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Abstract

In this paper, we will consider a class of even order nonlinear impulsive neu-
tral partial functional differential equations with continuous distributed deviating
arguments. Adequate conditions are obtained for the oscillation of solutions by
using impulsive differential inequalities and averaging technique with two different
boundary conditions. Examples are specified to illustrate the main results.
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1 Introduction

The oscillation theory of ordinary differential equations marks its commencement with
the manuscript of Sturm [26] in 1836 and for partial differential equations by Hartman
and Wintner [9] in 1955. To the best of the authors’ knowledge, the work on impulsive
delay differential equations was published and initiated in 1989 in [6]. Its consequences
were integrated in the monograph [14]. On the other hand there are a few papers has
been considered higher order partial differential equations with distributed deviating ar-
guments, we refer the reader to the papers [7], [15], [16], [17]. The primary exertion for
impulsive partial differential equations has been started in 1991 in [5]. In recent years the
oscillation of parabolic and hyperbolic equations with or without impulse effect has been
widely studied in the literature, we refer the reader to the papers [11], [12], [18], [21], [22],
[23], [24], [27], [28] and the reference they are cited. In [31], population ecology, generic
repression, control theory, climate models, coupled oscillators, viscoelastic materials, and
structured population models studied with distributed delay and boundary conditions of
the type Dirichlet, Neumann and Robin. From the essence of these mathematical mod-
els, we formulated this higher order problem. Distributed delay system models appear in
logistics [4], traffic flow [25], microorganism growth [20], and hematopoiesis [1], and [2].
The wide interest on qualitative studies of impulsive ordinary and partial functional dif-
ferential equations is returned to their varieties of applications in various fields of science
and technology [3], [13], [32], and so it is desirable to study these equations scientifically.

In this paper, we will study the following even order nonlinear impulsive neutral partial
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functional differential equation with continuous distributed deviating arguments

∂m

∂tm

[

u(x, t) +
∫ b

a
g(t, ξ)u(x, τ(t, ξ))dη(ξ)

]

+
∫ b

a
q(x, t, ξ)f(u(x, σ(t, ξ)))dη(ξ)

= a(t)∆u(x, t) +
n
∑

j=1

bj(t)∆u(x, ρj(t)), t 6= tk, (x, t) ∈ Ω× (0,+∞) ≡ G,

∂(i)u(x, t+k )

∂t(i)
= I

(i)
k

(

x, tk,
∂(i)u(x, tk)

∂t(i)

)

, t = tk, k = 1, 2, ..., i = 0, 1, 2, ..,m− 1,



























(1.1)
where Ω is a bounded domain in R

N with a piecewise smooth boundary ∂Ω and ∆ is the
Laplacian in the Euclidean space R

N .
Equation (1.1) is enhancement with one of the subsequent Dirichlet and Robin bound-

ary conditions,

u = 0, (x, t) ∈ ∂Ω× (0,+∞), (1.2)

∂u

∂γ
+ µ(x, t)u = 0, (x, t) ∈ ∂Ω× (0,+∞), (1.3)

where γ is the outer surface normal vector to ∂Ω and µ(x, t) ∈ C (∂Ω× [0,+∞), [0,+∞)).
In the sequel, we assume that the following hypotheses (H) hold:

(H1) a(t), bj(t) ∈ PC ([0,+∞), [0,+∞)), j = 1, 2, ..., n, where PC represents the class of
functions which are piecewise continuous in t with discontinuities of first kind only
at t = tk, k = 1, 2, ..., and left continuous at t = tk, k = 1, 2, ..., a, b are non-positive
constants with a < b.

(H2) g(t, ξ) ∈ Cm([0,+∞)× [a, b], [0,+∞)), q(x, t, ξ) ∈ C(Ω̄× [0,+∞)× [a, b], [0,+∞)),
Q(t, ξ) = min

x∈Ω̄
q(x, t, ξ), ρj(t) ∈ C([0,+∞),R), lim

t→+∞
ρj(t) = +∞, j = 1, 2, ..., n,

f(u) ∈ C(R,R) is convex in [0,+∞), uf(u) > 0 and
f(u)

u
≥ c > 0 for u 6= 0.

(H3) τ(t, ξ), σ(t, ξ) ∈ C([0,+∞) × [a, b],R), τ(t, ξ) ≤ t, σ(t, ξ) ≤ t for ξ ∈ [a, b],
τ(t, ξ) and σ(t, ξ) are nondecreasing with respect to t and ξ respectively and

lim inf
t→+∞, ξ∈[a,b]

τ(t, ξ) = lim inf
t→+∞, ξ∈[a,b]

σ(t, ξ) = +∞.

(H4) There exist a function θ(t) ∈ C([0,+∞), [0,+∞)) satisfying θ(t) ≤ σ(t, a), θ
′

(t) > 0
and lim

t→+∞
θ(t) = +∞, η(ξ) : [a, b] → R is nondecreasing and the integral is a

Stieltjes integral in (1.1).

