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Abstract

In this paper, we are concerned with some chemical reactive flows of a fluid through
periodically perforated granular materials. The fluid penetrates the grains where the
chemical reactions take place. Using the periodic unfolding method, we derive the
corrector results which complete the previous homogenization results.

Key Words: homogenization, correctors, chemical reactive flow, periodic un-
folding method
2010 Mathematics Subject Classification: Primary: 35B27, Secondary:
76M50, 80A32

Correctors for transmission problems Short title for running head (top of right hand
page)

1 Introduction

In this paper, we are concerned with some chemical reactive flows through the exterior of a
domain containing periodically distributed reactive solid grains. The situation we will treat
is that the reactive fluid penetrates the grains. Assume that there is an internal reaction
inside the grains, instead just on their boundaries. Therefore, this is a transmission problem
with an unknown flux on the boundary of each grain. For a presentation of the chemical
aspects associated to this model, we refer the reader to Hornung [18], Norman [22] and the
references therein.

Denote by ε a small parameter related to the characteristic size of the reactive grains.
Let Ω ⊂ Rn be an open and bounded set with an ε-periodic structure, consisting of two
parts: a fluid phase Ω1ε and a set of ε-periodic reactive grains Ω2ε. We are interested in
studying the stationary flow of a fluid confined in Ω1ε, of concentration u1ε. Let u2ε be the
concentration inside the grains. This nonlinear problem is stated as follows:

−Df Mu1ε = f in Ω1ε,

−Dp Mu2ε + ag(u2ε) = 0 in Ω2ε,

−Df
∂u1ε

∂ν
= Dp

∂u2ε

∂ν
on Γε,

u1ε = u2ε on Γε,

u1ε = 0 on ∂Ω,

(1.1)

where a > 0, f ∈ L2(Ω), Γε = ∂Ω2ε and ν is the exterior unit normal to ∂Ω1ε. Assume that
the reactive fluid is homogeneous and isotropic. Here Df and Dp are two positive constant
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diffusion coefficients characterizing the fluid and the granular material filling the reactive
grains, respectively. For the function g, we suppose that

(H1) g is continuous, monotone, non-decreasing and g(0) = 0.

This general case is well illustrated by the two important practical examples: Langmuir
kinetics and Freundlich kinetics (see for instance [6]-[8]). Throughout this paper, we let
n ≥ 3. We further suppose that

(H2) There exist a positive constant C and an exponent ρ, with 1 ≤ ρ < n
n−2 , such that

|g(x)| ≤ C(1 + |x|ρ).

In [6], Conca, Dı́az, Liñán and Timofte carried out a study of the homogenization of
problem (1.1). The proof is based on the oscillating test functions method due to Tartar
(see [23]). A related work was given by Hornung, Jäger and Mikelić [19] where the two-scale
convergence is used. Subsequently, using the oscillating test functions method, Conca, Dı́az
and Timofte [8] studied the homogenization of a similar problem with a nonlinear term
associated to Ω1ε. Problem (1.1) is also related to a linear transmission problem (see for
instance [20] and [11]) in a domain with the same structure as Ω. The conditions prescribed
on the interface between the two components are the continuity of the conormal derivatives
and a jump of the solution proportional to the conormal derivatives via a function of order
εγ . For this linear transmission problem, the homogenization and corrector results were
achieved in [20], [10] and [11]. For more investigations on the related problems, we refer to
[1, 12, 15-17, 24-26] and the references therein.

In the present paper, we are devoted to the study of the corrector results for problem
(1.1). The proof mainly depends on the periodic unfolding method, which was first in-
troduced by Cioranescu, Damlamian and Griso in [3] for the case of fixed domains (see
[4] for more details) and extended to the two-component domains which are separated by
a periodic interface (see [11]). For further developments and various applications of the
unfolding method, we refer the interested readers to the work in [2, 5, 11, 12, 25, 28] and
the references therein.

This paper consists of two parts. In the first part, we shall give a new proof of the
homogenization results achieved in [6]. The proof follows from an unfolded formulation
of the homogenization results (See Theorem 3). This unfolded formulation is also crucial
to the proof of our corrector results. Moreover, we derive the precise convergence of flux.
Now we state the (standard) homogenization results where we will use some notations to
be defined in the next section.

