About split quaternion algebras over quadratic fields and symbol algebras of degree n

by Diana Savin

Abstract

In this paper we determine sufficient conditions for a quaternion algebra to split over a quadratic field. In the last section of the paper, we find a class of non-split symbol algebras of degree n (where n is a positive integer, $n \geq 3$) over a p- adic field or over a cyclotomic field.

Key Words: quaternion and symbol algebras; quadratic fields, cyclotomic fields; Kummer fields; p- adic fields

2010 Mathematics Subject Classification: Primary 11R52, 11R18, 11S15, 11R37, Secondary 11R04, 11A41, 11F85.

1 Introduction

Let K be a field with $\operatorname{char} K \neq 2$. Let $K^* = K \setminus \{0\}$, $a, b \in K^*$. The quaternion algebra $H_K(a, b)$ is the K-algebra with K-basis $\{1; e_1; e_2; e_3\}$ satisfying the relations: $e_1^2 = a$, $e_2^2 = b$, $e_3 = e_1 \cdot e_2 = -e_2 \cdot e_1$.

Let n be an arbitrary positive integer, $n \geq 3$ and let ξ be a primitive n-th root of unity. Let K be a field with $\operatorname{char} K \neq 2$, $\operatorname{char} K$ does not divide n and $\xi \in K$. Let $a, b \in K^*$ and let A be the algebra over K generated by elements x and y where

$$x^n = a, y^n = b, yx = \xi xy.$$

This algebra is called a *symbol algebra* and it is denoted by $\left(\frac{a, b}{K, \xi}\right)$. For n = 2, we obtain the quaternion algebra. Quaternion algebras and symbol algebras are central simple algebras of dimension n^2 over K, non-commutative, but associative algebras (see [11]).

In this article we find sufficient conditions for a quaternion algebra to split over a quadratic field. In the paper [12] we found a class of division quaternion algebra over the quadratic field $\mathbb{Q}(i)$ $(i^2=-1)$, respectively a class of division symbol algebra over the cyclotomic field $\mathbb{Q}(\xi)$, where ξ is a primitive root of order q (prime) of unity. In the last section of this article we generalize these results for symbol algebras of degree $n \geq 3$, not necessarily prime.

2 Preliminaries

We recall some results of the theory of cyclotomic fields, Kummer fields and p- adic fields, associative algebras, which will be used in our paper. Let n be an integer, $n \geq 3$ and let

K be a field of characteristic prime to n in which $x^n - 1$ splits; and let ξ be a primitive n th root of unity. The following lemma (which can be found in [2]) gives information about certain extension of K.

Lemma 1. If a is a non-zero element of K, there is a well-defined normal extension $K(\sqrt[n]{a})$, the splitting field of $x^n - a$. If α is a root of $x^n = a$, there is a map of the Galois group $G(K(\sqrt[n]{a})/K)$ into K^* given by $\sigma \longmapsto \sigma(\alpha)/\alpha$; in particular, if a is of order n in $K^*/(K^*)^n$, the Galois group is cyclic and can be generated by σ with $\sigma(\alpha) = \xi \alpha$. Moreover, the discriminant of $K(\sqrt[n]{a})$ over K divides $n^n \cdot a^{n-1}$; p is unramified if $p \nmid na$.

Let $A \neq 0$ be a central simple algebra over a field K. We recall that if A is a finite-dimensional algebra, then A is a division algebra if and only if A is without zero divisors $(x \neq 0, y \neq 0 \Rightarrow xy \neq 0)$. A is called *split* by K if A is isomorphic with a matrix algebra over K. If $K \subset L$ is a fields extension, we recall that A is called *split* by L if $A \otimes_K L$ is a matrix algebra over L. The Brauer group $(Br(K), \cdot)$ of K is $Br(K) = \{[A] | A \text{ is a central simple } K - algebra\}$, where, two classes of central simple algebras are equals [A] = [B] if and only if there are two positive integers r and s such that $A \otimes_K M_r(K) \cong B \otimes_K M_s(K)$.