(H5)
∂(i)u(x, t)

∂t(i)
are piecewise continuous in t with discontinuities of first kind only at

t = tk, k = 1, 2, ..., and left continuous at t = tk,
∂(i)u(x, tk)

∂t(i)
=

∂(i)u(x, t−k )

∂t(i)
,

k = 1, 2, ..., i = 0, 1, 2, ...,m− 1.

(H6) I
(i)
k

(

x, tk,
∂(i)u(x, tk)

∂t(i)

)

∈ PC(Ω̄× [0,+∞)×R,R), k = 1, 2, · · · , i = 0, 1, 2, ...,m−

1, and there exist positive constants a
(i)
k , b

(i)
k with b

(m−1)
k ≤ a

(0)
k such that for
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i = 0, 1, 2, ...,m− 1, k = 1, 2, ...,

a
(i)
k ≤

I
(i)
k

(

x, tk,
∂(i)u(x, tk)

∂t(i)

)

∂(i)u(x, tk)

∂t(i)

≤ b
(i)
k .

This paper is organized as follows: In Section 2, we present the definitions and nota-
tions that will be needed. In Section 3, we discuss the oscillation of the problem (1.1) and
(1.2). In Section 4, we discuss the oscillation of the problem (1.1) and (1.3). In Section
5, we present some examples to illustrate the main results. The results in this paper ex-
pand and improve numerous findings in the earlier publications not including impulsive
effects. We anticipate that this work acquire the concentration of numerous researchers
functioning on the even order impulsive partial functional differential equations.

2 Preliminaries

In this section, we begin with definitions and well known results which are required
throughout this paper.

Definition 1. A solution u of the problem (1.1) is a function u ∈ Cm(Ω̄×[t−1,+∞),R)∩
C(Ω̄× [t̂−1,+∞),R) that satisfies (1.1), where

t−1 := min

{

0, min
ξ∈[a,b]

{

inf
t≥0

τ(t, ξ)

}

, min
ξ∈[a,b]

{

inf
t≥0

σ(t, ξ)

}}

,

t̂−1 := min

{

0, min
1≤j≤n

{

inf
t≥0

ρj(t)

}}

.

Definition 2. The solution u of the problem (1.1), (1.2) [(1.1 ), (1.3)] is said to be
oscillatory in the domain G if for any positive number ℓ there exists a point (x0, t0) ∈
Ω× [ℓ,+∞) such that u(x0, t0) = 0 holds.

Definition 3. A function V (t) is said to be eventually positive (negative) if there exists
a t1 ≥ t0 such that V (t) > 0 (< 0) holds for all t ≥ t1.

It is identified that [29] the least eigenvalue λ0 > 0 of the eigenvalue problem

∆ω(x) + λω(x) = 0, in Ω, ω(x) = 0, on ∂Ω,

and the consequent eigenfunction Φ(x) > 0 in Ω.
For each positive solution u(x, t) of the problem (1.1), (1.2) [(1.1), (1.3)] we combine

the functions V (t) and Ṽ (t) defined by

V (t) = KΦ

∫

Ω

u(x, t)Φ(x)dx, Ṽ (t) =
1

|Ω|

∫

Ω

u(x, t)dx,

F (t) = M(θ(t))m−2θ
′

(t), and G(t) = cg0

∫ b

a

Q(t, ξ)dη(ξ),
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where

KΦ =

(
∫

Ω

Φ(x)dx

)−1

, |Ω| =

∫

Ω

dx, and g0 = 1−

∫ b

a

g(σ(t, ξ), ξ)dη(ξ).

Lemma 1. [10] Let y(t) be a positive and n times differentiable function on [0,+∞). If
y(n)(t) is constant sign and not identically zero on any ray [t1,+∞) for t1 > 0, then there
exists a ty ≥ t1 and integer l (0 ≤ l ≤ n), with n + l even for y(t)y(n)(t) ≥ 0 or n + l
odd for y(t)y(n)(t) ≤ 0; and for t ≥ ty, y(t)y

(k)(t) > 0, 0 ≤ k ≤ l; (−1)k−ly(t)y(k)(t) >
0, l ≤ k ≤ n.

Lemma 2. [19] Suppose that the conditions of Lemma 1 is satisfied, and y(n−1)(t)y(n)(t) ≤

0, for t ≥ ty. Then there exist constant α ∈ (0, 1) and M > 0 such that
∣

∣

∣
y

′

(αt)
∣

∣

∣
≥

Mtn−2
∣

∣y(n−1)(t)
∣

∣ for sufficiently large t.

Lemma 3. [8] If X and Y are nonnegative, then

Xα − αXY α−1 + (α− 1)Y α ≥ 0, α > 1,

Xα − αXY α−1 − (1− α)Y α ≤ 0, 0 < α < 1,

where the equality holds if and only if X = Y .