Theorem 1. Let (u1ε, u2ε) be the solution of problem (1.1). Then there exists u1 ∈ H1
0 (Ω)

such that

ũiε ⇀ θiu1 weakly in L2(Ω).

Also, u1 is the unique solution of the homogenized problem{
−div(A0∇u1) + aθ2g(u1) = θ1f in Ω,

u1 = 0 on ∂Ω.
(1.2)
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The homogenized matrix A0 = (a0
ij)1≤i,j≤n is defined by

a0
ij =MY

(
aij +

n∑
k=1

aik
∂χj
∂yk

)
, (1.3)

where aij is the entry of the following matrix A:

A = (aij)1≤i,j≤n :=

{
DfId, in Y1,

DpId, in Y2,

and χj(j = 1, · · ·, n) is the solution of the following cell problem:{
−div

(
A∇(χj + yj)

)
= 0 in Y,

MY (χj) = 0, χj is Y -periodic.
(1.4)

Moreover, we have the following convergences:

Df ∇̃u1ε ⇀ A1∇u1 weakly in L2(Ω),

Dp∇̃u2ε ⇀ A2∇u1 weakly in L2(Ω),
(1.5)

where Al = (alij)n×n (l = 1, 2) is defined by

alij = θlMYl

(
aij +

n∑
k=1

aik
∂χj
∂yk

)
. (1.6)

The second part of the paper is devoted to the corrector results, which are the main
results of the present paper. The proof relies on the convergence of the energy functions
associated to problem (1.1), see Proposition 5 for the details. The precise corrector results
are stated as follows:

Theorem 2. Let (u1ε, u2ε) be the solution of problem (1.1) and u1 be the solution of the
homogenized problem (1.2), then we have

∥∥∇u1ε −∇u1 −
n∑
i=1

Uε1
(∂u1

∂xi

)
Uε1 (∇yχi|Y1

)
∥∥
L2(Ω1ε)

−→ 0,

∥∥∇u2ε −∇u1 −
n∑
i=1

Uε2
(∂u1

∂xi

)
Uε2 (∇yχi|Y2

)
∥∥
L2(Ω2ε)

−→ 0,

(1.7)

where χj(j = 1, · · ·, n) is the solution of the cell problem (1.4).

This paper is organized as follows. In Section 2, we recall some elementary properties
in the unfolding method and give some convergence results. Section 3 is devoted to the
homogenization of problem (1.1). Section 4 focuses on the proof of the corrector results.



316 Correctors for transmission problems

2 Preliminaries

2.1 Some notation and properties

Let Ω be a bounded connected open set with smooth boundary in Rn (n ≥ 3) and let
Y = [0, l1)×·· ·× [0, ln) be the reference cell with li > 0 (i = 1, · · ·, n) in Rn. To simplify the
notations associated to the unfolding method, we denote by Y2 an open subset of Y with
smooth boundary such that Y2 ⊂ Y . We shall refer to Y2 as being the elementary hole.

The letter ε denotes the general term of a sequence of positive real numbers which
converges to zero. For each ε, let τε(εY2) be the translated image of εY2 by the vector εkl,
namely:

τε(εY2) = ε(kl + Y2),

where k = (k1, · · ·, kn) ∈ Zn and kl = (k1l1, · · ·, knln). Let us denote by Ω2ε the set of all
the obstacles contained in Ω, i.e.

Ω2ε =
⋃
{τε(εY2) : τε(εY2) ⊂ Ω, k ∈ Zn}.

Write the other component of Ω and the interface, respectively, by:

Ω1ε = Ω\Ω2ε and Γε = ∂Ω2ε.

Notice that Ω1ε is a periodically perforated domain with the size of holes being the same
as the period. Suppose that the obstacles do not intersect the boundary ∂Ω. See Figure 1
for this domain in two dimensional case:

Y2
Y1

Γ

Y

Ω1ε Ω2ε Γε

Figure 1: The perforated domain.

Let Y1 = Y \Y 2. For k ∈ Zn, we denote

Y k = kl + Y, Y ki = kl + Yi (i = 1, 2).

