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Abstract

We solve two open problems in Finsler geometry which have been proposed by Z. Shen
about Finsler metrics with relatively isotropic Landsberg curvature and weakly Landsberg
metrics. We define a new quantity which is closely related to the S-curvature. Then, we find
some conditions for (α, β)-metrics under which the notions of relatively isotropic Landsberg
curvature and relatively isotropic mean Landsberg curvature are equivalent. It extends Cheng-
Shen’s well-known theorem that proves the equality for the Randers metrics. As an application,
we prove that every weakly Landsberg (α, β)-metric of non-Randers type with vanishing S-
curvature is Berwaldian.
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1 Introduction

Let (M,F ) be a Finsler manifold. The third order derivatives of 1
2F

2
x at y ∈ TxM0 is the Cartan

torsion Cy on TxM . The rate of change of Cy along geodesics is the Landsberg curvature Ly on
TxM for any y ∈ TxM0. By definition, L/C is regarded as the relative rate of change of C along
Finslerian geodesics. F has relatively isotropic Landsberg curvature if L+cFC = 0, where c = c(x)
is a scalar function on M . Taking a trace of Cy and Ly yield the mean Cartan torsion Iy and mean
Landsberg curvature Jy, respectively. Therefore, J/I can be regarded as the relative rate of change
of I along geodesics. F has relatively isotropic mean Landsberg curvature if J + cF I = 0, where
c = c(x) is a scalar function on M .

Finsler metrics of relatively isotropic Landsberg curvature have important geometric meaning
in Finsler geometry [2][3][4][8][14][18]. In [6], Cheng-Wang-Wang obtained a necessary and suffi-
cient condition for an (α, β)-metric to be of relatively isotropic (mean) Landsberg curvature. Every
Finsler metric of relatively isotropic Landsberg curvature has relatively isotropic mean Landsberg
curvature. In [4], Cheng-Shen proved that every Randers metric of relatively isotropic mean Lands-
berg curvature is of relatively isotropic Landsberg curvature. But the converse might not be true
in general (see page 325 in [14]). This motivates us to find some conditions under which the two
notions of curvatures are equivalent for the class of (α, β)-metrics. Thus the following natural ques-
tion arises:

Under which conditions, an (α, β)-metric of relatively isotropic mean Landsberg curvature has rel-
atively isotropic Landsberg curvature?
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An (α, β)-metric is a scalar function on TM defined by F := αφ(s), s = β/α, in which φ = φ(s)
is a C∞ function on (−b0, b0) with certain regularity, α =

√
aijyiyj is a Riemannian metric,

β = bi(x)yi is a 1-form on M and b := ‖βx‖α (see [20] and [21]). For an (α, β)-metric F := αφ(s),
define bi|jθ

j := dbi − bjθji , where θi := dxi and θji := Γjikdx
k denote the Levi-Civita connection

form of α. Put

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
, r00 := rijy

iyj , sj := bisij .

Let F := αφ(s), s = β/α, be an (α, β)-metric on a manifold M , where φ = φ(s) is a C∞ function
on the interval (−b0, b0). For a number b ∈ [0, b0), let

Φ := −(n∆ + 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′, (1.1)

where

Q :=
φ′

φ− sφ′
, ∆ = 1 + sQ+ (b2 − s2)Q′. (1.2)

Then we have the following.

Theorem 1.1. Let F := αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on an n-
dimensional manifold M . Then F has relatively isotropic Landsberg curvature L + cFC = 0, where
c = c(x) is a scalar function on M , if and only if it has relatively isotropic mean Landsberg curvature
J + cF I = 0 and one of the following holds

(i) β satisfies
rij = 0, sij = 0. (1.3)

In this case, F is a Berwald metric.

