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Abstract

We solve two open problems in Finsler geometry which have been proposed by Z. Shen
about Finsler metrics with relatively isotropic Landsberg curvature and weakly Landsberg
metrics. We define a new quantity which is closely related to the S-curvature. Then, we find
some conditions for (a, 3)-metrics under which the notions of relatively isotropic Landsberg
curvature and relatively isotropic mean Landsberg curvature are equivalent. It extends Cheng-
Shen’s well-known theorem that proves the equality for the Randers metrics. As an application,
we prove that every weakly Landsberg (a, 8)-metric of non-Randers type with vanishing S-
curvature is Berwaldian.
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1 Introduction

Let (M, F) be a Finsler manifold. The third order derivatives of %Fg at y € T, My is the Cartan
torsion C, on T, M. The rate of change of C, along geodesics is the Landsberg curvature L, on
T, M for any y € T, My. By definition, L/C is regarded as the relative rate of change of C along
Finslerian geodesics. F' has relatively isotropic Landsberg curvature if L+ c¢FC = 0, where ¢ = ¢(x)
is a scalar function on M. Taking a trace of C, and L, yield the mean Cartan torsion I, and mean
Landsberg curvature J,;, respectively. Therefore, J/I can be regarded as the relative rate of change
of T along geodesics. F has relatively isotropic mean Landsberg curvature if J 4+ ¢FI = 0, where
¢ = ¢(x) is a scalar function on M.

Finsler metrics of relatively isotropic Landsberg curvature have important geometric meaning
in Finsler geometry [2][3][4][8][14][18]. In [6], Cheng-Wang-Wang obtained a necessary and suffi-
cient condition for an (¢, 8)-metric to be of relatively isotropic (mean) Landsberg curvature. Every
Finsler metric of relatively isotropic Landsberg curvature has relatively isotropic mean Landsberg
curvature. In [4], Cheng-Shen proved that every Randers metric of relatively isotropic mean Lands-
berg curvature is of relatively isotropic Landsberg curvature. But the converse might not be true
in general (see page 325 in [14]). This motivates us to find some conditions under which the two
notions of curvatures are equivalent for the class of («, 5)-metrics. Thus the following natural ques-
tion arises:

Under which conditions, an («, B)-metric of relatively isotropic mean Landsberg curvature has rel-
atively isotropic Landsberg curvature?
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An (a, 8)-metric is a scalar function on TM defined by F := a¢(s), s = 8/a, in which ¢ = ¢(s)
is a C* function on (—bg,by) with certain regularity, & = /a;;y'y’/ is a Riemannian metric,
B = bi(z)y’ is a 1-form on M and b := ||8;||a (see [20] and [21]). For an (o, 8)-metric F := ag(s),

define b;;67 := db; — b;0!, where 6" := da' and 0] := I'/, dz* denote the Levi-Civita connection
form of a. Put
1 1 i, i
Tij = §(bi|j +bjii), sij = §(bi|j —bjji)s o0 = Tiy'y’, s = bsij.

Let F := a¢(s), s = 8/a, be an («, B)-metric on a manifold M, where ¢ = ¢(s) is a C*° function
on the interval (—bg, by). For a number b € [0, by), let

© = —(nA+1+5Q)(Q —sQ') — (b* — s*) (1 +5Q)Q", (1.1)
where ,
Q= ﬁ A=1+5Q+ (" -s)Q". (1.2)

Then we have the following.

Theorem 1.1. Let F := a¢(s), s = /a, be a non-Riemannian regular (a, B)-metric on an n-
dimensional manifold M. Then F has relatively isotropic Landsberg curvature L+ cFC = 0, where
¢ = c(x) is a scalar function on M, if and only if it has relatively isotropic mean Landsberg curvature
J + c¢FI =0 and one of the following holds

(i) B satisfies
Tij = 07 Sij = 0. (13)

In this case, F' is a Berwald metric.

(ii) B satisfies
Tij = k(bQUfij — blb]) + O'bibja Si; = 0, (14)

where k = k(x) and o = o(x) are non-zero scalar functions on M and ¢ = ¢(s) satisfies the
following system of ODFEs

(n+1)[s(6¢" + ¢'¢') — ¢¢'] = daA, (1.5)
kWq + soU3 + c®(¢p — s¢’) =0, (1.6)

where d is a real constant and

a:= (¢ —s¢), (1.7)
A 38¢” _ (b2 _ 82)¢/H
T o=+ =)

2 _ o2
0, = A [YE e (1.9)

A3/2
o
Uy :=2(n+1)(Q —sQ’) + 3Z, (1.10)
2
Uye — g, (1.11)

b2 — o2 b2 — o2



B. Najaf, A. Tayebi 279

Example 1. Among the (o, 3)-metrics, the Randers metric F = o+ 3 is significant metric which
constitute a majority of actual research. Every Randers metric with k = 2¢/b* and o = 2¢(1—b?)/b?
satisfies (1.4) and (1.5) with d = 1. For more details, see [4].

