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Abstract

We present a few techniques to find completely positive maps between full matrix
algebras taking prescribed values on given data, based on semidefinite programming,
convex minimization supported by a numerical example, as well as representations by
linear functionals. The particular case of commutative data is also discussed.
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1 Introduction

The present paper refers to a certain interpolation problem for completely positive maps
that take prescribed values on given matrices, closely related to problems recently considered
by C.-K. Li and Y.-T. Poon in [27], Z. Huang, C.-K. Li, E. Poon, and N.-S. Sze in [19],
T. Heinosaari, M.A. Jivulescu, D. Reeb, and M.M. Wolf in [17] as well as G.M. D’Ariano
and P. Lo Presti [13], D.S. Gonçalves et al. [16].

Let Mn denote the C∗-algebra of all n × n complex matrices. In particular, positive
elements (positive semidefinite matrices) in Mn are defined. Recall that a matrix A ∈Mn is
positive semidefinite if all its principal determinants are nonnegative. Let M+

n ⊂Mn denote
the convex cone of all such matrices. Set Mh

n := {A ∈ Mn : A∗ = A} where A∗ denotes as
usual the adjoint of A. A linear map ϕ : Mn → Mk is positive if ϕ(M+

n ) ⊂ M+
k , namely it

maps positive semidefinite matrices into positive semidefinite ones. Then ϕ(A∗) = ϕ(A)∗

for every A ∈Mn. We call ϕ completely positive if Im⊗ϕ : Mm⊗Mn →Mm⊗Mk is positive
for all m ∈ N. An equivalent notion is that of positive semidefinite map, that is, for all
m ∈ N, all h1, . . . , hm ∈ Ck and all A1, . . . , Am ∈ Mn we have

∑m
i,j=1〈ϕ(A∗jAi)hj , hi〉 ≥ 0.

Let CP(Mn,Mk) denote the convex cone of all completely positive maps ϕ : Mn → Mk. If
ϕ : Mn → Mk is completely positive then, cf. K. Kraus [23] and M.D. Choi [12], there are
n× k matrices V1, V2, . . . , Vm with m ≤ nk such that

ϕ(A) = V ∗1 AV1 + V ∗2 AV2 + · · ·+ V ∗mAVm for all A ∈Mn (1.1)

(and, of course, any map of the form (1.1) is completely positive). The representation (1.1)
is called the Kraus representation of ϕ and V1, . . . , Vm are called the operation elements.
The representation (1.1) of a given completely positive map ϕ is non-unique, however the
minimal number of the operation elements in the Kraus form of such a map ϕ turns to be
the rank of its Choi matrix Φϕ, cf. [12]. The next problem was raised by C.-K. Li and Y.-T.
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Poon in [27], where a solution was given in case of commutative families of matrices (Aν)ν ,
(Bν)ν .
Problem A. Given matrices Aν ∈ Mn and Bν ∈ Mk for ν = 1, . . . , N , establish if there
exist, and find ϕ ∈ CP(Mn,Mk) subject to the conditions

ϕ(Aν) = Bν , for all ν = 1, . . . , N. (1.2)

Other linear affine restrictions on ϕ may be added as well, like trace preserving etc. We
can assume all Aν ∈Mh

n , Bν ∈Mh
k (write also ϕ(Aν)∗ = B∗ν , replace Aν by Aν +A∗ν etc.).

In a first paper [5] we dealt with various necessary and/or sufficient conditions for the
existence of solutions in terms of the density matrix, see our Theorems 2.4 and 2.5 in
[5]. Most of results in this sense are related to Arveson’s Hahn-Banach type theorem [2]
and various techniques of operator spaces, some of which being simplified in the present
particular context by R.R. Smith and J.D. Ward [30]. In this article, we focus on methods,
based on the Choi matrix Φϕ, that can be numerically implemented in an efficient way.