Now we recall some notations related to the unfolding method in [2], [4] and [11]:

Ω̂ε = int
⋃
k∈K̂ε

ε(kl + Y ), Λε = Ω\Ω̂ε,
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Ω̂iε =
⋃
k∈K̂ε

εY ki , Λiε = Ωiε\Ω̂iε (i = 1, 2), Γ̂ε = ∂Ω̂2ε,

where K̂ε = {k ∈ Zn | εY k ⊂ Ω}. See Figure 2 for these notations:

Λ1ε

Λ2ε

Ω̂1ε
Ω̂2εΩ̂ε

Λε

Figure 2: The sets Ω̂ε, Ω̂1ε, Ω̂2ε, Λε, Λ1ε, Λ2ε.

In the sequel, we will use the following notations:

• θi = |Yi|/|Y |, i = 1, 2.

• MO(v) = 1
|O|
∫
O vdx.

• f̃ is the zero extension to Ω of any function f defined on Ωiε for i = 1, 2.

• For α, β ∈ R with 0 < α < β, M(α, β,O) denotes the set of n × n matrix-valued
functions B(x) ∈ (L∞(O))n×n such that

(B(x)λ, λ) ≥ α|λ|2, |B(x)λ| ≤ β|λ|, for any λ ∈ Rn and a.e. on O.

• C denotes a generic constant which does not depend upon ε, but whose value may
differ from line to line.

• The notation Lp(O) will be used both for scalar and vector-valued functions defined
on the set O, when no ambiguity arises.

Next we list some properties in the unfolding method, which will play a key role in
proving some important convergences needed in the proof of our main results. For other
properties and related comments, we refer the reader to [2], [4] and [11].

For i = 1, 2, let T εi and Uεi be the unfolding operator and the average operator, respec-
tively.
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Proposition 1. Let p ∈ [1,+∞). For i = 1, 2,

(i) T εi is linear and continuous from Lp(Ωiε) to Lp(Ω× Yi).
(ii) For φ ∈ L1(Ωiε),

1

|Y |

∫
Ω×Yi

T εi (φ)(x, y) dx dy =

∫
Ω̂iε

φ(x)dx =

∫
Ωiε

φ(x)dx−
∫

Λiε

φ(x)dx.

(iii) For w ∈ Lp(Ωiε), we have

‖T εi (w)‖Lp(Ω×Y ∗) = |Y |1/p‖w‖Lp(Ω̂iε)
≤ |Y |1/p‖w‖Lp(Ωiε).

(iv) For p ∈ (1,+∞), let {φε} and {ψε} be two sequences in Lp(Ωiε) and Lp0(Ωiε)
(1/p+ 1/p0 < 1, 1/q + 1/q′ = 1), respectively. If

‖φε‖Lp(Ωiε) ≤ C and ‖ψε‖Lp0 (Ωiε) ≤ C,

then ∫
Ωiε

φεψε dx−
1

|Y |

∫
Ω×Yi

T εi (φε)T εi (ψε) dx dy −→ 0.

Proposition 2. Let i = 1, 2.

(i) For p ∈ [1,∞), let {ωε} be a sequence in Lp(Ω) such that

ωε → ω strongly in Lp(Ω),

then we have

T εi (ωε)→ ω strongly in Lp(Ω× Yi).

(ii) For p ∈ (1,∞), let {ϕε} be a sequence in Lp(Ωiε) such that ‖ϕε‖Lp(Ωiε) ≤ C. If

T εi (ϕε) ⇀ ϕ weakly in Lp(Ω× Yi),

then we have

ϕ̃ε ⇀ θiMYi(ϕ) weakly in Lp(Ω).

(iii) For ω ∈ Lp(Ω),

‖Uεi (ω)− ω‖Lp(Ωiε) → 0.

(iv) For p ∈ [1,+∞), let ωε ∈ Lp(Ωiε) and ω ∈ Lp(Ω × Yi), then the following two
assertions are equivalent:

(a) T εi (ωε)→ ω strongly in Lp(Ω× Yi) and ‖ωε‖Lp(Λiε) → 0,

(b) ‖ωε − Uεi (ω)‖Lp(Ωiε) → 0.

