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Abstract

Let I ⊆ K[x] be an ideal, K a field, x = (x1, . . . , xn) and > a monomial ordering
(not necessarily a well-ordering). Let L(I) be the leading ideal of I with respect to >. A
standard basis (in case of a well-ordering a Gröbner basis) G = {f1, . . . , fm} is defined
by the property that L(I) is generated by the leading monomials LM(f1), . . . , LM(fm)
of G. Usually one considers a standard basis associated to the uniquely determined
minimal system of monomials generating L(I), a minimal standard basis. In case of
border bases, Janet bases or Pommaret bases (usually only defined for well-orderings
but we generalize the concept to any ordering) the underlying standard bases have as
leading monomials special (non minimal) generators of L(I). We describe an algorithm
which computes these bases using a minimal standard bases and the corresponding
special generators of L(I). We have implemented these algorithms in Singular (cf.
[DGPS16]) including modular and parallel implementations and give timings to com-
pare them (cf.[KP17]). We also discuss the verification of the modular algorithm to
compute border bases and Janet bases.
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1 Introduction

Gröbner bases are in our days a very powerful tool for symbolic computations in mathemat-
ics and its applications. The ideas go back to Gordan (cf. [Go99]), Macaulay (cf. [M39])
and Gröbner (cf. [Gr39]). For ideals in a polynomial ring they are special generators with
many good properties. 1965 Buchberger (cf. [Bu65]) gave his famous algorithm to compute
them. For ideals in power series rings the corresponding theory goes back to Hironaka (cf.
[H64]) and Grauert (cf. [Gr72]), called standard bases. Mora (cf. [Mo82], [Mo92]) gave the
first algorithm to compute standard bases. Now we have a unified theory: Gröbner bases
are standard bases in case of global orderings (all monomials are greater than 1) and the
standard bases of Hironaka and Grauert correspond to local orderings (all monomials are
smaller than 1), cf. [GP07]. Involutive bases or more general r−standard bases are Gröbner
bases with additional properties. They were introduced by Gerdt and Blinkov (cf. [Ger05],
[GB98], [GBY01]) influenced by ideas studying partial differential equations.
Let K be a field, x = (x1, . . . , xn) and I ⊆ K[x] an ideal, let > be a monomial ordering
and L(I) the leading ideal of I. In [Ger05] V.Gerdt defined a restricted division r on the
set of monomials Mon(x) to be a transitive relation

u|rv, u, v ∈Mon(x) such that u|rv implies u|v.
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Special choices of r lead to involutive division and involutive bases of I including Janet bases
and Pommaret bases. The definition implies that an r−standard basis of I is a standard
basis of I. An r−standard basis may be an infinite set. There exist always finite Janet
bases and Pommaret bases (cf. [Ger05]).

Example 1. We give the following examples for restricted divisions.

1. The ordinary division of monomials is a restricted division.

2. The Pommeret division is defined as follows. Let u = xe1
1 . . . xen

n and v ∈Mon(x) we
define the restricted division u|rv by the conditions u|v and v/u ∈ K[x1, . . . , xi] with
i minimal such that ei > 0.

3. More general assume that for any monomial u ∈Mon(x) there is associated a subset
x(u) ⊂ x of so-called multiplicative variables 1. Let u = xe1

1 . . . xen
n and v ∈ Mon(x)

we define the restricted division u|rv by the conditions u|v. and v/u ∈ K[x(u)].

4. The Janet division is defined as follows. Let U be a finite set of monomials2. If u /∈ U
we define x(u) = ∅. For u = xe1

1 . . . xen
n ∈ U we define [∅] = U and for and 1 ≤ k ≤ n

[ek+1, . . . , en] = {xv1
1 . . . xvn

n ∈ U |ek+1 = vk+1, . . . , en = vn}.

The variable xk is multiplicative for u (with respect to U) if

ek = max{vk|xv1
1 . . . xvn

n ∈ [ek+1, . . . , en]}.

5. As a special example for the Janet division consider U = {x5, x2y2, y6} ⊂ K[x, y].
The multiplicative variables for x5 and x2y2 are {x} and for y6 are {x, y}.

Such a restricted division leads to a special system {mj}j∈J of monomials of L(I) with
the following property 3.

For every m ∈ L(I) there is a j ∈ J such that mj |rm.