The first step in our approach is to firstly derive, in Subsection 2.1, an equivalent
formulation in terms of existence of certain positive semidefinite matrices subject to linear
affine restrictions, like the matrix X (= Φϕ) in Problem B. If the trace preserving condition
is added to Problem A, that is, if ϕ must be a quantum channel, this fits Problem B since
the additional constrained is just another linear one. In Subsection 2.2 we remind a method
to solve Problem B by known techniques of semidefinite programming. In Subsection 2.3
we present another technique for such problems, via results in [3] and based on convex
minimization, namely (in case of Problem A with A∗ν = Aν and B∗ν = Bν) of the function
tr
(
e
∑
ν A

τ
ν⊗Xν

)
−tr

∑
ν BνXν over all matrices Xν ∈Mh

k where τ denotes the transposition
and ”tr” stands for the trace, see Theorem 2.4, (a). A numerical example illustrating this
technique is performed in Subsection 2.4. Finally, in Subsection 2.6 we show that, under
the commutation assumptions, the semidefinite programming problem we obtain here turns
into a linear programming one, hence explaining the results in [27] from our perspective.

Let us mention that the positive semidefinite approach to Problem A has been previously
observed also in [13], [16] and [17], in different formulation. In particular, the feasibility
of (1.2) in CP(Mn,Mk) was already known to be characterized [17] by the positivity of
the functional

∑
ν A

τ
ν ⊗Xν 7→ tr

∑
ν BνXν (statement recovered also by Theorem 2.4.(b)).

With respect to the cited works, our main results by the convex minimization approach to
Problem A in subsections 2.3 and 2.4, as well as other topics like propositions 2.7.(b) and
2.8, are new.

2 Main results

Consider then the interpolation problem (1.2) for the given matrices Aν ∈Mn and Bν ∈Mk

where ν = 1, . . . , N . Firstly, we will translate it in terms of Choi matrices.

2.1 Equivalent setting of the problem

Let {e(n)i }ni=1 be the canonical basis of Cn (n ∈ N). As usual, the linear space Mn,k of all
n × k matrices is identified with the vector space B(Ck,Cn) of all linear transformations

Ck → Cn (n, k ∈ N). Let {E(n,k)
i,m | i = 1, . . . , n, m = 1, . . . , k} ⊂Mn,k be the matrix units
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of size n × k, namely E
(n,k)
i,m is the n × k matrix with all entries 0 except for the (i,m)-th

entry which is 1. If n = k, we note E
(n)
i,j = E

(n,n)
i,j .

Given any linear map ϕ : Mn → Mk, define the kn × kn matrix Φϕ, called the Choi
matrix, see J. de Pillis [28], A. Jamio lkowski [20], R.D. Hill [18], and M.D. Choi [12], by

Φϕ = [ϕ(E
(n)
i,j )]ni,j=1. (2.1)

In what follows we use the description of the mapping ϕ 7→ Φϕ as in [14]: The formula

ϕ(i−1)k+m,(j−1)k+l = 〈ϕ(E
(n)
i,j )e

(k)
l , e(k)m 〉, i, j = 1, . . . , k, l,m = 1, . . . , n, (2.2)

and its inverse ϕ(C) =
∑nk
r,s ϕr,sE∗rCEs for C ∈Mn, establish a linear bijection

B(Mn,Mk) 3 ϕ 7→ Φϕ = [ϕr,s]
nk
r,s=1 ∈Mnk (2.3)

that induces an affine, order preserving, continuous bijection between closed convex cones

CP(Mn,Mk) 3 ϕ 7→ Φϕ ∈M+
nk. (2.4)

Consequently, the Choi matrix Φ = Φϕ of any solution ϕ : Mn → Mk to (1.2) is given by
Φ = [ϕr,s]r,s where the indices r, s are couples r ≡ (i,m), s ≡ (j, l) for i, j = 1, . . . , n, l,m =

1, . . . , k and ϕr,s = 〈ϕ(E
(n)
i,j )e

(k)
l , e

(k)
m 〉. Since r, s run the cartesian product {1, . . . , n} ×

{1, . . . , k} consisting of nk elements, we can write Φ ∈ Mnk and r, s = 1, . . . , nk. Set

Aν = [aν,i,j ]
n
i,j=1 =

∑n
i,j=1 aν,i,jE

(n)
ij and Bν = [bν,m,l]

k
m,l=1 =

∑k
m,l=1 bν,m,lE

(k)
ml . Equate

the (m, l) entries in the equality ϕ(Aν) = Bν to get 〈ϕ(Aν)e
(k)
l , e

(k)
m 〉 = bν,m,l, that is,

〈ϕ(
∑n
i,j=1 aν,i,jE

(n)
ij )e

(k)
l , e

(k)
m 〉 = bν,m,l and so

n∑
i,j=1

aν,i,jϕ(i,m)(j,l) = bν,m,l. (2.5)