A Finsler metric F is said to be weakly Landsbergian if J = 0 [24]. By Theorem 1.1, we have
the following.

Corollary 1.1. Let F := a¢(s), s = B/a, be a regular weakly Landsberg («, 8)-metric of non-
Randers type on a manifold M, i.e., ¢ # c1v/1+ cos? + c3s for any constants ¢ > 0, co and c3.
Suppose that F has vanishing S-curvature. Then F is a Berwald metric. Moreover, if the flag
curvature satisfies K = 0 then F is locally Minkowskian.

n [15], Shen studies Finsler metric of negatively flag curvature with constant S-curvature and
emphasis on studying complete Finsler manifolds of dimension n > 3 withJ =0, S=0and K <0
(see page 631 in [15] or Problem 6 in [17]). Then Corollary 1.1 is an answer to the mentioned
problem for the class of (a, §)-metrics non-Randers type.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a Finsler
tensor field are denoted by “ | ” and “, 7 respectively.

2 Preliminary

Let M be an n-dimensional C'* manifold. Denote by T, M the tangent space at x € M, and by
TM = UgzepT M the tangent bundle of M. A Finsler metric on M is a function F' : TM — [0, c0)
which has the following properties:

(i) Fis C*° on TMy :=TM \ {0};

(ii) F' is positively 1-homogeneous on the fibers of tangent bundle T'M,

(iii) for each y € T,,M, the following quadratic form g, on T, M is positive definite,

1 9?
g, (u,v) :== 2 95t [F?(y + su+tv)] |s4=0, u,v € T, M.

See [12]. Now, let z € M and F, := F|p, ). To measure the non-Euclidean feature of F,, define
C,: T,M®T,M®T,M— Rby

1d
Cy(u,v,w) := 2 d% [gy+tw(u,v)] lt=0, u,v,w € T, M.

The family C := {Cy}yernm, is called the Cartan torsion. For y € T, Mo, define mean Cartan
torsion I, by I, (u) := I;(y)u’, where I; := ¢?*Cj;p.
For y € T,; My, the Matsumoto torsion M, : T, M @ T, M T, M — R defined by M, (u,v,w) :=
M1 (y)utviw® where
1
Mijk = Cijk — 771 1 {Iihjk + Ijhik + Ikh”} (21)
and h;; = g;; — F,i FF,; is the angular metric. F'is said to be C-reducible if M, = 0.

Lemma 2.1. ([11]) A Finsler metric F' on a manifold of dimension n > 3 is a Randers metric if
and only if M, =0, Yy € T M.
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For y € T, My, define Ly : T, M @ T, M @ T, M — R and J,, : T, M — R by

L, (u,v,w) := Lir(y)uviw®, I, (u) = Ji(y)u’
where Lijp = Ciksy®, Ji = Lijsy®, u = wisiele, v = v'z2: |, and w = w'52|,. The family
L :={L,}yerm, and J := {J, },ern, are called the Landsberg curvature and the mean Landsberg
curvature, respectively. F is called a Landsberg metric and weakly Landsberg metric if L = 0 and
J =0, respectively.

Given a Finsler manifold (M, F'), then a global vector field G is induced by F' on T'M)j, which

in a standard coordinate (x%,y") for T My is given by G = y* aii - 2G(x, y)aiyi, where
.1 1 0%°F? OF?
Gli= - ”[ ko } € T, M. 2.2
47 8xk3yly Ox! 4 (22)

G is called the spray associated to (M, F'). In local coordinates, a curve ¢(t) is a geodesic if and
only if its coordinates (c?(t)) satisfy & + 2G(¢) = 0 [23].
For a tangent vector y € T, My, define B, : T,M ® T,M ® T,M — T,M by By(u,v,w) =
Bijkl(y)ujvkwl%|w where
i PG
B = Gyiaytay

B is called the Berwald curvature. Then, F' is called a Berwald metric if B = 0.