The group operation in Br(K) is: " \cdot ": $Br(K) \times Br(K) \longrightarrow Br(K)$, $[A] \cdot [B] = [A \otimes_K B]$, for (\forall) [A], $[B] \in Br(K)$ (see [11], [7]). A result due Albert-Brauer-Hasse-Noether says that for any number field K, the following sequence is exact:

$$0 \longrightarrow Br(K) \longrightarrow \bigoplus_{v} Br(K_{v}) \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

Remark 1. ([9]). Let n be a positive integer, $n \geq 3$ and let ξ be a primitive n-th root of unity. Let K be a field such that $\xi \in K$, $a, b \in K^*$. If n is prime, then the symbol algebra $\left(\frac{a, b}{K, \xi}\right)$ is either split or a division algebra.

Theorem 1. ([10]) (Albert-Brauer-Hasse-Noether). Let H_F be a quaternion algebra over a number field F and let K be a quadratic field extension of F. Then there is an embedding of K into H_F if and only if no prime of F which ramifies in H_F splits in K.

Proposition 1. ([5]). Let F be a number field and let K be a field containing F. Let H_F be a quaternion algebra over F. Let $H_K = H_F \otimes_F K$ be a quaternion algebra over K. If [K:F]=2, then K splits H_F if and only if there exists an F-embedding $K \hookrightarrow H_F$.

3 Quaternion algebras which split over quadratic fields

Let p,q be two odd prime integers, $p \neq q$. If a quaternion algebra H(p,q) splits over \mathbb{Q} , of course it splits over each algebraic number fields. It is known that if K is an algebraic number field such that $[K:\mathbb{Q}]$ is odd and $\alpha, \beta \in \mathbb{Q}^*$, then the quaternion algebra $H_K(\alpha, \beta)$ splits if and only if the quaternion algebra $H_{\mathbb{Q}}(\alpha, \beta)$ splits (see [8]). But, when $[K:\mathbb{Q}]$ is even there are quaternion algebras $H(\alpha, \beta)$ which does not split over \mathbb{Q} , but its split over K. For example, the quaternion algebra H(11, 47) does not split over \mathbb{Q} , but it splits over the quadratic field $\mathbb{Q}(i)$ (where $i^2 = -1$).

We want to determine sufficient conditions for a quaternion algebra H(p,q) to split over a

Diana Savin 309

quadratic field $K = \mathbb{Q}\left(\sqrt{d}\right)$. Let \mathcal{O}_K be the ring of integers of K. Since p and q lie in \mathbb{Q} , the problem whether $H_{\mathbb{Q}(\sqrt{d})}(p,q)$ splits reduces to whether $H_{\mathbb{Q}}(p,q)$ splits under scalar extension to $\mathbb{Q}\left(\sqrt{d}\right)$.

It is known that, for each prime positive integer p, $Br(\mathbb{Q}_p) \cong \mathbb{Q}/\mathbb{Z}$ (the isomorphism is $inv_p : Br(\mathbb{Q}_p) \to \mathbb{Q}/\mathbb{Z}$) and for $p = \infty$, $Br(R) \cong \mathbb{Z}/2\mathbb{Z}$.

We obtain sufficient conditions for a quaternion algebra $H\left(p,q\right)$ to split over a quadratic field.

Theorem 2. Let $d \neq 0, 1$ be a free squares integer, $d \not\equiv 1 \pmod{8}$ and let p, q be two prime integers, $q \geq 3$, $p \neq q$. Let \mathcal{O}_K be the ring of integers of the quadratic field $K = \mathbb{Q}\left(\sqrt{d}\right)$ and Δ_K be the discriminant of K. Then, we have:

i) if $p \geq 3$ and the Legendre symbols $\left(\frac{\Delta_K}{p}\right) \neq 1$, $\left(\frac{\Delta_K}{q}\right) \neq 1$, then, the quaternion algebra $H_{\mathbb{Q}(\sqrt{d})}\left(p,q\right)$ splits;

ii) if p=2 and the Legendre symbol $\left(\frac{\Delta_K}{q}\right) \neq 1$, then, the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(2,q\right)$ splits.