Write the equality from above using Kronecker’s symbol δp,q (= 1 if p = q and 0 if p 6= q)
as
∑

(j,l′),(i,m′) aν,i,jδl′,lδm′,mϕ(i,m′)(j,l′) = bν,m,l where (j, l′) and (i,m′) run {1, . . . , n} ×
{1, . . . , k}, then set

c(ν,m, l)(j,l′)(i,m′) := aν,i,jδl′,lδm′,m = (Aτν)j,i(E
(k)
l,m)l′,m′ = (Aτν ⊗E

(k)
l,m)(j,l′),(i,m′) (2.6)

and define
C(ν,m, l) =

[
c(ν,m, l)(j,l′)(i,m′)

]
(j,l′)(i,m′)

= Aτν ⊗ E
(k)
lm (2.7)

that can be represented as an nk × nk matrix C(ν,m, l) ∈Mnk

C(ν,m, l) ≡ Aτν ⊗ E
(k)
l,m ≡

[
aν,j,iE

(k)
l,m

]n
i,j=1

(2.8)

via the linear, isometric, order-preserving isomorphisms of C∗-algebras Mnk ≡Mn⊗Mk ≡
Mn(Mk). We obtain, using (2.5) – (2.7),

∑
(j,l′),(i,m′) c(ν,m, l)(j,l′)(i,m′)ϕ(i,m′)(j,l′) = bν,m,l,

namley tr (C(ν,m, l)Φ) = bν,m,l, that by (2.8) we can write as well

tr [(Aτν ⊗ E
(k)
l,m)Φ] ( = tr [(Aν ⊗ E(k)

m,l)Φ
τ ] ) = bν,m,l. (2.9)
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This actually is a particular application of the next formula, easily checked following the

lines from above, letting A = [ai,j ]
n
i,j=1 =

∑n
i,j=1 ai,jE

(n)
i,j etc.:

ϕ(A) =
[
tr [(Aτ ⊗ E(k)

l,m)Φ]
]k
m,l=1

=
[
tr [(A⊗ E(k)

m,l)Φ
τ ]
]k
m,l=1

(A ∈Mn). (2.10)

Note that we have as well the formula ϕ(A) = [tr [(E
(k)
l,m ⊗ A)D∗ϕ]km,l=1 where Dϕ denotes

the density matrix [5], for which we also omit the details. Conditions (2.2) on ϕ are thus
equivalent to the equations (2.9) from above concerning Φ, via the formulas (2.6), (2.7) and
(2.2), (2.3). Denote by ι = (ν,m, l) the generic triple consisting of arbitrary ν = 1, . . . , N
and m, l = 1, . . . , k. Thus ι runs a set of q := Nk2 elements. We may write ι = 1, . . . , q.
Set also p = nk. Write C(ι) = C(ν,m, l) (∈Mp) and bι = bν,m,l; denote Φ by X, below.

With these notations, via (2.4) Problem A takes then the equivalent form from below.

Problem B Given C(ι) ∈Mp and numbers bι (1≤ ι≤q), find X ∈Mp, X ≥ 0, such that

tr (C(ι)X) = bι for all ι = 1, . . . , q. (2.11)

Thus, the solvability of Problem A leads to the rather known topic of finding posi-
tive semidefinite matrices subject to linear affine conditions and, in particular, establishes
whether such matrices do exist. These questions often occur and are dealt with by reliable
numerical methods in the semidefinite programming, a few elements of which we sketch in
what follows.

2.2 Solutions by means of semidefinite programming

Firstly, using tr (c∗) = tr (c), tr (cd) = tr (dc) and writing equation (2.11) in terms of
C(ι) +C(ι)∗ and i(C(ι)−C(ι)∗) we can asume all matrices C(ι) to be selfadjoint. We can
suppose, without loss of generality, that they are linearly independent over R. Semidefinite
programming is concerned with minimization of linear functionals subject to the constraint
that an affine combination of selfadjoint matrices is positive semidefinite: see in this sense
[7], [9], [24], [26], [31], also [10], [15]. Roughly speaking, one sets a(x) =

∑
ι xιC(ι) + a0

for the given C(ι) and a selfadjoint matrix a0 that can be suitably chosen, here. Define
then p∗ = infx{

∑
ι bιxι : a(x) ≥ 0} and q∗ = infX{−tr (a0X) : X ≥ 0, tr (C(ι)X) = bι ∀ι}.

