Bull. Math. Soc. Sci. Math. Roumanie
Tome 60 (108) No. 3, 2017, 307-312

About split quaternion algebras over quadratic fields and
symbol algebras of degree n
by
DI1ANA SAVIN

Abstract
In this paper we determine sufficient conditions for a quaternion algebra to split
over a quadratic field. In the last section of the paper, we find a class of non-split
symbol algebras of degree n (where n is a positive integer, n > 3) over a p— adic field
or over a cyclotomic field.
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1 Introduction

Let K be a field with charK # 2. Let K* = K\{0}, a,b € K*. The quaternion algebra
Hpg (a,b) is the K-algebra with K-basis {1;e;;e2;e3} satisfying the relations: e? = a,
e%zb7 €3 =€ -6y = —€y- e,

Let n be an arbitrary positive integer, n > 3 and let & be a primitive n-th root of unity.
Let K be a field with charK # 2, charK does not divide n and £é€ K. Let a,b € K* and

let A be the algebra over K generated by elements x and y where
" =a,y" = b,yx = Exy.

This algebra is called a symbol algebra and it is denoted by (‘I‘(—g) . For n = 2, we

obtain the quaternion algebra. Quaternion algebras and symbol algebras are central simple
algebras of dimension n? over K, non-commutative, but associative algebras (see [11]).

In this article we find sufficient conditions for a quaternion algebra to split over a
quadratic field. In the paper [12] we found a class of division quaternion algebra over
the quadratic field Q (i) (i> = —1), respectively a class of division symbol algebra over the
cyclotomic field Q (£), where £ is a primitive root of order ¢ (prime) of unity. In the last
section of this article we generalize these results for symbol algebras of degree n > 3, not
necessarily prime.

2 Preliminaries

We recall some results of the theory of cyclotomic fields, Kummer fields and p— adic fields,
associative algebras, which will be used in our paper. Let n be an integer, n > 3 and let
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K be a field of characteristic prime to n in which ™ — 1 splits; and let £ be a primitive n
th root of unity. The following lemma (which can be found in [2]) gives information about
certain extension of K.

Lemma 1. If a is a non-zero element of K, there is a well-defined normal extension
K (%/a), the splitting field of z™ — a. If a is a root of ™ = a, there is a map of the
Galois group G (K (¥/a) /K) into K* given by o — o () /a; in particular, if a is of order
n in K*/(K*)", the Galois group is cyclic and can be generated by o with o (a) = &a.
Moreover, the discriminant of K ({/a) over K divides n™ - a™~1; p is unramified if p { na.

Let A # 0 be a central simple algebra over a field K. We recall that if A is a finite-
dimensional algebra, then A is a division algebra if and only if A is without zero divi-
sors (x # 0,y # 0 = zy # 0). A is called split by K if A is isomorphic with a
matrix algebra over K. If K C L is a fields extension, we recall that A is called split
by L if A ®k L is a matrix algebra over L. The Brauer group (Br(K), -) of K is
Br(K)= {[A]|A is a central simple K — algebra}, where, two classes of central simple
algebras are equals [A] = [B] if and only if there are two positive integers r and s such that
A®x M, (K) = B®k My (K).

The group operation in Br(K) is : ”-”: Br(K)xBr(K)—Br(K), [4] - [B] = [A®Kk B], for
(V) [A], [B]eBr(K) (see [11], [7]). A result due Albert-Brauer-Hasse-Noether says that for
any number field K, the following sequence is exact:

0 — Br(K) — &,Br(K,) — Q/Z —0

Remark 1. ([9]). Let n be a positive integer, n > 3 and let & be a primitive n-th root of
unity. Let K be a field such that (€K, a,b € K*. If n is prime, then the symbol algebra

(%g) is either split or a division algebra.

Theorem 1. ([10]) (Albert-Brauer-Hasse-Noether). Let Hp be a quaternion algebra over
a number field F' and let K be a quadratic field extension of F. Then there is an embedding
of K into Hg if and only if no prime of F which ramifies in Hp splits in K.

Proposition 1. ([5]). Let F be a number field and let K be a field containing F. Let Hp
be a quaternion algebra over F. Let Hx = Hp ®p K be a quaternion algebra over K. If
[K : F] =2, then K splits Hr if and only if there exists an F-embedding K — Hp.

3 Quaternion algebras which split over quadratic fields

Let p,q be two odd prime integers, p # ¢. If a quaternion algebra H (p,q) splits over Q,
of course it splits over each algebraic number fields. It is known that if K is an algebraic
number field such that [K : Q] is odd and «, 5€Q*, then the quaternion algebra Hg (v, ()
splits if and only if the quaternion algebra Hg («, 5) splits (see [8]). But, when [K : Q] is
even there are quaternion algebras H («, ) which does not split over Q, but its split over
K. For example, the quaternion algebra H (11,47) does not split over Q, but it splits over
the quadratic field Q (i) (where i = —1).