Proof: i) Applying Albert-Brauer-Hasse-Noether theorem, we obtain the following description of the Brauer group of $\mathbb Q$ and of the Brauer group of the quadratic field $\mathbb Q\left(\sqrt{d}\right)$.

$$0 \longrightarrow Br(\mathbb{Q}) \longrightarrow \bigoplus_{p} Br(\mathbb{Q}_{p}) \cong \left(\bigoplus_{p} \mathbb{Q}/\mathbb{Z}\right) \oplus \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \bigoplus_{p, \varphi_{p} \oplus 0}$$

$$0 \longrightarrow Br(\mathbb{Q}\left(\sqrt{d}\right)) \longrightarrow \bigoplus_{p} Br(\mathbb{Q}\left(\sqrt{d}\right)_{p}) \cong \left(\bigoplus_{p} \mathbb{Q}/\mathbb{Z}\right) \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

where φ_p is the multiplication by 2 when there is single $P \in \operatorname{Spec}(\mathcal{O}_K)$ above the ideal $p\mathbb{Z}$ i.e. $p\mathbb{Z}$ is inert in \mathcal{O}_K or $p\mathbb{Z}$ is ramified in \mathcal{O}_K , respectively φ_p is the diagonal map $\mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Q}/\mathbb{Z}$ if there are two primes P, P' of \mathcal{O}_K above $p\mathbb{Z}$ i.e. $p\mathbb{Z}$ is totally split in \mathcal{O}_K . Using this description we determine sufficient conditions for a quaternion algebra H(p,q) to split over a quadratic field $K = \mathbb{Q}\left(\sqrt{d}\right)$.

It is known that $\Delta_K = d$ (if $d \equiv 1 \pmod{4}$) or $\Delta_K = 4d$ (if $d \equiv 2, 3 \pmod{4}$). Since $\left(\frac{\Delta_K}{p}\right) \neq 1$, $\left(\frac{\Delta_K}{q}\right) \neq 1$ it results $\left(\frac{d}{p}\right) = -1$ or $\left(\frac{d}{p}\right) = 0$, respectively $\left(\frac{d}{q}\right) = -1$ or $\left(\frac{d}{q}\right) = 0$. Applying the theorem of decomposition of a prime integer p in the ring of integers of a quadratic field (see for example [4], p. 190), it results that p is ramified in \mathcal{O}_K or p is inert in \mathcal{O}_K , respectively q is ramified in \mathcal{O}_K or q is inert in \mathcal{O}_K . So, p and q do not split in K. Let Δ denote the discriminant of the quaternion algebra $H_{\mathbb{Q}(\sqrt{d})}(p,q)$.

It is known that a prime positive integer $p^{'}$ ramifies in $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(p,q\right)$ if $p^{'}|2\Delta$ ([6], [7], [13]). This implies $p^{'}|2pq$.

Since $d \not\equiv 1 \pmod{8}$ and the decomposition of 2 in \mathcal{O}_K (see [4], p. 190), it results that 2 does not split in K.

From the previously proved and applying Theorem 1 and Proposition 1, it results that the quaternion algebra $H_{\mathbb{Q}(\sqrt{d})}(p,q)$ splits.

ii) Let $p^{'}$ be a prime positive integer which ramifies in $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(2,q\right)$. In this case the condition $p^{'}|2\Delta$ implies $p^{'}|2q$. With similar reasoning as i) we get that the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(2,q\right)$ splits.

Remark 2. The conditions $\left(\frac{\Delta_K}{p}\right) \neq 1$, $\left(\frac{\Delta_K}{q}\right) \neq 1$ from Theorem 2 are not necessary for the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(q,p\right)$ splits. For example, if d=-1, the conditions $\left(\frac{\Delta_K}{p}\right) \neq 1$, $\left(\frac{\Delta_K}{q}\right) \neq 1$ are equivalent to $p\equiv q\equiv 3 \pmod{4}$. We consider the quaternion algebra $H_{\mathbb{Q}(i)}\left(5,29\right)$, so $p=5\equiv 1 \pmod{4}$ and $q=29\equiv 1 \pmod{4}$. Doing some calculations in software MAGMA, we obtain that the algebra $H_{\mathbb{Q}(i)}\left(5,29\right)$ splits. Analogous, for $p=5\equiv 1 \pmod{4}$ and $q=19\equiv 3 \pmod{4}$, we obtain that the algebra $H_{\mathbb{Q}(i)}\left(5,19\right)$ splits. Another example: if d=3, p=7, q=47, we have $\left(\frac{\Delta_K}{p}\right) \neq 1$, but $\left(\frac{\Delta_K}{q}\right)=1$. However the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{3}\right)}\left(7,47\right)$ splits. Another remark is that the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{3}\right)}\left(7,47\right)$ splits. Another remark is that the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{3}\right)}\left(7,47\right)$ splits. Another remark is that the quaternion algebra