A problem dual to (2.11) occurs now with respect to p∗, namely to establish if there exist
positive definite matrices of the form a(x). Standard algorithms exist to this aim, based on
maximizing the minimal eigenvalue of a(x) in the variables x = (xι)ι, or on interior point
methods using barrier functions [26]. In the case when either (2.11) has solutions X > 0,
or the dual problem has solutions x with a(x) > 0, we have p∗ = q∗, see for instance [26],
[31]. If both conditions hold, the optimal sets for p∗ and q∗ are nonempty. In this case for
every λ ∈ (p∗, p) where p = supx{

∑
ι bιxι : a(x) > 0} there is a unique vector x∗ = (x∗ι )ι,

the analytic center of this linear matrix inequality, such that a(x∗) > 0,
∑
ι bιx

∗
ι = λ

and x∗ minimizes the logarithmic barrier function ln det a(x)−1 over all x with
∑
ι bιxι and

a(x) > 0. It follows by the Lagrange multipliers method that tr (C(ι)a(x∗)−1) = λbι ∀ ι,
which gives a solution X = X∗ of (2.11), namely X∗ = λ−1a(x∗)−1.

2.3 Solutions via a convex minimization technique

We show how to obtain solutions to Problems A, B by minimizing a certain convex function.
Let C(ι) ∈ Mp denote now arbitrary selfadjoint and linearly independent matrices and bι
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some real numbers for ι = 1, . . . , q. Define the function V of q real variables x = (xι)ι by

V (x) = tr
(
e
∑q
ι=1 xιC(ι)

)
−
∑
ι

xιbι. (2.12)

Then V is smooth, strictly convex, with strictly positive definite Hessian. Hence if it has
a critical point this is unique, and necessarily a minimum. Generally we may have also
an unattained infimum inf V > −∞, or inf V = −∞. For details see [3] (where V occurs
by maximizing −tr(X lnX) subject to equations of the form (2.11), which holds for an X
given by (2.13)). In the next result we characterize the existence of solutions X > 0 to
Problem B.

Theorem 2.1. [3]. The system of equations tr (C(ι)X) = bι (ι = 1, . . . , q) admits solutions
X > 0 if and only if the function V defined by (2.12) has a critical point (of minimum),
that is, if and only if limx→∞ V (x) = +∞. In this case, if x0 = (x0ι )ι denotes the critical
point of V , we have also the (positive) particular solution

X0 = e
∑
ι x

0
ιC(ι). (2.13)

Remark 2.2. (a) The function V given by (2.12) fulfills the conditions of application of the
method of the conjugate gradients [11]. This yields, if problem (2.11) has solutions X > 0,
a minimizing sequence of vectors x = (xι)ι that is convergent to the critical point x0 and so

provides approximations X̃0 = e
∑
ι xιC(ι) ≈ X0 of the solution (2.13), see Example 12 and

Remark 11 in [3]. The gradient ∇V = (∂V/∂xι)
q
ι=1 of V is easily computed to this aim by

∂V
∂xκ

(x) = tr (C(κ)e
∑
ι xιC(ι)) − bκ, see [3]. Various versions of Newton’s method that can

be used as well to approximate x0.
(b) In the particular case of our Problem A and for selfadjoint data, after replacing the

matrices C = C(ν,m, l) = Aτν ⊗El,m by the symmetrized ones C +C∗ etc. as described at
the beginning of Subsection 2.3, setting Xν = [xν,m,l + xν,l,m]kl,m=1 ∈ Mk the function V
becomes

V ((xν)ν) = tr
(
e
∑N
ν=1 A

τ
ν⊗Xν

)
− tr

∑
ν

BνXν (2.14)

since in this case
∑
ι xιC(ι) =

∑
ν A

τ
ν ⊗ Xν and

∑
ι bιxι = tr

∑
ν BνXν . Differentiating

the right hand side of (2.14) obviously shows now that a critical point (Xν)ν provides a
solution ϕ of (1.2) via formula (2.10) in which Φ = Φϕ = e

∑
ν Aν⊗X

τ
ν .