3 Oscillation of the problem (1.1), (1.2)

In this section, we establish some sufficient conditions for the oscillation of all solutions
of the problem (1.1), (1.2).

Lemma 4. If the functional impulsive differential inequality

Z(m)(t) +G(t)Z(θ(t)) ≤ 0, t 6= tk

a
(i)
k ≤

∂(i)Z(t+k )

∂t(i)

∂(i)Z(tk)

∂t(i)

≤ b
(i)
k , k = 1, 2, ..., i = 0, 1, 2, ...,m− 1,























(3.1)

has no eventually positive solution, then every solution of the boundary value problem
defined by (1.1), (1.2) is oscillatory in G.

Proof. Assume that there exist a nonoscillatory solution u(x, t) of the boundary value
problem (1.1), (1.2) and u(x, t) > 0. By the hypothesis (H3), that there exists a t1 >
t0 > 0 such that τ(t, ξ) ≥ t0, σ(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,+∞) × [a, b] and ρj(t) ≥ t0,
j = 1, 2, ..., n for t ≥ t1, then for t ≥ t1, t 6= tk, k = 1, 2, ..., we get that

u(x, τ(t, ξ)) > 0, for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b],

u(x, σ(t, ξ)) > 0, for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b],

u(x, ρj(t)) > 0, for (x, t) ∈ Ω× [t1,+∞), j = 1, 2, ..., n.



T. Kalaimani et.al 55

Multiplying both sides of equation (1.1) by KΦΦ(x) > 0 and integrating with respect to
x over the domain Ω, we obtain

dm

dtm

[

∫

Ω
u(x, t)KΦΦ(x)dx+

∫

Ω

∫ b

a
g(t, ξ)u(x, τ(t, ξ))KΦΦ(x)dη(ξ)dx

]

+
∫

Ω

∫ b

a
q(x, t, ξ)f(u(x, σ(t, ξ)))KΦΦ(x)dη(ξ)dx

= a(t)
∫

Ω
∆u(x, t)KΦΦ(x)dx+

n
∑

j=1

bj(t)
∫

Ω
∆u(x, ρj(t))KΦΦ(x)dx.























(3.2)

From Green’s formula and the boundary condition (1.2), we see that

KΦ

∫

Ω

∆u(x, t)Φ(x)dx = KΦ

∫

∂Ω

[

Φ(x)
∂u

∂γ
− u

∂Φ(x)

∂γ

]

dS +KΦ

∫

Ω

u(x, t)∆Φ(x)dx

= −λ0V (t) ≤ 0, (3.3)

and for j = 1, 2, ..., n, we have

KΦ

∫

Ω

∆u(x, ρj(t))Φ(x)dx = KΦ

∫

∂Ω

[

Φ(x)
∂u(x, ρj(t))

∂γ
− u(x, ρj(t))

∂Φ(x)

∂γ

]

dS

+KΦ

∫

Ω

u(x, ρj(t))∆Φ(x)dx

= −λ0V (ρi(t)) ≤ 0, (3.4)

where dS is surface component on ∂Ω. Furthermore applying Jensen’s inequality for
convex functions and using the assumptions on (H2), we get that

∫

Ω

∫ b

a

q(x, t, ξ)f(u(x, σ(t, ξ)))KΦΦ(x)dη(ξ)dx

≥

∫ b

a

Q(t, ξ)

∫

Ω

f(u(x, σ(t, ξ)))KΦΦ(x)dxdη(ξ)

≥ c

∫ b

a

Q(t, ξ)V (σ(t, ξ))dη(ξ). (3.5)

Combining (3.2)-(3.5), we get that

dm

dtm

[

V (t) +

∫ b

a

g(t, ξ)V (τ(t, ξ))dη(ξ)

]

+ c

∫ b

a

Q(t, ξ)V (σ(t, ξ))dη(ξ) ≤ 0. (3.6)

Set Z(t) = V (t) +
∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ). Equation (3.6), can be written as

Z(m)(t) + c

∫ b

a

Q(t, ξ)V (σ(t, ξ))dη(ξ) ≤ 0, t 6= tk. (3.7)

From the assumption of
∫ b

a
g(t, ξ)dη(ξ) and Q(t, ξ), we have Z(t) ≥ V (t) > 0 and

Z(m)(t) ≤ 0. Simultaneously, we can further prove Z(m−1)(t) ≥ 0, t ≥ t2. In addi-
tion, from Lemma 1, there exists a t3 ≥ t2 and a odd number l, 0 ≤ l ≤ m − 1, and for
t ≥ t3, we have

Z(i)(t) > 0, 0 ≤ i ≤ l, (−1)(i−1)Z(i)(t) > 0, for l ≤ i ≤ m− 1.
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By choosing i = 1, we have Z
′

(t) > 0, since Z(t) ≥ x(t) > 0, Z
′

(t) ≥ 0, we have

Z(σ(t, ξ)) ≥ Z(σ(t, ξ)− τ(t, ξ)) ≥ x(σ(t, ξ)− τ(t, ξ)),

and thus

Z(m)(t) + c

∫ b

a

Q(t, ξ)Z(σ(t, ξ))

(

1−

∫ b

a

g(σ(t, ξ), ξ)dη(ξ)

)

dη(ξ) ≤ 0. (3.8)

From equation (3.7), we get

Z(m)(t) +G(t)Z(σ(t, ξ)) ≤ 0.