For a Finsler metric F' on an n-dimensional manifold M, the Busemann-Hausdorff volume form
dVp = op(z)dx! - - da™ is defined by

_ Vol(B" (1))
Vol{(yi) € R | F(yil,) < 1}

op(x):
Let G* denote the geodesic coefficients of F' in the same local coordinate system. Then for y =
yZ%h € T, M, the S-curvature is defined by

(9) i= G (0:0) — o [ (2),

where y = yi%h € T, M. The S-curvature is introduced by Shen for a comparison theorem on
Finsler manifolds [13]. It is proved that S = 0 if F' is a Berwald metric [19][22].

In [1], Cheng consider regular (o, 8)-metrics with isotropic S-curvature and prove the following.

Theorem 2.2. ([1]) A regular (o, §)-metric F' := a¢(8/a), of non-Randers type on an n-dimensional
manifold M is of isotropic S-curvature, S = (n+1)oF, if and only if § satisfies ;; = 0 and s; = 0.
In this case, S = 0, regardless of the choice of a particular ¢ = ¢(s).
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3 Proof of Theorem 1.1

Here, we study a new quantity which is closely related to the Matsumoto torsion and S-curvature.
For a non-Riemannian (a, §)-metric F' = a¢(s), s = B/, let us define

I s00r - (0 - 501, (3.1)

where a = a(s) and A = A(s) are given by (1.8). In the class of (o, 3)-metrics, the quantity
P =P(s), s = B/, characterize Randers metrics. More precisely, we have the following.

P =

Lemma 3.1. Let F = a¢(s), s = 8/a, be a non-Riemannian regular («, 8)-metric on a manifold

M of dimension n > 3. Then M =0 if and only if P =1.
Proof. The fundamental tensor of an («, 8)-metric F = a¢(s) is given by
9ij = @ aij + pobibj + p1(biaj +bjai) + pacvicy, (3.2)
where
ai = o tagy!, o= ¢ + ¢
pri= —a 508" + ¢0) — 60'),  pai=sa 2 [s(60" +¢'0)) — 60.
Taking a vertical derivation of (3.2) implies that
2Ci = o ppbibibr — a s phyiyuk + o) [bibjyk + bjbry; + bkbz‘yj]
+m [aijbk + a;rpb; + akibj:| + p2 [aijyk + ajry; + am‘yj}
+atph {biyjyk + bjyryi + bkyiyj} . (3-3)
By plugging o’ = ap;, —sa’ = a?ps, —spjy = ap) and —sp| = ap) in (3.3), it follows that
20 = (p1 — aeps) |:aijbk; + ajrb; + a;“-bj} +a [aink +a;Y; + akin} 02
+ o bibibepy — o yyyephs + ot [bibjyk + bbry; + bkbiyj] Ph
+at [biyjyk + bjynyi + bkyiyj] Pas (3.4)

where Y; := a; + bjp1/p2. The angular metric h;; := g;; — F,i Fyy; of an (o, 8)-metric F = a¢(s) is
in the following form

hij =a Qi + ¢¢,/bibj - Sgb(j)// [biaj + bjai] - ¢[(¢ - S¢I) - S2¢/I:| ;0. (35)

The mean Cartan torsion an (a, 8)-metric F' = a¢(s) is given by

s
20/1 (3.6)
Plugging (3.5) and (3.6) into (3.4) and considering dim (M) > 3 imply that
P 1-P
Cigh = 17 n{hijfk + hli + byl | + e (3.7)
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where P = P(z,y) is a scalar function on TM and given by (3.1) (see [21]). By (3.7), it is easy to
see that if P =1 then Matsumoto torsion satisfies M = 0.
Now, suppose that M = 0. Then by (2.1) and (3.7), we get

1
(1=P)[Cisn - it =0 (3.8)
If P # 1, then by (3.8) it follows that
1

By (3.7) and (3.9), we get P = 0. According to (3.1), P = 0 if and only if ¢ satisfies following
s(¢p¢" +¢'¢') — ¢’ = 0. (3.10)

By solving (3.10), we get ¢ = v/c18% + c2, where ¢; and ¢ are two real constant. In this case,
F = a¢(s), s = B/a, reduces to a Riemannian metric which contradicts with our assumptions.
Thus P = 1. 0

By Lemmas 2.1 and 3.1, we get the following.
Corollary 3.1. Every non-Riemannian regular («, 8)-metric F = ad(s), s = f/a, on a manifold
of dimension n > 3 is a Randers metric if and only if P = 1.