(v) For p ∈ [1,∞), let f ∈ Lp(Ω) and g ∈ Lp(Yi). Then we have

‖Uεi (fg)− Uεi (f)Uεi (g)‖Lp(Ωiε) → 0.
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2.2 Some convergence results

This subsection is devoted to some important convergences related to the solution of prob-
lem (1.1). Let us first introduce two spaces V ε and Hε.

Define V ε by
V ε := {v ∈ H1(Ω1ε) | v = 0 on ∂Ω},

endowed with the norm
‖v‖V ε = ‖∇v‖L2(Ω1ε).

Let Hε be the product space:

Hε := {u = (u1, u2) | u1 ∈ V ε, u2 ∈ H1(Ω2ε), u1 = u2 on Γε}

with the norm:
‖u‖2Hε = ‖∇u1‖2L2(Ω1ε)

+ ‖∇u2‖2L2(Ω2ε)
.

The variational formulation of problem (1.1) is to find a uε = (u1ε, u2ε) ∈ Hε such that

Df

∫
Ω1ε

∇u1ε · ∇v1 dx+Dp

∫
Ω2ε

∇u2ε · ∇v2 dx

+ a

∫
Ω2ε

g(u2ε)v2 dx =

∫
Ω1ε

fv1 dx, ∀(v1, v2) ∈ Hε.

(2.1)

For every fixed ε, by Proposition 3.4 in [6], we know that problem (2.1) has a unique uε
such that:

‖u1ε‖V ε + ‖u2ε‖H1(Ω2ε)) < C, (2.2)

where C is a positive constant, independent of ε.
By a similar argument of Theorem 4.5 in [12] and Theorem 2.20 in [11], we can get the

following convergence properties:

Proposition 3. Let uε be the solution of problem (1.1). Then, there exist u1 ∈ H1
0 (Ω),

û1 ∈ L2(Ω, H1
per(Y1)) and û2 ∈ L2(Ω, H1(Y2)) such that

(i) T εi (uiε)→ u1 strongly in L2(Ω, H1(Yi)), i = 1, 2,

(ii) T ε1 (∇u1ε) ⇀ ∇u1 +∇yû1 weakly in L2(Ω× Y1),

(iii) T ε2 (∇u2ε) ⇀ ∇yû2 weakly in L2(Ω× Y2),

(iv) ũiε ⇀ θiu1 weakly in L2(Ω),

(2.3)

where MΓ(ûi) = 0 for i = 1, 2. Moreover, we have

û1 = û2 − yΓ
∇u1 on Ω× Γ,

where y
Γ

= y −MΓ(y).

Corollary 1. Keep all the notations in Proposition 3. Let βε de defined by

βε(x) =

{
u1ε, x ∈ Ω1ε,

u2ε, x ∈ Ω2ε.

Then we have
βε ⇀ u1 weakly in H1

0 (Ω).
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Indeed, βε is bounded in H1
0 (Ω) (see [6] for more details). Hence, there exists β ∈ H1

0 (Ω)
such that βε ⇀ β weakly in H1

0 (Ω). This implies

ũ1ε ⇀ θ1β weakly in L2(Ω).

Together with (2.3)(iv), we obtain β = u1.

Proposition 4. Let {zε} be a sequence such that

zε ⇀ z weakly in H1
0 (Ω).

Suppose that g is a function satisfying (H1) and (H2), then we have

T ε2 (g(zε)) ⇀ g(z) weakly in Lr(Ω× Y2), (2.4)

where 2 ≤ r ≤ 2n
ρ(n−2) .

Proof. By Theorem 2.4 in [6], we can get

g(zε)→ g(z) strongly in Lρ̄(Ω),

where ρ̄ = 2n
(ρ−1)(n−2)+n . Since ρ̄ ∈ (1, 2], Proposition 2(i) gives

T ε2 (g(zε))→ g(z) strongly in Lρ̄(Ω× Y2). (2.5)

On the other hand, from (H2), we deduce∫
Ω

|g(zε)|rdx ≤ C(|Ω|+ ‖zε‖rρLrρ(Ω)) ≤ C(1 + ‖zε‖rρH1
0 (Ω)

) ≤ C.