(ii) β satisfies
rij = k(b2aij − bibj) + σbibj , sij = 0, (1.4)

where k = k(x) and σ = σ(x) are non-zero scalar functions on M and φ = φ(s) satisfies the
following system of ODEs

(n+ 1)
[
s(φφ′′ + φ′φ′)− φφ′

]
= daA, (1.5)

kΨ1 + sσΨ3 + cΦ(φ− sφ′) = 0, (1.6)

where d is a real constant and

a := φ(φ− sφ′), (1.7)

A :=
3sφ′′ − (b2 − s2)φ′′′

φ− sφ′ + (b2 − s2)φ′′
+ (n− 2)

sφ′′

φ− sφ′
− (n+ 1)

φ′

φ
, (1.8)

Ψ1 :=
√
b2 − s2∆1/2

[√b2 − s2Φ

∆3/2

]′
, (1.9)

Ψ2 := 2(n+ 1)(Q− sQ′) + 3
Φ

∆
, (1.10)

Ψ3 :=
s

b2 − s2
Ψ1 +

b2

b2 − s2
Ψ2. (1.11)
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Example 1. Among the (α, β)-metrics, the Randers metric F = α+ β is significant metric which
constitute a majority of actual research. Every Randers metric with k = 2c/b2 and σ = 2c(1−b2)/b2

satisfies (1.4) and (1.5) with d = 1. For more details, see [4].

A Finsler metric F is said to be weakly Landsbergian if J = 0 [24]. By Theorem 1.1, we have
the following.

Corollary 1.1. Let F := αφ(s), s = β/α, be a regular weakly Landsberg (α, β)-metric of non-
Randers type on a manifold M , i.e., φ 6= c1

√
1 + c2s2 + c3s for any constants c1 > 0, c2 and c3.

Suppose that F has vanishing S-curvature. Then F is a Berwald metric. Moreover, if the flag
curvature satisfies K = 0 then F is locally Minkowskian.

In [15], Shen studies Finsler metric of negatively flag curvature with constant S-curvature and
emphasis on studying complete Finsler manifolds of dimension n ≥ 3 with J = 0, S = 0 and K ≤ 0
(see page 631 in [15] or Problem 6 in [17]). Then Corollary 1.1 is an answer to the mentioned
problem for the class of (α, β)-metrics non-Randers type.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a Finsler
tensor field are denoted by “ | ” and “, ” respectively.

2 Preliminary

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M , and by
TM = ∪x∈MTxM the tangent bundle of M . A Finsler metric on M is a function F : TM → [0,∞)
which has the following properties:
(i) F is C∞ on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ,
(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

See [12]. Now, let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. For y ∈ TxM0, define mean Cartan

torsion Iy by Iy(u) := Ii(y)ui, where Ii := gjkCijk.

For y ∈ TxM0, the Matsumoto torsion My : TxM ⊗TxM ⊗TxM → R defined by My(u, v, w) :=
Mijk(y)uivjwk where

Mijk := Cijk −
1

n+ 1

{
Iihjk + Ijhik + Ikhij

}
. (2.1)

and hij = gij − FyiFyj is the angular metric. F is said to be C-reducible if My = 0.

Lemma 2.1. ([11]) A Finsler metric F on a manifold of dimension n ≥ 3 is a Randers metric if
and only if My = 0, ∀y ∈ TM0.
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For y ∈ TxM0, define Ly : TxM ⊗ TxM ⊗ TxM → R and Jy : TxM → R by

Ly(u, v, w) := Lijk(y)uivjwk, Jy(u) := Ji(y)ui

where Lijk := Cijk|sy
s, Ji := Ii|sy

s, u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. The family

L := {Ly}y∈TM0
and J := {Jy}y∈TM0

are called the Landsberg curvature and the mean Landsberg
curvature, respectively. F is called a Landsberg metric and weakly Landsberg metric if L = 0 and
J = 0, respectively.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0, which
in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where

Gi :=
1

4
gil
[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
, y ∈ TxM. (2.2)

G is called the spray associated to (M,F ). In local coordinates, a curve c(t) is a geodesic if and
only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0 [23].

For a tangent vector y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM by By(u, v, w) :=
Bijkl(y)ujvkwl ∂

∂xi |x where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature. Then, F is called a Berwald metric if B = 0.

For a Finsler metric F on an n-dimensional manifold M , the Busemann-Hausdorff volume form
dVF = σF (x)dx1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
{

(yi) ∈ Rn
∣∣ F (yi ∂

∂xi |x
)
< 1
} .