For an («, 8)-metric F := a¢(s), s = f/«, let us put

. 09 = 568" +¢¢) ool 0"
T 20[(@—s)+ =9 T 2(0—s) + (0P~ D)o

Then, we have the following.

Lemma 3.2. Let F := a¢(s), s = B/, be a non-Riemannian regular (a, §)-metric on a manifold
M of dimension n > 3. Then P = P(s) is constant along any Finslerian geodesic if and only if
one of the following holds

(i) B satisfies
oo = 2aQ)so. (3.11)

(ii) ¢ = @(s) satisfies
(n+1) [s(¢¢” L) — ¢¢’} = daA, (3.12)

where d € R is a real constant.

Proof. Let G' = G'(z,y) and G = G'(x,y) denote the spray coefficients of F' and « respectively
in the same coordinate system. By (2.2), we have

G'=G"+ Py +Q', (3.13)
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where
P:=a 'O(rop — 2Qasy), Q':= aQsijyj + U (rgo — 2Qaus )b’

Taking a horizontal derivation of (3.1) implies that

VoP = Pyt = P (st = P) [ — 5 o], (3.14)
where
Foo = 700 — 2PB — 2Q"by. (3.15)
Hence, VP = 0 if and only if P is constant or the following holds
Fooa — Bayy’ = 0. (3.16)

Suppose that P’(s) # 0. It is sufficent to show that (3.16) is equievalent to (3.11). Note that, we
have

da O

Y=y — —2G' —. 3.17
Y =y o oy (3.17)
By (3.13) and (3.17), we get
, . Oar _. Oa o le - Oa
Wy =y — —2G"— — 2Py'— — 2Q"—
iy =Y o G oy Y oy Q oy
= —2Pa — 2¥(—2Qasp + roo)s
= —20(—2Qasg + ro0) — 2V (—2Qasg + r00)$
= —2(0 + s¥)roo + 4(0 + s¥)Qaso. (3.18)
Plugging (3.18) into (3.16) yields
1—2(b% — s*)U| (rg0 — 2aQsg) = 0. (3.19)
Since 1 — 2(b? — s2)¥ # 0, then we get (3.11). O

Now, we are going to consider («, /3)-metrics with relatively isotropic mean Landsberg curvature
such that the quantity P = P(s) is constant along any Finslerian geodesic.

Lemma 3.3. Let F := a¢(s), s = B/, be a non-Riemannian regular (o, B)-metric on a manifold
M of dimension n > 3. Suppose that P = P(s) is constant along any Finslerian geodesic. If F has
relatively isotropic mean Landsberg curvature, then it has relatively isotropic Landsberg curvature.

Proof. By Lemma 3.1, the Cartan torsion of an («, §)-metric is given by following

P 1-P
Cijn = H—n{hiﬂk 4 hel; + hkin} + g il (3.20)
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Taking a horizontal covariant derivation of (3.20) yields

2
P’ )

where Q :=1—-P, P' := ’P“yl and Q' := Q“yl. By assumptions, we have P/ = Q' = 0. Then (3.21)
reduces to following

P Q
Liju = m{hszk o R+ i b+ i {Jilile + LTI + LI
2
- HﬁlJ ™I I (3.22)
Putting J + ¢FI = 0 in (3.22) and considering (3.20), we get L + ¢cFC = 0. O

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

R L. (3.23)

Cijk =
! (iR

P
m{hijlk + byl + hkilj}
where P = P(x,y) and Q = Q(x,y) are scalar function on TM and C? = I'I;. Contracting the
last relation by g7 shows that P and Q satisfy P + Q = 1. In [9], Matsumoto proved that every

(o, B)-metric is semi-C-reducible.

Proposition 3.1. ([9]) Let F = a¢(s), s = 8/a, be a non-Riemannian («, )-metric on a manifold
M of dimension n > 3. Then F' is semi-C-reducible.

Since P + Q = 1, then taking a horizontal derivation of it implies that P’ = —Q’. Thus P’ =0
if and only if @' = 0. In [18], the following is proved (see Proposition 3.1 in [18]).

Proposition 3.2. ([18]) Let (M, F) be a semi-C-reducible manifold. Suppose that F' has relatively
isotropic Landsberg curvature, L + ¢F'C = 0, for some scalar function ¢ = ¢(z) on M. Then the
quantity P is constant along any Finslerian geodesic.

By Lemma 3.3 and Proposition 3.2, we get the following theorem.

Theorem 3.4. Let F:= a¢(s), s = B/a, be a non-Riemannian reqular (o, 8)-metric on a manifold
M of dimension n > 3. Then F has relatively isotropic Landsberg curvature if and only if P is
constant along any Finslerian geodesic and F' has relatively isotropic mean Landsberg curvature.

