we let
CA(G/H) denote the subgroup of A consisting of those elements a of A for which [g, a] ∈ H
for all g ∈ G and observe that L(G,A) ⊆ H if and only if A = CA(G/H).

We are now ready to state the main results.

Lemma 1. Let G be a group, let A 6 Aut(G) and let H,K be normal A-invariant subgroups
of G. If L(G,A) ⊆ H ∪K, then either L(G,A) ⊆ H or L(G,A) ⊆ K.

Lemma 2. Let G be a periodic group, let A 6 Aut(G) and let H,K 6 G. If L(G,A) ⊆
H ∪K, then:
i) Either H or K is A-invariant.
ii) L(G,A) ⊆ coreA(H) ∪ coreA(K).

Lemma 3. Let G be a finite group, let A 6 Aut(G) and let H,K be A-invariant subgroups
of G. Then

(∗) |G| ≥ |H|tA(G/H) + |K|tA(G/K)− |H ∩K|tA(G/(H ∩K))

and the equality holds in (∗) if and only if L(G,A) ⊆ H ∪K.

2 The proofs of the lemmas

Proof of Lemma 1. Suppose that L = L(G,A) is contained neither in H nor K. Then
CA(G/H) 6= A 6= CA(G/K) and one can pick a ∈ A \ (CA(G/H)∪CA(G/K)) and x, y ∈ G
such that [x, a] /∈ H and [y, a] /∈ K. Since L ⊆ H ∪ K we see that [x, a] ∈ K \ H and
[y, a] ∈ H \K.

Observe that [xy, a] = [x, a]y[y, a]. If [xy, a] ∈ H, then [x, a]y = [xy, a][y, a]−1 ∈ H and
the normality of H forces [x, a] ∈ H, a contradiction. Similarly, if [xy, a] ∈ K, one obtains
the contradiction [x, a] /∈ K and the proof is complete.

Proof of Lemma 2. Let L = L(G,A) and assume that neither H nor K is A-invariant.
Then NA(H) 6= A 6= NA(K) and one can pick a ∈ A \ (NA(H) ∪ NA(K)), h ∈ H, k ∈ K
such that [h, a] /∈ H and [k, a] /∈ K. Thus [h, a] ∈ K \ H, [k, a] ∈ H \K and one obtains
that [hk, a] = [h, a]k[k, a] ∈ H \K.

Suppose next that for some positive integer m we have [(hk)m, a] ∈ H \ K. Then
[(hk)mh, a] = [(hk)m, a]h[h, a] ∈ K \H and this implies that [(hk)m+1, a] = [(hk)mhk, a] =
[(hk)mh, a]k[k, a] ∈ H \K. By induction it follows that [(hk)n, a] ∈ H \K for every positive
integer n. Since G is periodic, choose n such that (hk)n = 1 to obtain the contradiction
1 = [1, a] = [(hk)n, a] ∈ H \K. This proves part i).

To prove ii), note that one may suppose without loss that only H is A-invariant, so
H = coreA(H). Since L is an A-invariant subset of G, the inclusion L ⊆ H ∪ K implies



Marian Deaconescu 169

that L ⊆
⋂

a∈A(H ∪K)a = H ∪ coreA(K) = coreA(H) ∪ coreA(K) and this completes the
proof.

Proof of Lemma 3. For g ∈ G let m(g) = |{(x, a) ∈ G × A | [x, a] = g}| and note
that m(g) 6= 0 if and only if g ∈ L = L(G,A). For a nonempty subset subset S of G define
m(S) to be the sum of all integers m(s) for s ∈ S and let also m(∅) := 0. Observe that
m(G) = m(L) = |G||A| and that m(S) = m(G) if and only if L ⊆ S.

Also, it was shown in [1] that if E is an A-invariant subgroup of G then m(E) =
|E||A|tA(G/E). The map g → m(g) is a measure on G which depends, of course, on the
choice of A. These preparations lead to a short and conceptual proof as follows.

By hypothesis the subgroups H,K and H ∩K are all A-invariant and then we have

|G||A| = m(G)

≥ m(H ∪K)

= m(H) + m(K)−m(H ∩K)

= |H||A|tA(G/H) + |K||A|tA(G/K)− |H ∩K||A|tA(G/(H ∩K)).

The inequality (∗) follows after cancelling |A| and the equality holds in (∗) if and only
if m(G) = m(H ∪K), i.e. if and only if L ⊆ H ∪K.

3 Applications

The first application is a slight extension of Isaacs’ observation:

Corollary 1. Let G be a group and let H,K 6 G such that either H or K is normal in G.
If C ⊆ H ∪K, then either C ⊆ H or C ⊆ K.

Proof: We let A = Inn(G) in Lemma 2. Observe that the hypothesis ensures that at least
one of the subgroups H,K is A-invariant and derive, as in the proof of Lemma 2 ii), that
C = L(G, Inn(G)) ⊆ coreG(H) ∪ coreG(K). Applying now Lemma 1 for A = Inn(G)
completes the proof.

When G is periodic and A is large enough then Q2 has an affirmative answer:

Corollary 2. Let G be periodic, let H,K 6 G and let Inn(G) 6 A 6 Aut(G). Then
L(G,A) ⊆ H ∪K if and only if L(G,A) ⊆ H or L(G,A) ⊆ K.

Proof: The hypothesis implies that the A-invariant subgroups of G are automatically nor-
mal in G and the result follows by combining Lemma 2 with Lemma 1.