Let Gi denote the geodesic coefficients of F in the same local coordinate system. Then for y =
yi ∂
∂xi |x ∈ TxM , the S-curvature is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi ∂

∂xi
[

lnσF (x)
]
,

where y = yi ∂
∂xi |x ∈ TxM . The S-curvature is introduced by Shen for a comparison theorem on

Finsler manifolds [13]. It is proved that S = 0 if F is a Berwald metric [19][22].

In [1], Cheng consider regular (α, β)-metrics with isotropic S-curvature and prove the following.

Theorem 2.2. ([1]) A regular (α, β)-metric F := αφ(β/α), of non-Randers type on an n-dimensional
manifold M is of isotropic S-curvature, S = (n+ 1)σF , if and only if β satisfies rij = 0 and sj = 0.
In this case, S = 0, regardless of the choice of a particular φ = φ(s).
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3 Proof of Theorem 1.1

Here, we study a new quantity which is closely related to the Matsumoto torsion and S-curvature.
For a non-Riemannian (α, β)-metric F = αφ(s), s = β/α, let us define

P :=
n+ 1

aA

[
sφφ′′ − φ′(φ− sφ′)

]
, (3.1)

where a = a(s) and A = A(s) are given by (1.8). In the class of (α, β)-metrics, the quantity
P = P(s), s = β/α, characterize Randers metrics. More precisely, we have the following.

Lemma 3.1. Let F = αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold
M of dimension n ≥ 3. Then M = 0 if and only if P = 1.

Proof. The fundamental tensor of an (α, β)-metric F = αφ(s) is given by

gij = a aij + ρ0bibj + ρ1(biαj + bjαi) + ρ2αiαj , (3.2)

where

αi := α−1aijy
j , ρ0 := φφ′′ + φ′φ′

ρ1 := −α−1
[
s(φφ′′ + φ′φ′)− φφ′

]
, ρ2 := sα−2

[
s(φφ′′ + φ′φ′)− φφ′

]
.

Taking a vertical derivation of (3.2) implies that

2Cijk := α−1ρ′0bibjbk − α−2s ρ′2yiyjyk + α−1ρ′1

[
bibjyk + bjbkyi + bkbiyj

]
+ ρ1

[
aijbk + ajkbi + akibj

]
+ ρ2

[
aijyk + ajkyi + akiyj

]
+ α−1ρ′2

[
biyjyk + bjykyi + bkyiyj

]
. (3.3)

By plugging a′ = αρ1, −sa′ = α2ρ2, −sρ′0 = αρ′1 and −sρ′1 = αρ′2 in (3.3), it follows that

2Cijk = (ρ1 − αερ2)
[
aijbk + ajkbi + akibj

]
+ α

[
aijYk + ajkYi + akiYj

]
ρ2

+ α−1bibjbkρ
′
0 − α−2yiyjykρ′2s+ α−1

[
bibjyk + bjbkyi + bkbiyj

]
ρ′1

+ α−1
[
biyjyk + bjykyi + bkyiyj

]
ρ′2, (3.4)

where Yi := αi + biρ1/ρ2. The angular metric hij := gij − FyiFyj of an (α, β)-metric F = αφ(s) is
in the following form

hij = a aij + φφ′′bibj − sφφ′′
[
biαj + bjαi

]
− φ

[
(φ− sφ′)− s2φ′′

]
αiαj . (3.5)

The mean Cartan torsion an (α, β)-metric F = αφ(s) is given by

Ii =
s

2α
AYi. (3.6)

Plugging (3.5) and (3.6) into (3.4) and considering dim(M) ≥ 3 imply that

Cijk =
P

1 + n

{
hijIk + hjkIi + hkiIj

}
+

1− P
‖I‖2

IiIjIk. (3.7)
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where P = P(x, y) is a scalar function on TM and given by (3.1) (see [21]). By (3.7), it is easy to
see that if P = 1 then Matsumoto torsion satisfies M = 0.