We want to determine sufficient conditions for a quaternion algebra H (p, ¢) to split over a
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quadratic field K = Q (\/&) . Let Ok be the ring of integers of K. Since p and ¢ lie in Q,
the problem whether HQ( NG) (p, q) splits reduces to whether Hg (p,q) splits under scalar

extension to Q (\/&) .

It is known that, for each prime positive integer p, Br (Q,) = Q/Z (the isomorphism is
inv, : Br(Q,) — Q/Z) and for p = oo, Br (R) = Z/2Z.

We obtain sufficient conditions for a quaternion algebra H (p,q) to split over a quadratic
field.

Theorem 2. Let d # 0,1 be a free squares integer, d Z 1 (mod 8) and let p, q be two prime
integers, q > 3, p # q. Let Ok be the ring of integers of the quadratic field K = Q (\/Zl)
and Ak be the discriminant of K. Then, we have:

i) if p > 3 and the Legendre symbols (%‘) #1, (ATK) # 1, then, the quaternion algebra
Heyvay (p,) splits;

it) if p = 2 and the Legendre symbol (ATK) # 1, then, the quaternion algebra HQ(\/g) (2,q)
splits.

Proof: i) Applying Albert-Brauer-Hasse-Noether theorem, we obtain the following descrip-
tion of the Brauer group of Q and of the Brauer group of the quadratic field Q (\/E) .

0 —— Br(Q) —— &,Br (Q,) = (¢,Q/Z) & Z/2Z Q/Z 0

l JGBP‘PPEBO

0— Br (Q (\/a)) — S @®pBr (@ (\/a)P) ~ (®,Q/Z) Q/Z 0

where ¢, is the multiplication by 2 when there is single P€Spec(Og) above the ideal
pZ ie. pZ is inert in Ok or pZ is ramified in O, respectively ¢, is the diagonal map
Q/Z — Q/Z ® Q/Z if there are two primes P, P’ of Ok above pZ i.e. pZ is totally split
in Ok. Using this description we determine sufficient conditions for a quaternion algebra
H (p, q) to split over a quadratic field K = Q (\/&) .

It is known that Agx = d (if d =1 (mod 4)) or Ag = 4d (if d = 2,3 (mod 4)). Since

(ATK) # 1, (%) # 1 it results (%) =—lor (%) = 0, respectively (g) =—lor (g) =0.
Applying the theorem of decomposition of a prime integer p in the ring of integers of a
quadratic field (see for example [4], p. 190), it results that p is ramified in Ok or p is inert
in Ok, respectively ¢ is ramified in O or ¢ is inert in Og. So, p and ¢ do not split in K.
Let A denote the discriminant of the quaternion algebra HQ( V) (p,q).

It is known that a prime positive integer p ramifies in H@(\/E) (p,q) if p'[2A ([6], [7], [13]).

This implies p’ |2pg.
Since d # 1 (mod 8) and the decomposition of 2 in O (see [4], p. 190), it results that 2
does not split in K.
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From the previously proved and applying Theorem 1 and Proposition 1, it results that the
quaternion algebra HQ( V) (p, q) splits.

ii) Let p be a prime positive integer which ramifies in H@(\/E) (2,q). In this case the

condition p/|2A implies p/|2q. With similar reasoning as i) we get that the quaternion
algebra HQ(\/E) (2, q) splits. 0

Remark 2. The conditions (ATK) £ 1, (ATK) % 1 from Theorem 2 are not necessary

for the quaternion algebra H@(\/E) (¢,p) splits. For example, if d = —1, the conditions

(ATK> # 1, <ATK) # 1 are equivalent to p=q=3(mod 4). We consider the quaternion
algebra Hyy (5,29), so p = 5=1(mod 4) and q = 29=1(mod 4). Doing some calculations
in software MAGMA, we obtain that the algebra Hg;y (5,29) splits. Analogous, for p =

5=1(mod 4) and q = 19=3(mod 4), we obtain that the algebra Hg (5,19) splits. Another
example: if d = 3, p = 7,q = 47, we have (ATK) # 1, but (ATK) = 1. However the
quaternion algebra HQ(\/g) (7,47) splits. Another remark is that the quaternion algebra
Hgq (7,47) does not split.