The set {mj}j∈J is a special set of monomials generating L(I) with respect to the restricted
division, so-called r−generators of L(I).

Definition 1. A subset G ⊆ I is called an r−standard basis of I if the leading monomials of
the elements of G form a set of r−generators of L(I). If especially the restricted division is
a Pommeret (resp. Janet) division the corresponding r−standard basis is called Pommeret
(resp. Janet) basis.

Border bases (cf. [KK05],[KK06], [KKR05]) can also be interpreted as special r−standard
bases.

Definition 2. Let O := Mon(x)\Mon(x)∩L(I) and ∂O := x1O∪ . . .∪xnO \O the border
of O then L(I) = 〈∂O〉. A subset G ⊂ I is called border basis if ∂O is the set of leading
monomials of G.

1In the previous example x(u) = {x1, . . . , xi}.
2In the applications U will be a finite set of generators of the leading ideal L(I) of an ideal I with respect

to the fixed ordering.
3Note, that the restricted division may depend on the ideal L(I) as we will see for the Janet-division.
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The elements of the border have the following property:

Let m,n, t be monomials, m, t ∈ ∂O and n /∈ ∂O. If m|n then n - t.

This implies that the following relation r is transitive:

If (m,n) ∈ ∂O × ∂O then m -r n. If (m,n) /∈ ∂O × ∂O then m|rn if and only if m|n.

Using this restricted division a border basis is an r−standard basis. If dimK[x]/I = 0 then
a border basis is finite.
Let us consider the following example:

Example 2. Let I =< x5, x2y2, y6 >⊂ K[x, y] then

1. {x5, x2y2, y6} is a Gröbner basis of I.

2. {x5, x2y2, y6, x5y, x2y3, x2y4, x2y5} is a Janet basis and also a Pommaret basis of I
since x5, x2y2, x5y, x2y3, x2y4, x2y5 have {x} as multiplicative variable and y6 has
{x, y} as multiplicative variables.

3. A border basis of I is given by the set {x5, x2y2, y6, x5y, x2y3, x2y4, x2y5, xy6, x3y2, x4y2}
since O = {1, y, y2, y3, y4, y4, x, xy, xy2, xy3, xy4, xy5, x2, x2y, x3, x3y, x4, x4y}.

The following diagrams visualize the bases in 1. to 3. in the example 4.

Groebner Janet/Pommeret Border

Next we want to explain the idea of modular computations. We refer to [A03], [NY17],
[BDFG15], [GY03] and [IPS11] for a detailed description and analysis of the modular ap-
proach. We describe here how to compute a standard basis using modular methods. We
use the following notations.

Definition 3. Let K = Q and S ⊂ Q[x] be a set of polynomials, then

1. LM(S) := {LM(f) | f ∈ S} is the set of leading monomials of S.

2. If I = 〈f1, . . . , fr〉 ⊂ Q[x] and p is a prime number which does not divide any denomi-
nator of the coefficients of f1, . . . , fr. We write Ip := 〈f1mod p, . . . , frmod p〉 ⊂ Fp[x].

The idea of the algorithm is as follows.

4The dots correspond to the exponents of the monomials in the corresponding basis.
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1. We choose a set of prime numbers P and compute for p ∈ P a standard basis Gp of
Ip ⊂ Fp[x].

2. Then we lift these modular standard bases to a set of polynomials G ⊂ Q[x].

The lifting process consists of the two steps. The set

GP = {Gp | p ∈ P} is lifted to GN ⊂ Z/NZ[x] with N =
∏

p∈P p

using Chinese remainder theorem (here N should be larger than the moduli of all coefficients
in the expected standard basis). We obtain

G ⊂ Q[x] applying the Farey rational map to the coefficients in GN

(here we need that
√
N/2 is larger than the moduli of all coefficients of G). Since we do

not have good bounds for N to guarantee the correct lifting, we enlarge the set of primes
as long as the lifting stabilizes. Then the result is a standard basis of the ideal I with high
probability (a so-called probabilistic standard basis). To guarantee a correct result, we need
a final test in Q[x].

We test if I = 〈G〉 and G is a standard basis of 〈G〉.

If the test fails we enlarge the set of primes and continue. The test is usually very time
consuming. In many cases one can prove that it is enough to test that

I ⊂< G > and G is a standard basis of 〈G〉.