Now, suppose that M = 0. Then by (2.1) and (3.7), we get

(1− P)
[
Cijk −

1

‖I‖2
IiIjIk

]
= 0. (3.8)

If P 6= 1, then by (3.8) it follows that

Cijk =
1

‖I‖2
IiIjIk. (3.9)

By (3.7) and (3.9), we get P = 0. According to (3.1), P = 0 if and only if φ satisfies following

s(φφ′′ + φ′φ′)− φφ′ = 0. (3.10)

By solving (3.10), we get φ =
√
c1s2 + c2, where c1 and c2 are two real constant. In this case,

F = αφ(s), s = β/α, reduces to a Riemannian metric which contradicts with our assumptions.
Thus P = 1.

By Lemmas 2.1 and 3.1, we get the following.

Corollary 3.1. Every non-Riemannian regular (α, β)-metric F = αφ(s), s = β/α, on a manifold
of dimension n ≥ 3 is a Randers metric if and only if P = 1.

For an (α, β)-metric F := αφ(s), s = β/α, let us put

Θ :=
φφ′ − s(φφ′′ + φ′φ′)

2φ
[
(φ− sφ′) + (b2 − s2)φ′′

] , Ψ :=
1

2

φ′′

(φ− sφ′) + (b2 − s2)φ′′
.

Then, we have the following.

Lemma 3.2. Let F := αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold
M of dimension n ≥ 3. Then P = P(s) is constant along any Finslerian geodesic if and only if
one of the following holds

(i) β satisfies
r00 = 2αQs0. (3.11)

(ii) φ = φ(s) satisfies

(n+ 1)
[
s(φφ′′ + φ′φ′)− φφ′

]
= daA, (3.12)

where d ∈ R is a real constant.

Proof. Let Gi = Gi(x, y) and Ḡi = Ḡi(x, y) denote the spray coefficients of F and α respectively
in the same coordinate system. By (2.2), we have

Gi = Ḡi + Pyi +Qi, (3.13)
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where

P := α−1Θ(r00 − 2Qαs0), Qi := αQsijy
j + Ψ(r00 − 2Qαs0)bi.

Taking a horizontal derivation of (3.1) implies that

∇0P = P|iyi = P ′(s)s|iyi = P ′(s)
[ r̃00
α
− β

α2
α|iy

i
]
, (3.14)

where

r̃00 = r00 − 2Pβ − 2Qkbk. (3.15)

Hence, ∇0P = 0 if and only if P is constant or the following holds

r̃00α− βα|iyi = 0. (3.16)

Suppose that P ′(s) 6= 0. It is sufficent to show that (3.16) is equievalent to (3.11). Note that, we
have

α|iy
i = yi

∂α

∂xi
− 2Gi

∂α

∂yi
. (3.17)

By (3.13) and (3.17), we get

α|iy
i = yi

∂α

∂xi
− 2Ḡi

∂α

∂yi
− 2Pyi

∂α

∂yi
− 2Qi

∂α

∂yi

= −2Pα− 2Ψ(−2Qαs0 + r00)s

= −2Θ(−2Qαs0 + r00)− 2Ψ(−2Qαs0 + r00)s

= −2(Θ + sΨ)r00 + 4(Θ + sΨ)Qαs0. (3.18)

Plugging (3.18) into (3.16) yields[
1− 2(b2 − s2)Ψ

]
(r00 − 2αQs0) = 0. (3.19)

Since 1− 2(b2 − s2)Ψ 6= 0, then we get (3.11).

Now, we are going to consider (α, β)-metrics with relatively isotropic mean Landsberg curvature
such that the quantity P = P(s) is constant along any Finslerian geodesic.

Lemma 3.3. Let F := αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold
M of dimension n ≥ 3. Suppose that P = P(s) is constant along any Finslerian geodesic. If F has
relatively isotropic mean Landsberg curvature, then it has relatively isotropic Landsberg curvature.