(c) A test [3] exists to check if the system tr (C(ι)X) = bι has no solutions X ≥ 0 at all,
too, namely inf V = −∞ in which case the minimization provides, after some iterations,
vectors x = (xι)ι such that

∑
ι xιC(ι) ≥ 0 but

∑
ι bιxι < 0 (see also Proposition 2.7.(a)).

This also has a corresponding consequence for Problem A.

Remark 2.3. All approximations from a small neighborhood of the critical point of V can
provide exact solutions X to Problem B as follows: fix a linear affine projection π onto
the linear submanifold of Mh

p defined by the equations (2.11) and X∗ = X, then for an

approximation X̃0 of X0 use X := πX̃0 instead of X̃0: since X̃0 ≈ X0, X = πX̃0 ≈ πX0 =
X0 and so X ≈ X0 (> 0) which implies X > 0 if the approximation X̃0 ≈ X0 was good
enough.

We summarize below the main topics stated in this Subsection.



18 Interpolation for Completely Positive Maps

Theorem 2.4. Let Aν ∈ Mn and Bν ∈ Mk for ν = 1, . . . , N be selfadjoint matrices. Let
V be the (strictly convex, smooth, real) function defined by

V((Xν)ν) = tr
(
e
∑N
ν=1 A

τ
ν⊗Xν

)
− tr

∑
ν

BνXν

on the real linear space of all sets (Xν)Nν=1 consisting of selfadjoint matrices Xν ∈Mk.
(a) The following two statements are equivalent:

(i) Problem A has at least one solution ϕ from the (dense) interior of CP(Mn,Mk);
(ii) Function V has a (unique) critical point, namely its infimum inf V is finite and attained.

In this case the critical point (X0
ν )ν provides, by formula (2.10), a particular solution

ϕ0 of (1.2) whose Choi matrix Φ = Φϕ0 is given by Φ = e
∑
ν Aν⊗(X

0
ν)
τ

(> 0). Moreover,
all close enough sets (Xν)ν ≈ (X0

ν )ν provide solutions ϕ with Φϕ = π(e
∑
ν Aν⊗(Xν)

τ

) as in
Remark 2.3.

(b) The lack of any solution ϕ ∈ CP(Mn,Mk) of (1.2) is characterized by the condition
inf V = −∞, that is equivalent also to the existence of sets (Xν)ν (some of which being
always obtained when minimizing V) such that

∑
ν A

τ
ν ⊗Xν ≥ 0 and tr

∑
ν BνXν < 0.

For (a), use Theorem 2.1 together with Remark 2.2.(b). Note to this aim that the
mapping (2.4) is one-one between the interiors of the closed convex cones CP(Mn,Mk) and
M+
nk. For (b), use the results in [3] mentioned in Remark 2.2.(c).

2.4 A Numerical Example

We show how Theorem 2.4 applies to Problem A. Suppose one wishes to find ϕ : M2 →M2

completely positive such that ϕ(Aν) = Bν (ν = 1, 2) for A1 =

[
2 1
1 0

]
, A2 =

[
1 1
1 2

]
and B1 =

[
4 0
0 0

]
, B2 =

[
3.5 1.5
1.5 2.5

]
. Use to this aim the minimization method in-

dicated by Remark 2.2. Formulas (2.6), (2.7) and (2.8) provide the matrices C(ι) for
ι = (ν,m, l) where ν,m, l = 1, 2. Due to the symmetry equation (2.5) (or, equivalently,
(2.11)) is equivalent to

∑n
j,i=1 aν,jiϕ(j,l)(i,m) = bνlm (or tr (C(ι)∗ Φ) = bι), and so it is

enough to consider (2.5) for those couples (m, l) with m ≤ l. That is, for each ν = 1, 2 we
have 3 equations corresponding to (m, l) = (1, 1), (1, 2), (2, 2). The set {1, 2} × {1, 2} of in-
dices r, s like (j, l), (j, l′), (i,m), (i,m′) with 1 ≤ i, j ≤ n (= 2) and 1 ≤ m,m′, l, l′ ≤ k (= 2)
from below is ordered lexicographically as {(1, 1), (1, 2), (2, 1), (2, 2)} ≡ {1,2,3,4}. We
represent the positive matrix X = [yα,β ]α,β∈{1,2,3,4} ≡ Φ = [ϕr,s]r,s that we seek for and
the given matrices C(ν,m, l) as follows: C(1, 1, 1) = Aτ1 ⊗E111, C(1, 1, 2) = Aτ1 ⊗E2,1, etc.