From (H3) and (H4), we have

Z(σ(t, ξ)) ≥ Z(σ(t, a)) > 0, ξ ∈ [a, b] and θ(t) ≤ σ(t, ξ) ≤ t.

Thus Z(θ(t)) ≤ Z(σ(t, a)) for t ≥ t2. Then (3.8) can be written as

Z(m)(t) +G(t)Z(θ(t)) ≤ 0.

Multiplying both sides of the equation (1.1) by KΦΦ(x) > 0, integrating with respect to
x over the domain Ω, and from (H6), we obtain

a
(i)
k ≤

∂(i)u(x, t+k )

∂t(i)

∂(i)u(x, tk)

∂t(i)

≤ b
(i)
k .

According to V (t) = KΦ

∫

Ω
u(x, t)Φ(x)dx, we have

a
(i)
k ≤

∂(i)V (x, t+k )

∂t(i)

∂(i)V (x, tk)

∂t(i)

≤ b
(i)
k .

Since Z(t) = V (t) +
∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ), we obtain

a
(i)
k ≤

∂(i)Z(x, t+k )

∂t(i)

∂(i)Z(x, tk)

∂t(i)

≤ b
(i)
k .

Therefore Z(t) is an eventually positive solution of (3.1). This disagree with the hypoth-
esis.

Theorem 1. If there exists a function ϕ(t) ∈ C ′([0,+∞), (0,+∞)) which is nondecreas-
ing with respect to t, such that

∫ +∞

t1

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
[

ϕ(s)G(s)−
(ϕ′(s))2

4F (s)ϕ(s)

]

ds = ∞, (3.9)

then every solution of the boundary value problem (1.1), (1.2) is oscillatory in G.
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Proof. Assume that there exist a non-oscillatory solution u(x, t) of the boundary value
problem (1.1), (1.2) and u(x, t) > 0. Proceeding as in the proof of Lemma 4 to get that

Z(m)(t) + G(t)Z(θ(t)) ≤ 0, where Z(t) = V (t) +
∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ) and satisfies

Z(m)(t) ≤ 0, Z(m−1)(t) ≥ 0 and an odd number l, 0 ≤ l ≤ m − 1, such that Z(i)(t) >
0, 0 ≤ i ≤ l, (−1)(i−1)Z(i)(t) > 0, for l ≤ i ≤ m− 1. Define

W (t) := ϕ(t)
Z(m−1)(t)

Z(θ(t))
, for t ≥ t0,

then W (t) ≥ 0 for t ≥ t1, and

W
′

(t) ≤
ϕ

′

(t)

ϕ(t)
W (t) +

ϕ(t)Z(m)(t)

Z(θ(t))
−

ϕ(t)Z(m−1)(t)Z
′

(θ(t))θ
′

(t)

Z(θ(t))2
.

From Z(m)(t) ≤ 0, according to Lemma 2, we obtain

Z
′

(θ(t)) ≥ M(θ(t))m−2Z(m−1)(t) .

Thus

W
′

(t) ≤
ϕ

′

(t)

ϕ(t)
W (t)−G(t)ϕ(t)−

F (t)

ϕ(t)
W 2(t), W (t+k ) ≤

b
(m−1)
k

a
(0)
k

W (tk).

Define

U(t) =
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1

W (t).

In fact, W (t) is continuous on each interval (tk, tk+1], and in consideration of W (t+k ) ≤

(b
(m−1)
k /a

(0)
k )W (tk). It follows for t ≥ t0 that

U(t+k ) =
∏

t0≤tj≤tk

(

b
(m−1)
k

a
(0)
k

)−1

W (t+k ) ≤
∏

t0≤tj<tk

(

b
(m−1)
k

a
(0)
k

)−1

W (tk) = U(tk)

and for all t ≥ t0, we have

U(t−k ) =
∏

t0≤tj≤tk−1

(

b
(m−1)
k

a
(0)
k

)−1

W (t−k ) ≤
∏

t0≤tj<tk

(

b
(m−1)
k

a
(0)
k

)−1

W (tk) = U(tk),
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which implies that U(t) is continuous on [t0,+∞) and satisfies

U
′

(t) +
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)

U2(t)F (t)

ϕ(t)
+

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t)−
ϕ

′

(t)U(t)

ϕ(t)

=
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1

W
′

(t) +
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−2
F (t)

ϕ(t)
W 2(t)

+
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t)−
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1
ϕ

′

(t)

ϕ(t)
W (t)

=
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1 [

W ′(t) +W 2(t)
F (t)

ϕ(t)
−W (t)

ϕ
′

(t)

ϕ(t)
+G(t)ϕ(t)

]

≤ 0.