Proof. By Lemma 3.1, the Cartan torsion of an (α, β)-metric is given by following

Cijk =
P

1 + n

{
hijIk + hjkIi + hkiIj

}
+

1− P
‖I‖2

IiIjIk. (3.20)



284 Some Curvature Properties of (α, β)-Metrics

Taking a horizontal covariant derivation of (3.20) yields

Lijk =
Q′

‖I‖2
IiIjIk −

2Q
‖I‖4

JmI
mIiIjIk +

Q
‖I‖2

{
JiIjIk + IiJjIk + IiIjJk

}
+
P ′

n+ 1

{
hijIk + hjkIi + hkiIj

}
+
P

n+ 1

{
hijJk + hjkJi + hkiJj

}
, (3.21)

where Q := 1−P, P ′ := P|lyl and Q′ := Q|lyl. By assumptions, we have P ′ = Q′ = 0. Then (3.21)
reduces to following

Lijk =
P

n+ 1

{
hijJk + hjkJi + hkiJj

}
+

Q
‖I‖2

{
JiIjIk + IiJjIk + IiIjJk

}
− 2Q
‖I‖4

JmI
mIiIjIk. (3.22)

Putting J + cF I = 0 in (3.22) and considering (3.20), we get L + cFC = 0.

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

Cijk =
P

1 + n

{
hijIk + hjkIi + hkiIj

}
+
Q
‖I‖2

IiIjIk. (3.23)

where P = P(x, y) and Q = Q(x, y) are scalar function on TM and C2 = IiIi. Contracting the
last relation by gjk shows that P and Q satisfy P +Q = 1. In [9], Matsumoto proved that every
(α, β)-metric is semi-C-reducible.

Proposition 3.1. ([9]) Let F = αφ(s), s = β/α, be a non-Riemannian (α, β)-metric on a manifold
M of dimension n ≥ 3. Then F is semi-C-reducible.

Since P +Q = 1, then taking a horizontal derivation of it implies that P ′ = −Q′. Thus P ′ = 0
if and only if Q′ = 0. In [18], the following is proved (see Proposition 3.1 in [18]).

Proposition 3.2. ([18]) Let (M,F ) be a semi-C-reducible manifold. Suppose that F has relatively
isotropic Landsberg curvature, L + cFC = 0, for some scalar function c = c(x) on M . Then the
quantity P is constant along any Finslerian geodesic.

By Lemma 3.3 and Proposition 3.2, we get the following theorem.

Theorem 3.4. Let F := αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold
M of dimension n ≥ 3. Then F has relatively isotropic Landsberg curvature if and only if P is
constant along any Finslerian geodesic and F has relatively isotropic mean Landsberg curvature.

Now, we prove that (3.11) implies that β is a constant length Killing one-form. More perecisely,
we have the following lemma.

Lemma 3.5. Let F = αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold
M of dimension n ≥ 3. Suppose that (3.11) holds. Then β is constant length Killing one-form.
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Proof. To simplify the equation (3.11), we change the y-coordinates (yi) at a point to “polar”
coordinates (s, uA), where i = 1, · · · , n and A = 2, · · · , n (for more details see [5], [7] and [16]).

Fix an arbitrary point x ∈M . Take an orthonormal basis ei at x such that

α =

√√√√ n∑
i=1

(yi)2, β = by1, (3.24)

where b := ||β||α.
Fix an arbitrary number s with |s| < b. It follows from β = sα that

y1 =
s√

b2 − s2
ᾱ, yA = uA, (3.25)

where

ᾱ =

√√√√ n∑
A=2

(yA)2.

Then

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ. (3.26)

Let us put

r̄10 :=

n∑
A=2

r1Ay
A, s̄10 :=

n∑
A=2

s1Ay
A r̄00 :=

n∑
A,B=2

rABy
AyB ,

r̄0 :=

n∑
A=2

rAy
A s̄0 :=

n∑
A=2

sAy
A.