Numerically minimizing V gave us the matrix X̃0 ≈ X0,

X̃0 =


1.549937761 −0.1694804138 0.4499571618 0.4047411695

−0.1694804138 0.1534277390 −0.06572393508 −0.1533566973
0.4499571618 −0.06572393508 0.5249880063 0.6652436210
0.4047411695 −0.1533566973 0.6652436210 1.326699194


which is positive and approximately satisfies (2.11). Let ϕ be the map whose Choi matrix

Φ = Φϕ = [ϕr,s]r,s is X̃0 ≡ Φ. We got then an approximate solution to our present particular

case of problem (1.2), namely ϕ(A) =
[∑2

i,j=1 Φ(i,m)(j,l)ai,j

]2
m,l=1

=
[
tr[(Aτ ⊗ E(2)

lm )X̃0

]2
m,l=1
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for every A = [ai,j ]
2
i,j=1 ∈ M2 , see formula (2.10) (or (2.9)). For instance, we have

ϕ(A1)1,1 = tr (C(1, 1, 1)X̃0) = 2(X̃0)1,1 + (X̃0)1,3 + (X̃0)3,1 = 3.99978984 ≈ 4 = (B1)1,1,

and ϕ(A1)1,2 = tr
[
(Aτ1 ⊗ E

(2)
2,1)X̃0

]
= tr(C(1, 1, 2)X̃0) = 0.0000564069 ≈ 0 = (B1)1,2, etc.

Remark 2.5. Semidefinite programming methods [26], [31] (or related, as in Subsection
2.4) can solve problems of type B for more sizeable dimensions p (= nk) and q (= Nk2),
and so allow to consider Problem A as well for somewhat larger integers n, k, N . The
difficulty is to compute the (trace of the) exponential for the matrix

∑
ι xιC(ι) ∈ Mp

(or its determinant, in the semidefinite programming approach) required for V and ∇V .
Common techniques to this aim like eigenvalue decomposition require a time of order p3. We
need just linear functionals of this exponential, for which stochastic methods exist requiring
a time ∼ p2, but they are better only for very large p and provide rougher approximations
[25]. See also [8], [22] for quantitative and software topics on the practicability range of the
present methods.

Remark 2.6. Another question is to reduce the number of operation elements in the
representation (1.1) of the solution ϕ of (1.2), whenever possible — that is, to minimize
the rank of X in (2.11). The case of one term for instance corresponds to solutions X ≥ 0
of rank one, namely to the existence of vectors v ∈ Cnk such that 〈C(ι)v, v〉 = bι for all ι.
A first easy step to rank reduction is to find the joint support P of the symmetrizations
C = C(ι) +C(ι)∗ etc. of the C(ι)’s and consider solutions X such that X = PXP . Indeed,
set K = {h ∈ Cnk : Ch = 0 ∀C}. Let P be the orthogonal projection onto K⊥. Then
C = CP and so C = C∗ = PC = PCP, whence tr (CX) = tr (PCPX) = tr (CPXP ).
Generally the question is difficult, for some possibilities of reducing the rank of X see for
instance Section II.13 in [7], or [6], [29].

2.5 Characterization in terms of linear functionals

By Theorem 2.5 from [5] or [30]), the solvability of (2.11) is described in terms of the map∑
ι xιC(ι) 7→ bιxι. We recall this result in the form from below, completed with a version

(b) concerning the existence of strictly positive solutions; for the sake of completeness we
sketch also the proof.

Proposition 2.7. Suppose that C(ι) ∈Mp (ι = 1, . . . , q) are selfadjoint, linearly indepen-
dent and their linear span contains strictly positive matrices. Then:

(a) There exist solutions X ≥ 0 of the system of equations (2.11) if and only if
∑
ι bιxι ≥

0 for all (xι)ι such that
∑
ι xιC(ι) ≥ 0, namely, infx :

∑
ι xιC(ι)≥0

∑
ι bιxι ≥ 0.

(b) There exist solutions X > 0 of the system of equations (2.11) if and only if
∑
ι bιxι >

0 for all (xι)ι 6= 0 such that
∑
ι xιC(ι) ≥ 0, namely, infx :

∑
ι xιC(ι)≥0, ‖x‖=1

∑
ι bιxι > 0.