This is the so-called verification theorem (cf. [A03], [P07]). We will prove such a verification
theorem for r-standard bases.

Finally, we recall the classical approach to rational reconstruction which is based on the
lifting of modular to rational results by computing Farey preimages via Euclidean division
with remainder ([BDFG15], [C94], [KG83]). Let

FB = {a
b
∈ Q | gcd(a, b) = 1, 0 ≤ a ≤ B, 0 < |b| ≤ B}

and

QN = {a
b
∈ Q | gcd(a, b) = gcd(b,N) = 1}.

Let ϕN : QN → Z/N defined by ϕN

(
a
b

)
= (a mod N)(b mod N)−1 := (a

b )N .

If 2B2 < N then the Farey map ϕB,N : FB ∩ QN → Z/N is injective. The following
algorithm computes the preimage of the Farey map.
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Algorithm 1 Farey(N)

Require: Integers N ≥ 2 and 0 ≤ r ≤ N − 1.
Ensure: false or a rational a/b with gcd(a, b) = gcd(b,N) = 1, a/b ≡ r mod N , 0 ≤
a, |b| ≤

√
(N − 1)/2,

(a0, b0) := (N, 0), (a1, b1) := (r, 1), i := −1
while 2a2i+2 ≥ N − 1 do
i := i + 1
divide ai by ai+1 to find qi, ai+2, bi+2 such that

(ai, bi) = qi(ai+1, bi+1) + (ai+2, bi+2)

and 0 ≤ ai+2 < ai+1

if 2b2i+2 < N and gcd(ai+2, bi+2) = 1 then
return ai+2

bi+2

return false

The aim of this paper is to define and compute border basis and Janet bases also for
non–well orderings in a general setting, analyze the modular and parallel algorithms to
compute them and compare the results with other implementations. We also compare
our implementation of Janet bases with the implementation in Singular based on the
algorithm of V. Gerdt (cf. [Ger05]).

2 r−Standard Bases

To explain our approach to compute r−standard bases let us recall the properties of a weak
normal form (cf. [GP07]).

Let G = {g1, . . . , gm} be a standard basis of I with respect to >. For any f ∈ K[x]
there exist polynomials u, a1, . . . , am ∈ K[x] such that

uf = Σm
i=1aigi + h.

satisfying

1. If h 6= 0 then LM(h) is not divisible by LM(gi), i = 1, . . . ,m.

2. LM(Σm
i=1aigi) ≥ LM(aigi) for all i with aigi 6= 0.

3. LM(u) = 1, if > is a global ordering(i.e. a well–ordering), then u can be choosen to
be 1.

The polynomial h is called weak normal form of f with respect to G. There exist
algorithms to compute a weak normal form. We fix now such an algorithm computing
uniquely (unique by using the algorithm) u, h such that uf − h ∈ I and write (h, u) =
NF (f | G) i.e., h = NF(f | G)[1] and u = NF(f | G)[2].

Using the normal form we can construct an r−standard basis as described in the fol-
lowing proposition.
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Proposition 1. Let M = {m1, . . . ,mk} be a set of r−generators of L(I) and G =
{g1, . . . , gm} a standard basis of I. Let (hi, ui) = NF(mi | G) and fi := uimi − hi, i =
1, . . . , k. Then {f1, . . . , fk} is an r−standard basis of I.

Proof. LM(fi) = LM(uimi) using property (2) of the weak normal form,
LM(uimi) = mi since LM(ui) = 1.

On the basis of Proposition 1 we have implemented algorithms to compute Janet bases
and border bases. They can be used to compute this bases using modular and parallel
methods.

3 Modular Computations of r−Standard Bases

In this chapter we fix a monomial ordering > and a restricted division r on Mon(x). We
also assume that we have an algorithm rMon which associates to every monomial ideal I
in a unique way a finite set of r-generators of I (rMon returns the empty set if there is
no finite set of r−generators). Examples for rMon are algorithms to compute a border
basis for a zero–dimensional monomial ideal or to compute a Janet basis (more general an
involutive basis) for a monomial ideal.

We describe now an algorithm to compute an r−standard basis using modular methods.
We use the notations used in the introduction.