Then we get the following

r1 = br11, rA = br1A, (3.27)

s1 = 0, sA = bs1A, (3.28)

r00 =
s2ᾱ2

b2 − s2
r11 +

2sᾱ√
b2 − s2

r̄10 + r̄00, (3.29)

r10 =
sᾱ√
b2 − s2

r11 + r̄10 s0 = s̄0 = bs̄10. (3.30)

By (3.11), (3.26), (3.28), (3.29) and (3.30), we have

s2ᾱ2

b2 − s2
r11 +

2sᾱ√
b2 − s2

r̄10 + r̄00 =
2bᾱ√
b2 − s2

Qbs̄10. (3.31)

(3.31) is equivalent to the following two equations

s2ᾱ2

b2 − s2
r11 + r̄00 = 0, (3.32)

sr̄10 − b2Qs̄10 = 0. (3.33)
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(3.26) implies that

s2ᾱ2

b2 − s2
=
β2

b2
. (3.34)

By (3.32) and (3.34), we get

r̄00 +
β2

b2
r11 = 0. (3.35)

Since
∂r̄00
∂y1

= 0,
∂β

∂y1
= b,

then differentiating (3.35) with respect to y1 yields

β

b
r11 = 0. (3.36)

Thus

r11 = 0. (3.37)

By plugging (3.37) in (3.35), we have

r̄00 = 0. (3.38)

Plugging (3.37) and (3.38) in (3.29) and (3.30) imply that

r00 =
2sᾱ√
b2 − s2

r̄10 =
2β

b
r̄10, (3.39)

r10 = r̄10. (3.40)

We shall divide the problem into two cases: (a) r̄10 = 0 and (b) r̄10 6= 0.

Case (a): r̄10 = 0. In this case, by (3.39) we get

r00 = 0. (3.41)

Plugging (3.41) in (3.11) implies that si = 0. In this case, β is constant length Killing one-form.

Case (b): r̄10 6= 0. In this case, by (3.33) we have

sr̄10 − b2Qs̄10 = 0. (3.42)

Since
∂r̄10
∂y1

= 0,
∂s̄10
∂y1

= 0,

then differentiating (3.42) with respect to y1 yields

(s)y1 r̄10 − b2(Q)y1 s̄10 = 0. (3.43)
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Multiplying (3.42) with (s)y1 implies that

s(s)y1 r̄10 − b2Q(s)y1 s̄10 = 0. (3.44)

By (3.43) and (3.44), it follows that

b2
[
Q(s)y1 − s(Q)y1

]
s̄10 = 0. (3.45)

From (3.45), we get two cases:

s̄10 = 0 (3.46)

or

Q(s)y1 = s(Q)y1 . (3.47)

Subcase (b1). Let (3.46) holds. Then (3.42) reduces to s = 0, which is impossible.

Subcase (b2). Let (3.47) holds. Then

(Q)y1

Q
=

(s)y1

s
. (3.48)

On the other hand, we have

(Q)y1 = (Q)s sy1 . (3.49)

Since sy1 6= 0, then by (3.48) and (3.49), we get

(Q)s
Q

=
1

s
. (3.50)

(3.50) implies that ln(Q) = ln(s) + c, where c is a real constant. Thus

ln
(Q
s

)
= c, (3.51)

or equivalently Q = ks, where k is a non-zero real constant. In this case, it follows that F is
Riemannian. This is a contradiction. Then the case (a) holds, only.

By Theorem 2.2 and Lemmas 3.2 and 3.5, we conclude the following.

Corollary 3.2. Let F := αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold
M of dimension n ≥ 3. Suppose that φ = φ(s) dose not satisfy (3.12). Then P = P(s) is constant
along any Finslerian geodesic if and only if S = 0.

For Finsler surfaces, we have the following.
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Lemma 3.6. Let (M,F ) be a 2-dimensional Finsler manifold. Then F has relatively isotropic
Landsberg curvature if and only if it has relatively isotropic mean Landsberg curvature.

Proof. The Cartan torsion of every 2-dimensional Finsler manifold satisfies

Cijk =
1

3

{
hijIk + hjkIi + hkiIj

}
. (3.52)

See page 485 in [10]. Taking a horizontal derivation of (3.52) implies that

Lijk =
1

3

{
hijJk + hjkJi + hkiJj

}
. (3.53)

By putting J = cF I in (3.53), we get L = cFC.

Theorem 3.7. Let F := αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on an n-
dimensional manifold M . Then F has relatively isotropic Landsberg curvature L + cFC = 0, where
c = c(x) is a scalar function on M , if and only if it has relatively isotropic mean Landsberg curvature
J + cF I = 0 and one of the following holds

(i) β satisfies
rij = 0 and si = 0. (3.54)

In this case, S = 0.