Proof. (a) Assume that infx :
∑
ι xιC(ι)≥0

∑
ι bιxι ≥ 0. The intersection of the closed convex

cone of all positive semidefinite p× p matrices and the linear span S of the C(ι)’s contains
a point that is interior to the cone, namely a positive matrix. The linear functional l :∑
ι xιC(ι) 7→

∑
ι bιxι is well defined, and ≥ 0 on this intersection. By Mazur’s theorem, see

for instance [1], [21], it has a linear extension L to the space Ms
p of all selfadjoint matrices

in Mp, such that LY ≥ 0 for all Y ≥ 0 in Ms
p . Now L has the form LY = tr (XY ) for

some X ∈ Ms
p . Letting Y = 〈 · , h〉h for an arbitrary vector h ∈ Cp gives 〈Xh, h〉 ≥ 0.
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Hence X ≥ 0. Since L|S = l, for every ι we have C(ι) ∈ S and tr (C(ι)X) = LC(ι) =
lC(ι) = bι. Conversely, suppose that there exists an X ≥ 0 such that tr (C(ι)X) = bι for
all ι. Then for every (xι)ι such that

∑
ι xιC(ι) ≥ 0, we have

∑
ι bιxι =

∑
ι tr (C(ι)X)xι =

tr (X
∑
ι xιC(ι)) = tr (X1/2

∑
ι xιC(ι)X1/2) ≥ 0.

(b) Assume that infx :
∑
ι xιC(ι)≥0, ‖x‖=1

∑
ι bιxι > 0 (‖ ‖ is any norm). Proceed as above,

except we need the following fact: given a finite dimensional real space M , a linear subspace
S and a closed convex cone C ⊂M such that C ∩ (−C) = {0}, any linear functional l on S
such that ls > 0 for all s 6= 0 from S ∩ C has a linear extension L to M such that Lm > 0
for all m 6= 0 from C. This is rather a known consequence of the Hahn-Banach, Mazur -
type theorems, see for instance [4]. The necessity follows as in the case (a).

2.6 The case of commutative data

In this case Problem A was shown by Theorem 2.1 in [27] to be equivalent to solving a system
of nonhomogeneous linear equations in nonnegative variables. This result can be explained
from the present perspective, too. Firstly, by the commutativity assumption we can suppose
without loss of generality that all Aν , Bν are diagonal. For any matrix u = [uij ]i,j , set
ũ = [uijδi,j ]i,j . Then by Proposition 2.8, in the equations (2.9) we can replace any positive
semidefinite Φ (= Cϕ for a solution ϕ of (1.2)) by the (positive semidefinite) diagonal

matrix Φ̃ (= Cψ for another solution ψ). This leads indeed to the problem of finding

nk nonnegative numbers, namely the diagonal entries of Φ̃, satisfying the system of Nk

equations: tr [(Aν ⊗ E(k)
l,l )Φ̃] = Bν,l,l for 1 ≤ ν ≤ N and 1 ≤ l ≤ k.

Proposition 2.8. If Aν , Bν are diagonal, X ∈Mnk and tr [(Aν ⊗ E(k)
m,l)X] = Bν,l,m, then

we have also the equality tr [(Aν⊗E(k)
m,l)X̃] = Bν,l,m (both terms of which are null if m 6= l).

Proof. Represent X ∈Mnk ≡Mn ⊗Mk as X =
∑
µ Yµ ⊗ Zµ with Yµ ∈Mn and Zµ ∈Mk.

Using the easily checked formula ũ⊗ v = ũ ⊗ ṽ, we obtain X̃ =
∑
µ Ỹµ ⊗ Z̃µ. Hence, the

equality in the conclusion holds for l 6= m by inserting X̃ in the left hand side, then using

the formula tr(u⊗ v) = tr(u) tr(v) and the equalities tr (E
(k)
l,mZ̃µ) = 0, Bν,l,m = 0. To prove

it also for l = m, use again tr(u⊗ v) = tru tr v to write the desired conclusion in the form∑
µ tr (Aν Ỹµ)Zµ,l,l = Bν,l,l. This is equivalent, by means of the equalities Ãν = Aν and the

formula tr (ũṽ) = tr(ũv), to tr [(Aν ⊗ E(k)
ll )

∑
µ Yµ ⊗ Zµ] = Bν,l,l, that is the case l = m of

(2.9) and so holds true by hypotheses.
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