The idea of the algorithm is as follows. We choose a set of prime numbers P and com-

pute for p ∈ P a standard basis Gp of Ip ⊂ Fp[x]. Then we lift these modular standard
bases GP = {Gp | p ∈ P} to a set of polynomials G ⊂ Q[x]. We obtain a proba-
bilistic standard basis of I or after a verification process a standard basis of I. Now we
apply the algorithm rMon to the leading ideal L(G) of G and consider the monomi-
als J := rMon(L(G)) \ LM(G), the “extra” generators coming from the restricted di-
vision. Using the normal form we obtain for every monomial m ∈ J the normal form
(up, hp) = NF (m | Gp). For p ∈ P let Rp = {upm − hp | m ∈ J}. As before we lift
RP = {Rp | p ∈ P} to R ⊂ Q[x]. G ∪R is the r-standard basis we wanted to compute.

We want to use only primes p such that LM(G) = LM(Gp), so-called lucky primes. The
set of unlucky primes is finite. The following procedure tries to avoid the unluky primes.

deleteUnluckyPrimesSB: We define an equivalence relation on (GP,P ) by
(Gp, p) ∼ (Gq, q) :⇐⇒ LM(Gp) = LM(Gq). Then the equivalence class of largest cardi-
nality is stored in (GP,P ), the others are deleted.

Since we do not know if the number of lucky primes we have choosen is big enough, we
test from time to time whether the lifting gives the correct result, i.e. G is a standard basis
and I = 〈G〉. This test is very expensive. In case of a local ordering or a homogeneous ideal
in case of a global ordering Theorem 1 simplifies the test. In all cases the following test in
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positive characteristic accelerates the algorithm very much.

pTestSB: We randomly choose a prime number p /∈ P such that p does not divide the
numerator and denominator of any polynomial of the input. The test is positive if and only
if (G mod p) is a standard basis of Ip.

For the verification of the r−standard basis we use the following theorem.

Theorem 1. Let I ⊂ Q[x] be an ideal, > a monomial ordering, we assume that either > is
global and I is homogeneous5 or > is a local ordering6. Let R ⊂ Q[x] be a set of polynomials
such that LM(R) = LM(Rp) where Rp is an r−standard basis of IP for some prime p. If R
is a standard basis of 〈R〉 and I ⊂ 〈R〉 then I = 〈R〉 and R is an r−standard basis of I.

Proof. Since Rp is a standard basis of Ip it follows from [A03] resp. [P07] that I = 〈R〉 .
Since Rp is a standard basis of Ip and LM(R) = LM(Rp) it follows that R is an r−standard
basis.

We obtain the following algorithms (pseudo-code without the optimization used in the
implementation in Singular ).

Algorithm 2 rStandard(G, J)

Require: G a standard basis, J ⊆ LM(G) a finite set.
Ensure: R a set of polynomials of G such that LM(R) = J .

R = ∅;
for m ∈ J do

(u, h) = NF (m | G);
R = R ∪ {um− h};

return R;

The main algorithm will be Algorithm 3.

Remark 1. Algorithm 3 can easily parallelized as follows:

1. The standard bases Gp can be computed in parallel.

2. The verification can be parallelized:

• R ⊂ 〈G〉 can be checked in parallel for every generator of R.

• The check for G being a standard basis can be done reducing every s−polynomial
with respect to G in parallel.

5If the ideal is not homogeneous and the ordering is not local the theorem is wrong.
K. Yokoyama(cf. [Y12]) gave an example that Theorem 2.4 in [IPS11] fails. The correct statement can be
found in [NY17].

6For the definition of a local ordering cf. [GP07].



76 r-Standard Bases

Algorithm 3 rStandardBasis

Require: I ⊆ Q[x] an ideal given by generators, > a monomial ordering, s an integer.
Ensure: R ⊆ Q[x] r-standard basis of I(with verification if s = 1 and > is local or I is

homogeneous).

if If s = 1 and > is not local and I is not homogeneous then
s = 0;

choose P , a list of random primes;
GP = ∅, RP = ∅;
loop

for p ∈ P do
compute a standard basis Gp of Ip;
GP = GP ∪ {Gp};