(ii) β satisfies
rij 6= 0 or si 6= 0 (3.55)

and φ = φ(s) satisfies
(n+ 1)

[
s(φφ′′ + φ′φ′)− φφ′

]
= daA, (3.56)

where d is a real constant and a and A are given by (1.7) and (1.8).

Proof. By Lemmas 3.2, 3.3, 3.5, 3.6 and Proposition 3.2, we get the proof.

Proof of Corollary 1.1: Since J = 0 and S = 0, then by Theorems 3.7 and 2.2 it follows that
F is a Landsberg metric. In [16], Shen proved that every regular Landsbergian (α, β)-metric is a
Berwald metric. On the other hand, every Berwald metric with vanishing flag curvature is locally
Minkowskian. This completes the proof.

In [6], the authors find a necessary and sufficient condition for an (α, β)-metric to be of relatively
isotropic mean Landsberg curvature.

Theorem 3.8. ([6]) Let F := αφ(s), s = β/α, be a regular (α, β)-metric on a manifold M of
dimension n ≥ 3. Then F has relatively isotropic mean Landsberg curvature J + cF I = 0, where
c = c(x) is a scalar function on M , if and only if β satisfies

rij = k(b2aij − bibj) + σbibj , sij = 0, (3.57)

where k = k(x) and σ = σ(x) are scalar functions on M and φ = φ(s) satisfies

kΨ1 + sσΨ3 + cΦ(φ− sφ′) = 0, (3.58)

where Ψ1, Ψ2 and Ψ3 are given by (1.9), (1.10) and (1.11).
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Proof of Theorem 1.1: By Theorems 3.7 and 3.8, we get the proof.

4 Some Solutions of the ODE (3.12)

In this section, we are going to find some solutions of the ODE (3.12). It is equal to following

s(φφ′′ + φ′φ′)− φφ′

φ(φ− sφ′)
=

d

n+ 1

[
3sφ′′ − (b2 − s2)φ′′′

φ− sφ′ + (b2 − s2)φ′′
+ (n− 2)

sφ′′

φ− sφ′
− (n+ 1)

φ′

φ

]
, (4.1)

where d is a real constant. The solution of (4.1) is given by following

ln
(
φ(φ− sφ′)

)
=

d

n+ 1

[
ln
(
φ− sφ′ + (b2 − s2)φ′′

)
+ ln(φ− sφ′)(n−2) + ln(φ)(n+1)

]
(4.2)

or equivalently

ln
(
φ(φ− sφ′)

)
= ln

[
φn+1(φ− sφ′)n−2

(
φ− sφ′ + (b2 − s2)φ′′

)] d
n+1

. (4.3)

Thus

φn+1(φ− sφ′)n+1 =
[
φn+1(φ− sφ′)n−2

(
φ− sφ′ + (b2 − s2)φ′′

)]d
. (4.4)

Simplifying (4.4) yields

φ(n+1)(1−d)(φ− sφ′)n(1−d)+2d+1 =
(
φ− sφ′ + (b2 − s2)φ′′

)d
. (4.5)

If d = 1, then we get
(φ− sφ′)3 = φ− sφ′ + (b2 − s2)φ′′. (4.6)

Let ψ := φ− sφ′. Then (4.6) can be written as follows

sψ3 = sψ − (b2 − s2)ψ′. (4.7)

Dividing (4.7) by ψ3 and putting v = ψ−2, we get the following first order ODE in terms of v

2s = 2sv + (b2 − s2)v′. (4.8)

The general solution of (4.8) is given by

v = c(b2 − s2) + 1. (4.9)

Consequently, we get

φ− sφ′ =
1√

c(b2 − s2) + 1
. (4.10)

By (4.10), we have

φ = −s
∫

1

s2
√
c1(b2 − s2) + 1

ds+ c2s, (4.11)

where c1 and c2 are real constants. For example, if we put c1 = 0 and c2 = 1 then we get the
Randers metric φ = 1 + s.
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