We wonder what happens with a quaternion algebra $H_{\mathbb{Q}(\sqrt{d})}(p,q)$ from Theorem 2 when instead of p or q we consider an arbitrary integer α . Immediately we obtain the following result:

Corollary 1. Let $d \neq 0, 1$ be a free squares integer, $d \not\equiv 1 \pmod{8}$ and let α be an integer and p be an odd prime integer. Let \mathcal{O}_K be the ring of integers of the quadratic field $K = \mathbb{Q}\left(\sqrt{d}\right)$ and Δ_K be the discriminant of K. If the Legendre symbols $\left(\frac{\Delta_K}{p}\right) \neq 1$, $\left(\frac{\Delta_K}{q}\right) \neq 1$, for each odd prime divisor q of α then, the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(\alpha,p\right)$ splits.

Proof: We want to determine the primes $p^{'}$ which ramifies in $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(\alpha,p\right)$, i.e the primes $p^{'}$ with the property $p^{'}|2\Delta$. This implies $p^{'}|2\alpha \cdot p$. Since $\left(\frac{\Delta_{K}}{p}\right) \neq 1$, $\left(\frac{\Delta_{K}}{q}\right) \neq 1$, for each odd prime divisor q of α , using a reasoning similar with that of Theorem 2, we get that such primes do not exist, so the quaternion algebra $H_{\mathbb{Q}\left(\sqrt{d}\right)}\left(\alpha,p\right)$ splits.

4 Symbol algebras of degree n

In the paper [12] we found a class of division quaternion algebras over the quadratic field $\mathbb{Q}(i)$ ([12], Th. 3.6) and a class of division symbol algebras of degree q (where q is an odd prime positive integer) over a p- adic field or over a cyclotomic field ([12], Th. 3.7). Here we generalize theorem 3.7 from [12], when A is a symbol algebra over the n-th cyclotomic field, where n is a positive integer, $n \geq 3$.

Diana Savin 311

Theorem 3. Let n be a positive integer, $n \geq 3$, p be a prime positive integer such that $p \equiv 1 \pmod{n}$, ξ be a primitive root of order n of unity and let $K = \mathbb{Q}(\xi)$ be the n th cyclotomic field. Then there is an integer α not divisible by p, α is not a l power residue modulo p, for (\forall) $l \in \mathbb{N}$, $l \mid n$ and for every such an α , we have:

- i) if A is the symbol algebra $A = \left(\frac{\alpha,p}{K,\xi}\right)$, then $A \otimes_K \mathbb{Q}_p$ is a non-split algebra over \mathbb{Q}_p ; ii) the symbol algebra A is a non-split algebra over K.
- **Proof**: i) Let be the homomorphism $f: \mathbb{F}_p^* \to \mathbb{F}_p^*$, $f(x) = x^n$. Since $p \equiv 1 \pmod{n}$, it results $Ker(f) = \left\{x \in F_p^* | x^n \equiv 1 \pmod{p}\right\}$ is non-trivial, so f is not injective. So, f is not surjective. It results that there exists $\overline{\alpha}$ (in \mathbb{F}_p^*), which does not belong to $\left(\mathbb{F}_p^*\right)^n$. Let β be an n th root of α (modulo p). Since α is not a l power residue modulo p, for (\forall) $l \in \mathbb{N}$, $l \mid n$, it results that the extension of fields $\mathbb{F}_p\left(\overline{\beta}\right)/\mathbb{F}_p$ is a cyclic extension of degree n. Applying a consequence of Hensel's lemma (see for example [1]) and the fact that $p \equiv 1 \pmod{n}$, it results that \mathbb{Q}_p contains the n-th roots of the unity, therefore $\mathbb{Q}(\xi) \subset \mathbb{Q}_p$. Let the symbol algebra $A \otimes_K \mathbb{Q}_p = \left(\frac{\alpha,p}{\mathbb{Q}_p,\xi}\right)$. Applying Lemma 1, it results that the extension $\mathbb{Q}_p\left(\sqrt[n]{\alpha}\right)/\mathbb{Q}_p$ is a cyclic unramified extension of degree n, therefore a norm of an element from this extension can be a positive power of p, but cannot be p. According to a criterion for splitting of the symbol algebras (see Corollary 4.7.7, p. 112 from [3]), it results that $\left(\frac{\alpha,p}{\mathbb{Q}_p,\xi}\right)$ is a non-split algebra.
- ii) Applying i) and the fact that $K \subset \mathbb{Q}_p$, it results that A is a non-split algebra.