That is

U
′

(t) ≤ −
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)

F (t)

ϕ(t)
U2(t) +

ϕ
′

(t)

ϕ(t)
U(t)−

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t).

(3.10)
Applying Lemma 3 with

X =

√

√

√

√

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)

F (t)

ϕ(t)
U(t), and Y =

ϕ′(t)

2

√

√

√

√

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1
1

F (t)ϕ(t)
,

we have

ϕ
′

(t)

ϕ(t)
U(t)−

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)

F (t)

ϕ(t)
U2(t) ≤

(ϕ
′

(t))2

4F (t)ϕ(t)

∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1

.

Thus

U
′

(t) ≤ −
∏

t0≤tk<t

(

b
(m−1)
k

a
(0)
k

)−1 [

G(t)ϕ(t)−
(ϕ

′

(t))2

4F (t)ϕ(t)

]

.

Integrating both sides from t1 to t, we have

U(t) ≤ U(t1)−

∫ t

t1

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1 [

G(s)ϕ(s)−
(ϕ

′

(s))2

4F (s)ϕ(s)

]

ds.

Letting t → +∞, from (3.9), we have lim
t→+∞

U(t) = −∞, which leads to a contradiction

with U(t) ≥ 0. The proof is complete.

The following theorem is of Philos type [19] and can be obtained by applying the
inequality (3.10) and the Philos technique. The details will be left to the interested
reader. To formulate the results we assume that there exist two functions H(t, s), h(t, s) ∈
C1(D,R), in which D = {(t, s)|t ≥ s ≥ t0 > 0}, such that
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(H7). H(t, t) = 0, t ≥ t0; H(t, s) > 0, t > s ≥ t0 ,

(H8). H
′

t(t, s) ≥ 0, H
′

s(t, s) ≤ 0,

(H9). −
∂

∂s
[H(t, s)ρ(s)]−H(t, s)ρ(s)

ϕ
′

(s)

ϕ(s)
= h(t, s).

Theorem 2. Assume that there exist functions ϕ(t) and ρ(s) ∈ C1([0,+∞), (0,+∞))
such that ϕ(t) is non-decreasing. If there exist two functions H(t, s), h(t, s) ∈ C1(D,R)
satisfy (H7)− (H9) and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1

Π(s)ds = ∞, (3.11)

where

Π(s) = G(s)ϕ(s)H(t, s)ρ(s)−
1

4

|h(t, s)|
2
ϕ(s)

F (s)H(t, s)ρ(s)
,

then every solution of the boundary value problem (1.1), (1.2) is oscillatory in G.

In Theorem 2, by choosing ρ(s) = ϕ(s) ≡ 1, we have the following corollary.

Corollary 1. Assume that the conditions of Theorem 2 hold, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1

Γ(s)ds = ∞,

where

Γ(s) = G(s)H(t, s)−
1

4

|h(t, s)|
2

F (s)H(t, s)
,

then every solution of the boundary value problem (1.1), (1.2) is oscillatory in G.

Remark 1. From Theorem 2 and Corollary 1, we can attain various oscillatory criteria
by different choices of the weighted function H(t, s). For example, choosing H(t, s) =
(t− s)n−1, t ≥ s ≥ t0, in which n > 2 is an integer, then h(t, s) = (n− 1)(t− s)(n−3)/2,
t ≥ s ≥ t0. From Corollary 1, we have the following Kamenev type result.

Corollary 2. If there exists an integer n > 2 such that

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
[

G(s)(t− s)n−1 −
1

4

(n− 1)2

(t− s)2F (s)

]

ds = +∞,

(3.12)
then every solution of the boundary value problem (1.1), (1.2) is oscillatory in G.

Also by applying the method of Philos [19] one can obtain the following new oscillation
theorem.
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Theorem 3. Let the functions H(t, s), h(t, s), ϕ(s) and ρ(s) be as defined in Theorem

2. Additionally, suppose that 0 < inf
s≥t0

{

lim inf
t→+∞

H(t, s)

H(t, t0)

}

≤ +∞, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
|h(t, s)|

2
ϕ(s)

F (s)H(t, s)ρ(s)
ds < +∞.

If there exists a function A(t) ∈ C([t0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)

F (s)(A+(s))
2

ρ(s)ϕ(s)
ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1 [

G(s)H(t, s)ϕ(s)ρ(s)−
1

4

|h(t, s)|
2
ϕ(s)

F (s)H(t, s)ρ(s)

]

ds

≥ A(T ),

where A+(s) = max{A(s), 0}, then every solution of the boundary value problem (1.1), (1.2)
is oscillatory in G.