In particular, if G is periodic and if H,K 6 G, then C ⊆ H ∪ K if and only if H is
contained in either H or K. This extends Isaacs’ result in the case of periodic groups.
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Corollary 3. Let G be a finite group, let Inn(G) 6 A 6 Aut(G) and let H,K be A-
invariant subgroups of G. Then L(G,A) ⊆ H ∪K if and only if tA(G/(H ∩K)) is equal to
either |H/(H ∩K)|tA(G/H) or |K/(H ∩K)|tA(G/K).

Proof: Let L = L(G,A). By Lemma 3, L ⊆ H ∪ K if and only if we have equality in
(∗) and by Corollary 2 this happens if and only if L is contained in either H or K. If,
for example, L ⊆ H, then clearly tA(G/H) = |G/H| and the equality in (∗) reduces to
|K/(H ∩K)|tA(G/K) = tA(G/(H ∩K)).

Yet one more application uses two of the lemmas to show that if G is periodic then one
can eliminate the A-invariance condition in Lemma 1.

Corollary 4. Let G be a periodic group, let A 6 Aut(G) and let H,K be normal subgroups
of G such that L(G,A) ⊆ H ∪ K. If L(G,A) ⊆ H ∪ K, then either L(G,A) ⊆ H or
L(G,A) ⊆ K.

Proof: By Lemma 2, L = L(G,A) ⊆ coreA(H) ∪ coreA(K). Since the terms of this union
are normal subgroups of G one applies Lemma 1 to derive that L ⊆ H or L ⊆ K.

The complete solution for problem Q1 in the case when G is finite is now at hand:

Corollary 5. Let G be a finite group, let A 6 Aut(G) and let H,K be subgroups of G with
X = coreA(H) and Y = coreA(K). Then L(G,A) ⊆ H ∪K if and only if

|G| = |X|tA(G/X) + |Y |tA(G/Y )− |X ∩ Y |tA(G/(X ∩ Y )).

Proof: By Lemma 2 we get that L = L(G,A) ⊆ H ∪ K if and only if L ⊆ X ∪ Y . The
result now follows from Lemma 3 since X and Y are A-invariant subgroups of G.

The above results are immediate consequences of the lemmas. The next application
is a bit surprising because it does not seem to be related to the problem at hand. It
was suggested by the following very particular situation which presents some independent
interest.

Let G be a finite group and let A be a subgroup of Aut(G) of odd prime order p. Let
F = CG(A) denote the subgroup of G consisting of all fixed points of A in G. It is well-

known that the number tA(G) of the orbits of A in G is equal to |F | + |G|−|F |
p . If one

assumes that tA(G) is odd, then it is an easy exercise to show that |G| is odd. And so, if
one is ready to apply the deep Odd Order Theorem of Feit and Thompson, it follows that
in fact G is solvable.

In the case when G is finite and tA(G) is odd we have the following:

Corollary 6. Let G be a finite group and let A 6 Aut(G) such that tA(G) is odd. If H is a
normal subgroup of G and if H 6 CG(A), then either H has odd order or H has nontrivial
center.
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Proof: Let CG(H) denote the centralizer of H in G, so H∩CG(H) = Z(H) is the center of
H. It is clear that H is an A-invariant normal subgroup of G and the same is true for CG(H).
A short calculation or an appeal to Problem 4C.3 of [2] shows that L = L(G,A) ⊆ CG(H).
Thus L ⊆ H ∪ CG(H) and if one takes in Corollary 3 K := CG(H) one obtains that
|H/Z(H)|tA(G/H) = tA(G/Z(H)). If Z(H) = 1, then |H| divides tA(G/1) = tA(G) and so
H has odd order, as asserted.

Remarks. 1) The results in this note remain valid if one replaces the subgroup A of
Aut(G) with a group A that acts on G via automorphisms.

2) The normality condition in Corollary 6 is a bit irritating. It could be replaced by the
requirement that the number tA(NG(H)) of orbits of A in the A-invariant subgroup NG(H)
of G is odd. In this way one obtains a local version of Corollary 6. Also , combining the Odd
Order Theorem with Corollary 6 shows that if tA(G/Z(X)) is odd for X = coreG(CG(A))
then X is solvable.

3) The measure g → m(g) introduced in the proof of Lemma 2 can be used to obtain a
more general conditional identity. Indeed, if G is a finite group, if A is a subgroup of Aut(G)
and if H1, H2, . . . ,Hn are A -invariant subgroups of G , the inclusion-exclusion principle
gives an inequality similar to (∗). The equality occurs if and only if L(G,A) is contained in
the union of the mentioned A -invariant subgroups, so the algebraic information is captured
by a number-theoretical identity involving invariants.

4) A few questions are left open. The necessity of the conditions in Lemma 1 is an open
problem. Similarly, it is not clear if the periodicity is really needed in Lemma 2. Either
a better proof which generalizes Lemma 2, or an example of a (non - periodic) group for
which Lemma 2 does not apply would be of interest.

References

[1] Marian Deaconescu, Gary Walls, Remarks on finite group actions, Bull. Math.
Soc. Sci. Math. Roumanie 59, 225-231 (2016).

[2] I.M. Isaacs, Finite Group Theory, A. M. S. Graduate Studies Series, vol. 92 (2008).

[3] Cristina Acciarri, Pavel Shumyatsky, Coverings of commutators in profinite
groups, Rend. Semin. Math. Univ. Padova 137, 237-257 (2017)

Received: 02.03.2018
Revised: 02.04.2018
Accepted: 15.04.2018

Mathematics Department, Kuwait University
P.O. Box 5969, Safat 13060, Kuwait

E-mail: mdeaconescu@yahoo.com