Remark 3. Although Theorem 3 is the generalization of Theorem 3.7 from [12] for symbol algebras of degree n, there are some differences between these two theorems, namely:

- One of the conditions of the hypothesis of Theorem 3.7 from [12] is: α is not a q power residue modulo p. With a similar condition in the hypothesis of Theorem 3, namely: α is not a n power residue modulo p, Theorem 3 does not work. We give an example in this regard: let p=7, n=6, $\alpha=2$. 2 is not a 6 power residue modulo 7, but 2 is a quadratic residue modulo 7. Let β be an 6 th root of α (modulo 7). We obtain that the polynomial $Y^6-\overline{2}$ is not irreducible in $\mathbb{F}_7[Y]$. We have $Y^6-\overline{2}=(Y^3-\overline{3})\cdot(Y^3+\overline{3})$ (in $\mathbb{F}_7[Y]$). So, the extension of fields $\mathbb{F}_7\subset\mathbb{F}_7(\overline{\beta})$ has not the degree n=6. For this reason, in the hypothesis of Theorem 3 we put the condition: α is not a l power residue modulo p, for (\forall) $l\in\mathbb{N}$, l|n;
- In Theorem 3.7 from [12] we proved that $A \otimes_K \mathbb{Q}_p$ is a non-split symbol algebra over \mathbb{Q}_p (respectively A is a non-split symbol algebra over K) and applying Remark 1 this is equivalent to A is a division symbol algebra over \mathbb{Q}_p (respectively A is a division symbol algebra over K). But, Remark 1 holds if and only if K is prime. For this reason, the conclusion of Theorem 3 is: K is a non-split symbol algebra over \mathbb{Q}_p (respectively K is a non-split symbol algebra over K).

Conclusions. In the last section of the paper, we found a class of non-split symbol algebras of degree n (where n is a positive integer, $n \geq 3$) over a p- adic field, respectively over a cyclotomic field. In a further research we intend to improve Theorem 3 from this paper, in order to find a class of division symbol algebras of degree n (where $n \in \mathbb{N}^*$, $n \geq 3$) over a cyclotomic field.

Ackowledgement. The author dedicates the article to her late father, hydrologist Constantin Savin.

References

- [1] V. Alexandru, N.M. Gosoniu, *Elements of Number Theory* (in Romanian), Ed. Bucharest University (1999).
- [2] J. W. S. Cassels, A. Fröhlich (editors), Algebraic Number Theory (Proceedings of an instructional conference organized by the London Mathematical Society), Academic Press (1967).
- [3] P. GILLE, T. SZAMUELY, Central Simple Algebras and Galois Cohomology, Cambridge University Press (2006).
- [4] K. IRELAND, M. ROSEN, A classical introduction to modern number theory, Springer-Verlag (1990).
- [5] M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. (SICOMP) **39**, no. 5, 1714-1747 (2010).
- [6] D. KOHEL, Quaternion algebras, echidna.maths.usyd.edu.au/kohel/alg/doc/ AlgQuat.pdf
- [7] D. KOHEL, Hecke module structure of quaternions, Proceedings of Class Field Theory
 Centenary and Prospect (Tokyo, 1998), K. Miyake, ed., Advanced Studies in Pure Mathematics, 30, 177-196, (2000).
- [8] T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society (2004).
- [9] A. LEDET, Brauer Type Embedding Problems, American Mathematical Society (2005).
- [10] B. Linowitz, Selectivity in quaternion algebras, Journal of Number Theory 132, pp. 1425-1437 (2012).
- [11] J.S. Milne, Class Field Theory, http://www.math.lsa.umich.edu/jmilne.
- [12] D. Savin, About division quaternion algebras and division symbol algebras, Carpathian Journal of Mathematics, **32(2)**, p. 233-240 (2016).
- [13] J. Voight, The Arithmetic of Quaternion Algebras. Available on the author's website: http://www.math.dartmouth.edu/jvoight/crmquat/book/quat-modforms-041310.pdf, 2010.

Received: 14.04.2016 Revised: 30.09.2016 Accepted: 22.10.2016

Faculty of Mathematics and Computer Science Ovidius University,

Bd. Mamaia no.124, Constanta 900527, România E-mail: savin.diana@univ-ovidius.ro