(GP,P ) = deleteUnluckyPrimesSB(GP,P );
lift (GP,P ) to G ⊆ Q[x] by applying Chinese remainder and Farey fraction rational
map;
if pTestSB(I,G, P ) then

if s = 1 then
if I ⊆ 〈G〉 then

if G is a standard basis of 〈G〉 then
compute J := rMon(L(G)) \ LM(G);
for p ∈ P do
Rp = rStandard(Gp, J);
RP = RP ∪ {Rp};
lift (RP,P ) to R ⊂ Q[x] by applying Chinese remainder and Farey fraction
rational map;
if R ⊂ 〈G〉 then

R = R ∪G;
return R;

else
compute J := rMon(L(G)) \ LM(G);
for p ∈ P do
Rp = rStandard(Gp, J);
RP = RP ∪ {Rp};
lift (RP,P ) to R ⊂ Q[x] by applying Chinese remainder and Farey fraction
rational map;
if R ⊂ 〈G〉 then
R = R ∪G;
return R;

enlarge P ;

4 Examples, timings and conclusions

In this chapter we study examples computing border bases and Janet bases.
We use the following examples 1-19 which can be found in the SymbolicData project of
H.-G. Gräbe (cf.[Gr16]), using the link http://symbolicdata.org/XMLResources/IntPS/.
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1. Cyclic 7.xml

2. Milnor1.xml

3. Tjurina1.xml

4. random1.xml

5. random2.xml

6. Singular.schwarz 6.xml (dehomogenized: h=1)

7. Twomat3.xml

8. Klein.xml

9. Meintjes.xml

10. Wilfred.xml

11. Behnke.xml

12. Paris.ilias13.xml

13. Pfister 2.xml

14. Singular.gerhard 3.xml

15. Singular.gerhard 1.xml (dehomogenized w=1)

16. Milnor3.xml

17. Tjurina1.xml

18. Milnor4.xml

19. Steidel 1.xml

In Table 1 (resp. Table 2) we compare timings to compute the border bases (resp.
Janet bases) with Algorithm 1 using as rMon an algorithm to compute the border of the
order ideal associated to the ordering ( degrevlex in examples 1-13 and local degrevlex in
examples 14-19) (resp. a Janet basis of the leading ideal).
borderbasisP, rJanetP (resp. borderBasis0, rJanet0) are the timings in characteristic 32003
(resp. 0). modBorder1, modJanet1 (resp. modBorder0, modJanet0) give the timings for
the parallel and modular computation with (resp. without) verification of the result. In the
second table JanetP (resp. Janet0) are the timings using the Singular implementation of
V. Gerdt’s algorithm for computing Janet bases in characteristic 32003 (resp. 0) which is
implemented only for well–orderings.
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Example borderBasisP borderBasis0 modBorder1 modBorder0
1 148 – 1899 1224
3 57 – 647 416
6 31 18 414 148
11 1038 73891 83021 27758
12 37 10041 1997 1216
13 7 3617 99 66
16 782 – – –
17 243 – 7838 4695
18 1 6283 10 4
19 2 – 17 6

Table 1: Total running times for computing a border basis of the considered examples.

Example JanetP Janet0 rJanetP rJanet0 modJanet1 modJanet0
1 4 29 1 – 71 46
3 126 – 13 – 563 373
4 10 17456 1 – 56 19
5 60 – 3 – 154 54
6 – – 0 0 0 0
7 74555 77496 41 38 5854 2760
8 31 8885 3 – – 382673
9 – 65982 807 3921 72639 71591
10 – – 68452 83420 – –
12 114 1635 4 6554 602 348
13 48 325 1 1368 30 20
14 61 87 31 239 3403 2500
15 0 – 5 2
16 91 – – 277878
17 34 – 4015 1734
18 0 3022 2 1
19 0 – 11 4

Table 2: Total running times for computing a Janet basis of the considered examples.

The timings are given in seconds,“–” means that the computation was stopped after
one day or the memory exceeded 50 GB. The timings show that our implementation of
the algorithm to compute Janet basis is faster than the implementation of V. Grerdt’s
algorithm. They also show that the modular and parallel approach is much more powerfull
than the direct computation in characteristic 0 and the verification step in the modular
approach is very time consuming for difficult examples.
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The computations are done using the 64-bit version of Singular 4-1-0 on an Dell
PowerEdge R720 2x Intel Xeon E5-2690 2.9 -3.8 GHz 20 MB Cache, 16 Cores, 32 Threads,
192 GB RAM under the Gentoo Linux operating system.
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