We wonder what happens with a quaternion algebra HQ( V) (p, q) from Theorem 2 when

instead of p or ¢ we consider an arbitrary integer «. Immediately we obtain the following
result:

Corollary 1. Let d # 0,1 be a free squares integer, d Z 1 (mod 8) and let o be an
integer and p be an odd prime integer. Let Ok be the ring of integers of the quadratic

field K =Q (\/&) and Ak be the discriminant of K. If the Legendre symbols (ATK) #1,

(%) % 1, for each odd prime divisor q of « then, the quaternion algebra HQ(\/g) (o, p)
splits.

Proof: We want to determine the primes p/ which ramifies in HQ( V) (a,p) , i.e the primes

p with the property p/|2A. This implies p/|2oz - p. Since (ATK> # 1, (%") # 1, for each
odd prime divisor ¢ of «, using a reasoning similar with that of Theorem 2, we get that
such primes do not exist, so the quaternion algebra HQ( V) (c, p) splits.

]

4 Symbol algebras of degree n

In the paper [12] we found a class of division quaternion algebras over the quadratic field
Q(¢) ([12], Th. 3.6) and a class of division symbol algebras of degree ¢ (where ¢ is an odd
prime positive integer) over a p- adic field or over a cyclotomic field ([12], Th. 3.7). Here
we generalize theorem 3.7 from [12], when A is a symbol algebra over the n-th cyclotomic
field, where n is a positive integer, n > 3.
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Theorem 3. Let n be a positive integer, n > 3, p be a prime positive integer such that
p =1 (mod n), £ be a primitive root of order n of unity and let K = Q(§) be the n th
cyclotomic field. Then there is an integer o not divisible by p, « is not a | power residue
modulo p, for (Y) leEN, l|n and for every such an «, we have:

i) if A is the symbol algebra A = (?{2) , then A @k Q, is a non-split algebra over Qp;

it) the symbol algebra A is a non-split algebra over K.

Proof: i) Let be the homomorphism f : F; — Fy, f(z) = 2". Since p = 1 (mod n), it
results Ker (f) = {x € F;|z™ =1 (mod p)} is non -trivial, so f is not injective. So, f is
not surjective. It results that there exists @ (in ]F;,) which does not belong to (F;)n Let
B be an n th root of a (modulo p). Since « is not a I power residue modulo p, for (V)
leN, l|n, it results that the extension of fields F,, (E) /F, is a cyclic extension of degree n.
Applying a consequence of Hensel’s lemma (see for example [1]) and the fact that p = 1
(mod n), it results that @, contains the n-th roots of the unity, therefore Q (§) C Q,. Let

the symbol algebra A @k Q, = ((S’pg) . Applying Lemma 1, it results that the extension
Dy

Qp () /Q, is a cyclic unramified extension of degree n, therefore a norm of an element
from this extension can be a positive power of p, but cannot be p. According to a criterion
for splitting of the symbol algebras (see Corollary 4.7.7, p. 112 from [3]), it results that

(‘;’pg is a non-split algebra.
D>
ii) Applying i) and the fact that K C Q,, it results that A is a non-split algebra. a

Remark 3. Although Theorem 3 is the generalization of Theorem 3.7 from [12] for symbol
algebras of degree n, there are some differences between these two theorems, namely:

- One of the conditions of the hypothesis of Theorem 3.7 from [12] is: « is not a q¢ power
residue modulo p. With a similar condition in the hypothesis of Theorem 3, namely: « is
not a n power residue modulo p, Theorem 8 does not work. We give an example in this
regard: let p="T,n =06, a = 2. 2 is not a 6 power residue modulo 7, but 2 is a quadratic
residue modulo 7. Let 8 be an 6 th root of a (modulo 7). We obtain that the polynomial
Y® — 2 is not irreducible in F7[Y]. We have Y5 —2 = (Y3 =3) - (Y*+3) (in F7[Y]).
So, the extension of fields F7 C Fy (B) has not the degree n = 6. For this reason, in the
hypothesis of Theorem 3 we put the condition: « is not a l power residue modulo p, for (V)
leN, I|n;

- In Theorem 8.7 from [12] we proved that A @k Q, is a non-split symbol algebra over
Qp (respectively A is a non-split symbol algebra over K) and applying Remark 1 this is
equivalent to A is a division symbol algebra over Q, (respectively A is a division symbol
algebra over K). But, Remark 1 holds if and only if n is prime. For this reason, the
conclusion of Theorem 3 is: A is a non-split symbol algebra over Q, (respectively A is a
non-split symbol algebra over K ).

Conclusions. In the last section of the paper, we found a class of non-split symbol algebras
of degree n (where n is a positive integer, n > 3) over a p— adic field, respectively over a
cyclotomic field. In a further research we intend to improve Theorem 3 from this paper, in
order to find a class of division symbol algebras of degree n (where n€N*, n > 3) over a
cyclotomic field.
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