In Theorem 3, by choosing ρ(s) = ϕ(s) ≡ 1, we get the following corollary.

Corollary 3. Assume that the conditions of Theorem 3 hold and assume that ρ(s) =
ϕ(s) ≡ 1. If

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1 [

G(s)H(t, s)−
1

4

|h(t, s)|
2

F (s)H(t, s)

]

ds ≥ A(T ),

for every T ≥ t0, where A+(s) = max{A(s), 0}, then every solution of the boundary value
problem (1.1), (1.2) is oscillatory in G.

Similar to Corollary 2, we can obtain the following corollary from Corollary 3.

Corollary 4. Assume that the conditions of Theorem 3 hold, and

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
(n− 1)2

(t− s)2F (s)
ds < ∞.

If there exists an integer n > 2 and function A(t) ∈ C([0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)

F (s)(A+(s))
2ds = ∞,

and for every T ≥ t0

lim sup
t→+∞

1

(t− t0)n−1

∫ t

T

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
[

G(s)(t− s)n−1 −
1

4

(n− 1)2

(t− s)2F (s)

]

ds ≥ A(T ),

where A+(s) = max{A(s), 0}, then every solution of the boundary value problem (1.1), (1.2)
is oscillatory in G.
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4 Oscillation of the problem (1.1), (1.3)

In this section, we establish sufficient conditions for the oscillation of all solutions of the
problem (1.1), (1.3).

Lemma 5. If the functional impulsive differential inequality

Z̃(m)(t) +G(t)Z̃(θ(t)) ≤ 0, t 6= tk,

a
(i)
k ≤

∂(i)Z̃(t+k )

∂t(i)

∂(i)Z̃(tk)

∂t(i)

≤ b
(i)
k , k = 1, 2, ..., i = 0, 1, 2, ...,m− 1,























(4.1)

has no eventually positive solution, then every solution of the boundary value problem
defined by (1.1), (1.3) is oscillatory in G.

Proof. Assume that there exist a nonoscillatory solution u(x, t) of the boundary value
problem (1.1), (1.3) and u(x, t) > 0. By the assumption (H3), that there exists a t1 >
t0 > 0 such that τ(t, ξ) ≥ t0, σ(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,+∞) × [a, b] and ρj(t) ≥ t0,
j = 1, 2, ..., n for t ≥ t1, then

u(x, τ(t, ξ)) > 0, for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b],

u(x, σ(t, ξ)) > 0, for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b],

u(x, ρj(t)) > 0, for (x, t) ∈ Ω× [t1,+∞), j = 1, 2, ..., n.

Multiplying both sides of equation (1.1) by 1/ |Ω| and integrating with respect to x over
the domain Ω, we obtain

dm

dtm

[

1

|Ω|

∫

Ω
u(x, t)dx+

1

|Ω|

∫

Ω

∫ b

a
g(t, ξ)u(x, τ(t, ξ))dη(ξ)dx

]

+
1

|Ω|

∫

Ω

∫ b

a
q(x, t, ξ)f(u(x, σ(t, ξ)))dη(ξ)dx

= a(t)
1

|Ω|

∫

Ω
∆u(x, t)dx+

n
∑

j=1

bj(t)
1

|Ω|

∫

Ω
∆u(x, ρj(t))dx.































(4.2)

By Green’s formula and boundary condition (1.3),

∫

Ω

∆u(x, t)dx =

∫

∂Ω

∂u

∂γ
dS = −

∫

∂Ω

µ(x, t)u(x, t)dS ≤ 0, (4.3)

and for j = 1, 2, ..., n,

∫

Ω

∆u(x, ρj(t))dx =

∫

∂Ω

∂u(x, ρj(t))

∂γ
dS = −

∫

∂Ω

µ(x, ρj(t))u(x, ρj(t))dS ≤ 0 (4.4)
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where dS is surface element on ∂Ω. Also from (H2) and Jensen’s inequality, we have

1

|Ω|

∫

Ω

∫ b

a

q(x, t, ξ)f(u(x, σ(t, ξ)))dη(ξ)dx

≥

∫ b

a

Q(t, ξ)
1

|Ω|

∫

Ω

f(u(x, σ(t, ξ)))dxdη(ξ)

≥ c

∫ b

a

Q(t, ξ)Ṽ (σ(t, ξ))dη(ξ). (4.5)

In view of (4.2)-(4.5), yield

dm

dtm

[

Ṽ (t) +

∫ b

a

g(t, ξ)Ṽ (τ(t, ξ))dη(ξ)

]

+ c

∫ b

a

Q(t, ξ)Ṽ (σ(t, ξ))dη(ξ) ≤ 0. (4.6)

Set Z̃(t) = Ṽ (t) +
∫ b

a
g(t, ξ)Ṽ (τ(t, ξ))dη(ξ). Equation (4.6), can be written as

Z̃(m)(t) + c

∫ b

a

Q(t, ξ)Ṽ (σ(t, ξ))dη(ξ) ≤ 0, t 6= tk.