As a result, g(zε) is bounded in Lr(Ω). By Proposition 1(iii), this implies T ε2 (g(zε)) is
bounded in Lr(Ω × Y2). Together with (2.5), we can complete the proof of Proposition 4.

3 Homogenization results

In this section, we study the asymptotic behavior, as ε → 0, of the problem (1.1). The
study was done by the oscillating test functions method. Here we use the unfolding method
to study the homogenization, which will be crucial to the proof of the corrector results in
Section 4. Moreover, we give the precise convergence of flux.

For later use, we introduce the matrix

A = (aij)1≤i,j≤n :=

{
DfId, in Y1,

DpId, in Y2.

Our unfolded formulation of the homogenization results is stated as follows:
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Theorem 3. Let uε be the solution of problem (1.1). Then, there exist u1 ∈ H1
0 (Ω),

û1 ∈ L2(Ω, H1
per(Y1)) and û2 ∈ L2(Ω, H1(Y2)) such that

(i) T εi (uiε)→ u1 strongly in L2(Ω, H1(Yi)), i = 1, 2,

(ii) T ε1 (∇u1ε) ⇀ ∇u1 +∇yû1 weakly in L2(Ω× Y1),

(iii) T ε2 (∇u2ε) ⇀ ∇yû2 weakly in L2(Ω× Y2),

(iv) ũiε ⇀ θiu1 weakly in L2(Ω),

(3.1)

where MΓ(ûi) = 0 for i = 1, 2. The pair (u1, û) is the unique solution in H1
0 (Ω) ×

L2(Ω, H1
per(Y )) with MΓ(û) = 0, of the problem

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû)(∇Ψ +∇yΦ) dx dy

+aθ2

∫
Ω

g(u1)Ψdx = θ1

∫
Ω

fΨdx

for all Ψ ∈ H1
0 (Ω) and Φ ∈ L2(Ω, H1

per(Y )),

(3.2)

where û ∈ L2(Ω, H1
per(Y )) is the extension by periodicity of the following function (still

denoted by û):

û(·, y) =

{
û1(·, y) when y ∈ Y1,

û2(·, y)− yΓ∇u1 when y ∈ Y2,
(3.3)

with yΓ = y −MΓ(y). Also, we have

û =

n∑
j=1

∂u1

∂xj
χj , (3.4)

where χj(j = 1, · · ·, n) is the solution of the cell problem (1.4).

Proofs of Theorem 3 and Theorem 1. In view of (2.2), Proposition 3 implies that conver-
gences (3.1)(i)-(iii) hold at least for a subsequence (still denoted by ε). By the properties
of the unfolding operators, we further obtain

(i) ũiε ⇀ θiMYi(u1) weakly in L2(Ω) for i = 1, 2,

(ii) Df ∇̃u1ε ⇀ θ1MY1
[A(∇u1 +∇yû1)] weakly in L2(Ω),

(iii) Dp∇̃u2ε ⇀ θ2MY2 [A(∇yû2)] weakly in L2(Ω).

(3.5)

Notice that u1 is independent of y, we get convergence (3.1)(iv).
Let Ψ, φ ∈ D(Ω), ψ ∈ H1

per(Y ) and ψε(x) = ψ(x/ε). Set

vε(x) = Ψ(x) + εφ(x)ψε(x) and viε = vε|Ωiε (i = 1, 2).

Then we have

T εi (viε)→ Ψ strongly in L2(Ω× Yi),
T εi (∇viε)→ ∇Ψ +∇yΦ strongly in L2(Ω× Yi) with Φ(x, y) = φ(x)ψ(y).

(3.6)
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Choosing (v1ε, v2ε) as test function in the variational formulation (2.1), we get

Df

∫
Ω1ε

∇u1ε · ∇v1ε dx+Dp

∫
Ω2ε

∇u2ε · ∇v2ε dx

+ a

∫
Ω2ε

g(u2ε)v2ε dx =

∫
Ω1ε

fv1ε dx.