Now, we prove that (3.11) implies that (3 is a constant length Killing one-form. More perecisely,
we have the following lemma.

Lemma 3.5. Let F = a¢(s), s = 8/a, be a non-Riemannian regular («, §)-metric on a manifold
M of dimension n > 3. Suppose that (3.11) holds. Then (8 is constant length Killing one-form.
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Proof. To simplify the equation (3.11), we change the y-coordinates (y’) at a point to “polar”
coordinates (s,u?), where i = 1,--- ,n and A =2,--- ,n (for more details see [5], [7] and [16]).
Fix an arbitrary point € M. Take an orthonormal basis e; at x such that

8= by, (3.24)

where b := ||| a-
Fix an arbitrary number s with |s| < b. It follows from § = sa that

S _ A A
yl — Wa7 y = U 5 (3.25)
where
Then b b
— S —
T e p= o2 (326)
Let us put
n n n
r10 = Z r1AY, S10 == Z S1AY Too = Z TABY Y,
A=2 A=2 A,B=2
n n
For= Y ray®  S0:= ) say
A=2 A=2

Then we get the following

r1=bri, 1A =bra, (3.27)

s1=0, s4=0s14, (3.28)
s2a2 25t

roo = m?’ll + 1)27_527710 + 700, (329)

s

ri0 = ———=7T11 +T10 S0 = 50 = b510. (3.30)

D2 _ o2
By (3.11), (3.26), (3.28), (3.29) and (3.30), we have
s2a? 25a 2ba

Qbs10. (3.31)

10 + Too =

o2t e N

(3.31) is equivalent to the following two equations

252

e’
m’rll + f()() - O7 (332)

Sflo - b2Q§10 = 0. (333)
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(3.26) implies that

b2—827b2.

By (3.32) and (3.34), we get

2
Too + b7T11 =0.
Since
OTo0 . % .
oyt 7 oyt

then differentiating (3.35) with respect to y' yields

57"11 =0.
Thus

ry1 = 0.
By plugging (3.37) in (3.35), we have

700 = 0.

Plugging (3.37) and (3.38) in (3.29) and (3.30) imply that

2sa 26 _
00 gz 10 p 0
r10 = T10-

We shall divide the problem into two cases: (a) 719 = 0 and (b) 719 # 0.
Case (a): 7190 = 0. In this case, by (3.39) we get

TOOZO.

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
(3.40)

(3.41)

Plugging (3.41) in (3.11) implies that s; = 0. In this case, 3 is constant length Killing one-form.

Case (b): 719 # 0. In this case, by (3.33) we have
ST10 — b2Q§10 =0.

Since ~ ~
37‘10 8810

oyt T oyt
then differentiating (3.42) with respect to y' yields

(S)ylflo - b2(Q)y1 510 =0.

(3.42)

(3.43)
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Multiplying (3.42) with (s),: implies that
5(8)y1710 — b*Q(s)y1510 = 0. (3.44)

By (3.43) and (3.44), it follows that

0 [Q(s),1 — Q)1 520 = 0. (3.45)
From (3.45), we get two cases:
510=0 (3.46)
or
Qs)yr = 5(Q)y1- (3.47)

Subcase (bl). Let (3.46) holds. Then (3.42) reduces to s = 0, which is impossible.

Subcase (b2). Let (3.47) holds. Then

= . .4
) (3.45)
On the other hand, we have
(@)yr = (Q)s 541 (3.49)
Since s,1 # 0, then by (3.48) and (3.49), we get
Qs 1
o = (3.50)
(3.50) implies that In(Q) = In(s) + ¢, where ¢ is a real constant. Thus
Qy _
In (g> =c, (3.51)

or equivalently Q = ks, where k is a non-zero real constant. In this case, it follows that F' is
Riemannian. This is a contradiction. Then the case (a) holds, only. O

By Theorem 2.2 and Lemmas 3.2 and 3.5, we conclude the following.

Corollary 3.2. Let F := a¢(s), s = 8/a, be a non-Riemannian regular (c, B)-metric on a manifold
M of dimension n > 3. Suppose that ¢ = ¢(s) dose not satisfy (3.12). Then P = P(s) is constant
along any Finslerian geodesic if and only if S =0.

For Finsler surfaces, we have the following.
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Lemma 3.6. Let (M, F) be a 2-dimensional Finsler manifold. Then F has relatively isotropic
Landsberg curvature if and only if it has relatively isotropic mean Landsberg curvature.