The rest of the proof is similar to the proof of Lemma 4, and hence the details are
omitted.

As in the proofs of the results in Section 3, we can also obtain the following results
for (1.1), (1.3).

Theorem 4. If there exists a function ϕ̃(t) ∈ C ′([0,+∞), (0,+∞)) which is nondecreas-
ing with respect to t, such that

∫ +∞

t1

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
[

ϕ̃(s)G(s)−
(ϕ̃′(s))2

4F (s)ϕ̃(s)

]

ds = ∞,

then every solution of the boundary value problem (1.1), (1.3) is oscillatory in G.

Theorem 5. Assume that there exist functions ϕ̃(t) and ρ̃(s) ∈ C1([0,+∞), (0,+∞))
such that ϕ̃(t) is nondecreasing. Assume that there exist two functions H(t, s), h(t, s) ∈
C1(D,R), in which D = {(t, s)|t ≥ s ≥ t0 > 0}, such that (H7)− (H9) hold. If

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1

Π̃(s)ds = ∞,

where

Π̃(s) = G(s)ϕ̃(s)H(t, s)ρ̃(s)−
1

4

|h(t, s)|
2
ϕ̃(s)

F (s)H(t, s)ρ̃(s)
,

then every solution of the boundary value problem (1.1), (1.3) is oscillatory in G.
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By choosing ρ̃(s) = ϕ̃(s) ≡ 1, we have the following corollary.

Corollary 5. Assume that the conditions (H7)− (H9) hold, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1

Γ(s)ds = ∞,

then every solution of the boundary value problem (1.1), (1.3) is oscillatory in G.

Remark 2. From Theorem 5 and Corollary 5, we can attain various oscillatory criteria
by different choices of the weighted function H(t, s). For example, choosing H(t, s) =
(t− s)n−1, t ≥ s ≥ t0, in which n > 2 is an integer, then h(t, s) = (n− 1)(t− s)(n−3)/2,
t ≥ s ≥ t0. From Corollary 5, we get the following result.

Corollary 6. If there exists an integer n > 2 such that

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
[

G(s)(t− s)n−1 −
1

4

(n− 1)2

(t− s)2F (s)

]

ds = +∞,

(4.7)
then every solution of the boundary value problem (1.1), (1.3) is oscillatory in G.

Theorem 6. Let the functions H(t, s), h(t, s), ϕ̃(s) and ρ̃(s) be as defined in Theorem

5. Additionally, suppose that 0 < inf
s≥t0

{

lim inf
t→+∞

H(t, s)

H(t, t0)

}

≤ +∞, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
|h(t, s)|

2
ϕ̃(s)

F (s)H(t, s)ρ̃(s)
ds < +∞.

If there exists a function Ã(t) ∈ C([t0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)

F (s)(Ã+(s))
2

ρ̃(s)ϕ̃(s)
ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1 [

G(s)H(t, s)ϕ̃(s)ρ̃(s)−
1

4

|h(t, s)|
2
ϕ̃(s)

F (s)H(t, s)ρ̃(s)

]

ds

≥ Ã(T ),

where Ã+(s) = max{Ã(s), 0}, then every solution of the boundary value problem (1.1), (1.3)
is oscillatory in G.

By choosing ρ̃(s) = ϕ̃(s) ≡ 1, we attain the following corollary.
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Corollary 7. Assume that the conditions of Theorem 6 hold and assume that ρ̃(s) =
ϕ̃(s) ≡ 1. If

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1 [

G(s)H(t, s)−
1

4

|h(t, s)|
2

F (s)H(t, s)

]

ds ≥ Ã(T ),

for every T ≥ t0, then every solution of the boundary value problem (1.1), (1.3) is oscil-
latory in G.

Similar to Corollary 6, we can obtain the following corollary from Corollary 7.

Corollary 8. Assume that the conditions of Theorem 6 hold, and

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
(n− 1)2

(t− s)2F (s)
ds < ∞.

If there exists an integer n > 2 and function Ã(t) ∈ C([0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)

F (s)(Ã+(s))
2ds = ∞,

and for every T ≥ t0

lim sup
t→+∞

1

(t− t0)n−1

∫ t

T

∏

t0≤tk<s

(

b
(m−1)
k

a
(0)
k

)−1
[

G(s)(t− s)n−1 −
1

4

(n− 1)2

(t− s)2F (s)

]

ds ≥ Ã(T ),

then every solution of the boundary value problem (1.1), (1.3) is oscillatory in G.

5 Examples

In this section, we present couple of examples to point up our results established in Section
3 and Section 4.