(3.7)

By (2.3) and (3.6), we have∫
Ω1ε

∇u1ε · ∇v1ε dx→
1

|Y |

∫
Ω×Y1

(∇u1 +∇yû1) · (Ψ +∇yΦ) dx dy,∫
Ω2ε

∇u2ε · ∇v2ε dx→
1

|Y |

∫
Ω×Y2

∇yû2 · (Ψ +∇yΦ) dx dy,∫
Ω1ε

fv1ε dx→ θ1

∫
Ω

fΨ dx.

(3.8)

By Corollary 1 and Proposition 4,

T ε2 (g(βε)) ⇀ g(u1) weakly in Lr(Ω× Y2), (3.9)

where 2 ≤ r ≤ 2n
ρ(n−2) . Together with (3.6), we use Proposition 1(iv) to get∫

Ω2ε

g(u2ε)v2ε dx =

∫
Ω2ε

g(βε)v2ε dx→ θ2

∫
Ω

g(u1)Ψ dx. (3.10)

Passing to the limit in (3.7) and using (3.8) and (3.10), we obtain

Df

|Y |

∫
Ω×Y1

(∇u1 +∇yû1) · (Ψ +∇yΦ) dx dy +
Dp

|Y |

∫
Ω×Y2

∇yû2 · (Ψ +∇yΦ) dx dy

+ aθ2

∫
Ω

g(u1)Ψ dx = θ1

∫
Ω

fΨ dx.

(3.11)

On the other hand, by Proposition 3, we have û1 = û2−yΓ
∇u1 on Ω×Γ. Consequently,

we can define û by (3.3) and extend it by periodicity (still denoted by û). Together with
the density, we get (3.2).

Setting Ψ = 0 in (3.2), we have

divyA(∇u1 +∇yû) = 0.

Notice that u1 is independent of y and MΓ(û1) = 0. Hence we get (3.4). Then by a
standard computation, we get the convergence (1.5) from (3.5) and the following identity:

1

|Y |

∫
Y

A(∇u1 +∇yû)∇Ψdy = A0∇u1∇Ψ (3.12)

with A0 defined by (1.3). Moreover, we obtain (1.2).
By the standard arguments, we derive the ellipticity of A0 and the uniqueness of the

solution of the homogenized problem. Hence we get that the pair (u1, û) is the unique
solution of problem (3.2). This implies that each convergence in Theorem 3 holds for the
whole sequence.
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4 Corrector results

This section is devoted to the proof of the corrector results. Our starting point is the
convergence of the energy functions associated to problem (1.1). We first recall the following
crucial lemma due to Cioranescu, Damlamian, Donato, Griso and Zaki [2].

Lemma 1. Let {Dε} be a sequence of n× n matrices in M(α, β,O) for some open set O,
such that Dε → D a.e. on O (or more generally, in measure in O). If ζε ⇀ ζ weakly in
L2(O), then ∫

O
Dζζ dx ≤ lim inf

ε→0

∫
O
Dεζεζε dx.

Furthermore, if lim sup
ε→0

∫
ODεζεζε dx ≤

∫
ODζζ dx, then

∫
O
Dζζ dx = lim

ε→0

∫
O
Dεζεζε dx and ζε → ζ strongly in L2(O).

For each ε, the energy Eε is defined by

Eε =

∫
Ω1ε

Df∇u1ε · ∇u1ε dx+

∫
Ω2ε

Dp∇u2ε · ∇u2ε dx.

Then we have the following convergence of energy, which is crucial to the proof of our
corrector results.

Proposition 5. Let uε be the solution of problem (1.1). Then

lim
ε→0

Eε =
1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy. (4.1)

Proof. By (3.3), we have

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy

=
1

|Y |

∫
Ω×Y1

A(∇u1 +∇yû1) · (∇u1 +∇yû1) dx dy

+
1

|Y |

∫
Ω×Y2

A(∇yû2) · (∇yû2) dx dy.

(4.2)

Together with (3.1), we use Lemma 1 to get

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy

≤ lim inf
ε→0

1

|Y |

∫
Ω×Y1

AT ε1 (∇u1ε) · T ε1 (∇u1ε) dx dy

+ lim inf
ε→0

1

|Y |

∫
Ω×Y2

AT ε2 (∇u2ε) · T ε2 (∇u2ε) dx dy.
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Then Proposition 1(ii) gives

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy

≤ lim inf
ε→0

[ ∫
Ω̂1ε

Df∇u1ε · ∇u1ε dx+

∫
Ω̂2ε

Dp∇u2ε · ∇u2ε dx
]
.