Proof. The Cartan torsion of every 2-dimensional Finsler manifold satisfies

1
Cijk = g{hijlk + hjil; + hkilj}. (3.52)
See page 485 in [10]. Taking a horizontal derivation of (3.52) implies that
1
Liji = g{hiij + hjrdi + hiid; ). (3.53)
By putting J = ¢FT in (3.53), we get L = ¢F'C. O
Theorem 3.7. Let F := a¢(s), s = B/a, be a non-Riemannian reqular (a, B)-metric on an n-

dimensional manifold M. Then F has relatively isotropic Landsberg curvature L+ cFC = 0, where
¢ = ¢(x) is a scalar function on M, if and only if it has relatively isotropic mean Landsberg curvature
J + cFI =0 and one of the following holds

(i) B satisfies

ri; =0 and s;=0. (3.54)
In this case, S = 0.
(ii) B satisfies
ri; #0 or s;#0 (3.55)
and ¢ = ¢(s) satisfies
(n+1)[s(¢8" + ¢'¢') — ¢'] = daA, (3.56)

where d is a real constant and a and A are given by (1.7) and (1.8).
Proof. By Lemmas 3.2, 3.3, 3.5, 3.6 and Proposition 3.2, we get the proof. 0

Proof of Corollary 1.1: Since J = 0 and S = 0, then by Theorems 3.7 and 2.2 it follows that
F is a Landsberg metric. In [16], Shen proved that every regular Landsbergian (o, 8)-metric is a
Berwald metric. On the other hand, every Berwald metric with vanishing flag curvature is locally
Minkowskian. This completes the proof. 0

In [6], the authors find a necessary and sufficient condition for an («, §)-metric to be of relatively
isotropic mean Landsberg curvature.

Theorem 3.8. ([6]) Let F' := a¢(s), s = B/, be a regular («, )-metric on a manifold M of
dimension n > 3. Then F' has relatively isotropic mean Landsberg curvature J + cFI = 0, where
¢ = ¢(x) is a scalar function on M, if and only if S satisfies

rij = k(b%a;; — bbj) + abb;,  si; =0, (3.57)
where k = k(x) and o = o(z) are scalar functions on M and ¢ = ¢(s) satisfies
kU1 + soWs + c(é — s¢') = 0, (3.58)
where ¥y, ¥y and ¥3 are given by (1.9), (1.10) and (1.11).
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Proof of Theorem 1.1: By Theorems 3.7 and 3.8, we get the proof. 0

4 Some Solutions of the ODE (3.12)

In this section, we are going to find some solutions of the ODE (3.12). It is equal to following

s(¢¢" +¢'¢") —d¢' _ d s¢” ¢

b(p — 5¢') T n+l mm”“‘*”? ’

38¢// _ (b2 _ 82)¢W
¢ — qu + (b2 _ 52)¢//

+(n—2) (4.1)

where d is a real constant. The solution of (4.1) is given by following

In ($(6 — s¢)) = —— [1n (6 = 50/ + (0% = $)¢") + (6 — 56)" D + (@) V] (42)

n+1
or equivalently
In (¢(¢ —5¢')) =In [¢"+1(¢ — 50" )" 2 (¢ — s¢' + (b* - 52)¢”)} - (4.3)
Thus J
66— 50/ = [07 (6 — s0)" 2 (6 - 50/ + (07— $)g)] (4.4)
Simplifying (4.4) yields
¢(n+1)(17d) (¢ _ S¢/)n(17d)+2d+l _ (¢ _ Sd)/ + (b2 o S2)¢/1)d. (45)
If d = 1, then we get
(¢ —50')° = ¢ — 59" + (b* — s%)¢". (4.6)
Let ¢ := ¢ — s¢’. Then (4.6) can be written as follows
s = sip — (b — s ). (4.7)

Dividing (4.7) by 93 and putting v = 1)=2, we get the following first order ODE in terms of v
2s = 2sv + (b — s?)0'. (4.8)

The general solution of (4.8) is given by

v=c(b®—s*)+1. (4.9)

Consequently, we get

, 1
— 8¢ = ——————. 4.10
-5 c(b® —s?)+1 (4.10)
By (4.10), we have
1

¢=—s ds + cas, (4.11)

(b —s2)+1

where ¢; and ¢y are real constants. For example, if we put ¢; = 0 and ¢; = 1 then we get the
Randers metric ¢ =1 + s.
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