Example 1. Consider the following equation

∂4

∂t4

(

u(x, t) +
2

3

∫ −π/4

−π/2
u(x, t+ 2ξ)dξ

)

+
5

3

∫ −π/4

−π/2
u(x, t+ 2ξ)dξ

=
1

6
∆u(x, t) +

7

6
∆u(x, t− 3π

2 ), t > 1, t 6= tk, k = 1, 2, ...,

u(x, (tk)
+) =

k + 1

k
u(x, tk),

∂(i)

∂t(i)
u(x, (tk)

+) =
∂(i)

∂t(i)
u(x, tk), i = 1, 2, 3, k = 1, 2, ...,







































(5.1)

for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition

u(0, t) = u(π, t) = 0, t 6= tk. (5.2)
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Here Ω = (0, π), m = 4, n = 1, a
(0)
k = b

(0)
k =

k + 1

k
, a

(i)
k = b

(i)
k = 1, i = 1, 2, 3,

g(t, ξ) =
2

3
, Q(t, ξ) =

5

3
, f(u) = u, τ(t, ξ) = σ(t, ξ) = t+ 2ξ, a(t) =

1

6
,

b1(t) =
7

6
, ρ1(t) = t−

3π

2
, η(ξ) = ξ, θ(t) = t, θ′(t) = 1, c = 1.

Also G(s) =
5π

12
−

5π2

72
, F (s) = s2. Since t0 = 1, tk = 2k, g0 = 1 −

π

6
, we see from the

above assumption that the hypotheses (H1)− (H6) hold, moreover

lim
t→+∞

∫ t

t0

∏

t0≤tk<s

a
(0)
k

b
(i)
k

ds =

∫ +∞

1

∏

1<tk<s

k

k + 1
ds

=

∫ t1

1

∏

1<tk<s

k

k + 1
ds+

∫ t2

t+
1

∏

1<tk<s

k

k + 1
ds+

∫ t3

t+
2

∏

1<tk<s

k

k + 1
ds+ · · ·

= 1 +
1

2
× 2 +

1

2
×

2

3
× 22 +

1

2
×

2

3
×

3

4
× 23 + · · ·

=

+∞
∑

n=0

2n

n+ 1
= ∞.

Now, the condition (3.12) reads,

lim sup
t→+∞

1

(t− 1)2

{

∫ t

1

∏

1<tk<s

k

k + 1

[

(

5π

12
−

5π2

72

)

(t− s)2 −
1

s2(t− s)2

]

ds

}

= +∞.

Therefore all the conditions of the Corollary 2 are satisfied. Therefore, every solution of
equation (5.1)-(5.2) is oscillatory in G. In fact u(x, t) = sinx cos t is such a solution.

Example 2. Consider the following equation of the form

∂2

∂t2

(

u(x, t) +
1

2(t+ 1)

∫ 0

−π
u(x, t+ ξ)dξ

)

+
1

2(t+ 1)

∫ 0

−π
u(x, t+ ξ)dξ

=

(

1 +
2

(t+ 1)2

)

∆u(x, t) +
2

(t+ 1)3
∆u(x, t− 7π

2 ), t > 1, t 6= tk,

u(x, (tk)
+) =

k + 1

k
u(x, tk), k = 1, 2, ...,

∂

∂t
u(x, (tk)

+) =
∂

∂t
u(x, tk), k = 1, 2, ...,











































(5.3)

for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition

ux(0, t) = ux(π, t) = 0, t 6= tk. (5.4)

Here Ω = (0, π), m = 2, n = 1, µ(x, t) = 1, a
(0)
k = b

(0)
k =

k + 1

k
, a

(i)
k = b

(i)
k = 1, i = 1,

g(t, ξ) =
1

2(t+ 1)
, Q(t, ξ) =

1

2(t+ 1)
, f(u) = u, F (s) = 2s,
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τ(t, ξ) = σ(t, ξ) = t+ ξ, a(t) = 1 +
2

(t+ 1)2
, b1(t) =

2

(t+ 1)3
,

and ρ1(t) = t− 7π
2 , η(ξ) = ξ, θ(t) = t2 , θ′(t) = 2t, c = 1. Since t0 = 1, tk = 2k,

g0 = 1−
1

2
log

(

t+ 1

t+ 1− π

)

, G(s) =
π

2(t+ 1)

(

1−
1

2
log

(

t+ 1

t+ 1− π

))

.

From the above assumptions it is easy to see that the hypotheses (H1) − (H6) hold. Still
to show that the condition (4.7) is satisfied. In fact this condition reads

lim sup
t→+∞

1

(t− 1)2

{

∫ t

1

∏

1<tk<s

k

k + 1

[

π

2(t+ 1)

(

1−
1

2
log

(

t+ 1

t+ 1− π

))

(t− s)2 −
1

2s(t− s)2

]

ds

}

= +∞.

Therefore all the conditions of the Corollary 6 are satisfied. Therefore, every solution of
equation (5.3)-(5.4) is oscillatory in G. In fact u(x, t) = cosx sin t is such a solution.
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