(4.3)

Let

Êε =

∫
Ω̂1ε

Df∇u1ε · ∇u1ε dx+

∫
Ω̂2ε

Dp∇u2ε · ∇u2ε dx.

Furthermore,

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy ≤ lim inf
ε→0

Êε ≤ lim sup
ε→0

Êε ≤ lim sup
ε→0

Eε (4.4)

From (2.1), we have

lim
ε→0

Eε = lim
ε→0

[ ∫
Ω1ε

fu1ε dx− a
∫

Ω2ε

g(u2ε)u2ε dx
]

(4.5)

By (3.1)(i), we get ∫
Ω1ε

fu1ε dx→ θ1

∫
Ω

fu1dx.

For the last term in (4.5), by (3.1)(i) and (3.9), we use Proposition 1(iv) to obtain∫
Ω2ε

g(u2ε)u2ε dx =

∫
Ω2ε

g(βε)u2ε dx→ θ2

∫
Ω

g(u1)u1 dx.

Together with (4.4) and (4.5), we get

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy ≤ lim
ε→0

Eε = θ1

∫
Ω

fu1dx− aθ2

∫
Ω

g(u1)u1dx.

On the other hand, Choosing Ψ = u1, Φ = û in (3.2), we have

1

|Y |

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy = θ1

∫
Ω

fu1dx− aθ2

∫
Ω

g(u1)u1dx.

This implies (4.1). Consequently, the proof of Proposition 5 is finished.

Based on this proposition, we can obtain that the convergences on the gradient in (3.1)
are strong.

Corollary 2. Under the assumptions of Theorem 3, we have

(i)

∫
Λiε

|∇uiε|2dx→ 0, i = 1, 2,

(ii) T ε1 (∇u1ε)→ ∇u1 +∇yû1 strongly in L2(Ω× Y1),

(iii) T ε2 (∇u2ε)→ ∇yû2 strongly in L2(Ω× Y2).

(4.6)
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In fact, by (4.4), we obtain

lim
ε→0

Êε = lim
ε→0

Eε,

which implies (4.6)(i). Also, we get

lim
ε→0

[ ∫
Ω×Y1

AT ε1 (∇u1ε) · T ε1 (∇u1ε) dx dy +

∫
Ω×Y2

AT ε2 (∇u2ε) · T ε2 (∇u2ε) dx dy
]

=

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy.

Combining this with (3.1)(ii)(iii), a direct computation shows that∫
Ω×Y1

A
[
T ε1 (∇u1ε)− (∇u1 +∇yû1)

]
·
[
T ε1 (∇u1ε)− (∇u1 +∇yû1)

]
dx dy

+

∫
Ω×Y2

A
[
T ε2 (∇u2ε)−∇yû2

]
·
[
T ε2 (∇u2ε)−∇yû2

]
dx dy

−→
∫

Ω×Y
A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy

−
∫

Ω×Y
A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy

−
∫

Ω×Y
A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy

+

∫
Ω×Y

A(∇u1 +∇yû) · (∇u1 +∇yû) dx dy = 0.

This allows us to obtain (4.6)(ii)(iii).

With Corollary 2 at our disposal, we are in a position to complete the proof of the
corrector results.

Proof of Theorem 2. By (4.6)(i)(ii), we use Proposition 2(iv) to get

‖∇u1ε − Uε1 (∇u1 +∇yû)‖L2(Ω1ε) → 0. (4.7)

Since ∇u1 is independent of y, from Proposition 2(iii), we have

‖∇u1 − Uε1 (∇u1)‖L2(Ω1ε) → 0.

Combining this with (4.7), we obtain

‖∇u1ε −∇u1 − Uε1 (∇yû)‖L2(Ω1ε) → 0.

By (3.3) and (3.4), Proposition 2(v) gives the first convergence in (1.7). The second one
can be also similarly proved.
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