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Abstract

Many authors were recently concerned with the following question: What can be said
about the structure of a finite group G, if some information is known about the arithmetical
structure of the degrees of the irreducible characters of G?

Let G be a finite group and X1(G) be the set of all irreducible complex character
degrees of G counting multiplicities.

Let p be an odd prime number and M = PGL(2, p), M = Z2×PSL(2, p) or M = SL(2, p).
In this paper we prove that M is uniquely determined by its order and some information
on its character degrees. As a consequence of our results we prove that if G is a finite group
such that X1(G) = X1(M), then G ∼= M . This implies that M is uniquely determined by
the structure of its complex group algebra.
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1 Introduction and Preliminary Results

Let G be a finite group, Irr(G) be the set of irreducible characters of G, and denote by cd(G),
the set of irreducible character degrees of G. The degree pattern of G, which is denoted by
X1(G) is the set of all irreducible complex character degrees of G counting multiplicities. We
note that X1(G) is the first column of the ordinary character table of G. If n is an integer,
then we denote by π(n) the set of all prime divisors of n. If G is a finite group, then π(|G|) is
denoted by π(G).

Many authors were recently concerned with the following question: What can be said about
the structure of a finite group G, if some information is known about the arithmetical structure
of the degrees of the irreducible characters of G?

A finite groupG is called aK3-group if |G| has exactly three distinct prime divisors. Recently
Chen et. al. in [28] proved that all simple K3-groups are uniquely determined by their orders
and one or both of its largest and second largest irreducible character degrees.

In [2, Problem 2∗], R. Brauer asked whether two groups G and H are isomorphic given
that two group algebras FG and FH are isomorphic for all fields F. This is false in general.
In fact, E. C. Dade [5] constructed two non-isomorphic metabelian groups G and H such that
FG ∼= FH for all fields F. In [6], M. Hertweck showed that this is not true even for the integral
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group rings. Note that if ZG ∼= ZH, then FG ∼= FH, for all fields F, where Z is the ring of
integer numbers. For nonabelian simple groups, W. Kimmerle obtained a positive answer in
[20]. He outlined the proof asserting that if G is a group and H is a nonabelian simple group
such that FG ∼= FH for all fields F then G ∼= H.

Let CG be the complex group algebra of G. By Molien’s Theorem (see [1, Theorem 2.13]),
we know that CG = ⊕si=1Mni(C) and thus knowing the structure of the complex group algebra
is equivalent to knowing the first column of the ordinary character table of G. In [25], Tong-Viet
proved that each classical simple group is uniquely determined by its complex group algebra.

Let p be an odd prime number. In [14] the authors proved that the simple group PSL(2, p) is
uniquely determined by its order and its largest and second largest irreducible character degrees.
Also it is proved that the simple group PSL(2, p2) is uniquely determined by its character degree
graph and its order. In [18, 19] it is proved that some simple groups are uniquely determined by
their character degree graphs and their orders. In [15], the authors proved that if G is a finite
group such that |G| = 2|PSL(2, p2)|, p2 ∈ cd(G) and there does not exist any θ ∈ Irr(G) such
that 2p | θ(1), then G has a unique nonabelian composition factor isomorphic to PSL(2, p2). In
[11] it is proved that the projective special linear group PSL(2, q) is uniquely determined by its
group order and its largest irreducible character degree when q is a prime or when q = 2a for
an integer a ≥ 2 such that 2a − 1 or 2a + 1 is a prime.

In [17] it is proved that if p is an odd prime number and G is a finite group such that
|G| = |PSL(2, p2)|, p2 ∈ cd(G) and there does not exist any θ ∈ Irr(G) such that 2p | θ(1), then
G ∼= PSL(2, p2).

Also in [13] groups with the same order and largest and second largest irreducible character
degrees as PGL(2, 9) are determined. In [3, 12] some characterizations for PGL(2, p), where p
is an odd prime number, are introduced.

The goal of this paper is to introduce some new characterizations for the finite groups
PGL(2, p), Z2 × PSL(2, p) and SL(2, p), where p is an odd prime number. As a consequence of
our results we show that these groups are uniquely determined by the structure of their complex
group algebras.

If N � G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ) = {g ∈ G | θg = θ}. If

the character χ =
∑k
i=1 eiχi, where for each 1 ≤ i ≤ k, χi ∈ Irr(G) and ei is a natural number,

then each χi is called an irreducible constituent of χ.

Lemma 1. (Gallagher’s Theorem) [9, Corollary 6.17] Let N � G and let χ ∈ Irr(G) be such
that χN = θ ∈ Irr(N). Then the characters βχ for β ∈ Irr(G/N) are irreducible distinct for
distinct β and all of the irreducible constituents of θG.

Lemma 2. (Itō’s Theorem) [9, Theorem 6.15] Let A�G be abelian. Then χ(1) divides |G : A|,
for all χ ∈ Irr(G).

Lemma 3. [9, Theorems 6.2, 6.8, 11.29] Let N �G and let χ ∈ Irr(G). Let θ be an irreducible
constituent of χN and suppose θ1 = θ, . . . , θt are the distinct conjugates of θ in G. Then
χN = e

∑t
i=1 θi, where e = [χN , θ] and t = |G : IG(θ)|. Also θ(1) | χ(1) and χ(1)/θ(1) | |G : N |.

Lemma 4. (Itō-Michler Theorem) [7] Let ρ(G) be the set of all prime divisors of the elements
of cd(G). Then p 6∈ ρ(G) if and only if G has a normal abelian Sylow p-subgroup.
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Lemma 5. [28, Lemma] Let G be a nonsolvable group. Then G has a normal series 1 �

H � K � G such that K/H is a direct product of isomorphic nonabelian simple groups and
|G/K| | |Out(K/H)|.

Let q = pf be a prime power. The outer automorphism group of PSL(2, q) is of order
(q− 1, 2) · f , and is generated by a field automorphism ϕ of order f and, if p is odd, a diagonal
automorphism δ̄ of order 2 (see [4]). Also we note that PGL(2, q) = PSL(2, q)〈δ̄〉.

Lemma 6. [27, Theorem A] Let S = PSL(2, q), where q = pf > 3 for a prime p, A = Aut(S),
and let S ≤ H ≤ A. Set G = PGL(2, q) if δ̄ ∈ H and G = S if δ̄ 6∈ H, and let |H : G| = d =
2am, m is odd. If p is odd, let ε = (−1)(q−1)/2. The set of irreducible character degrees of H is

cd(H) = {1, q, (q + ε)/2} ∪ {(q − 1)2ai : i | m} ∪ {(q + 1)j : j | d},

with the following exceptions:

1. If p is odd with H 6≤ S〈ϕ〉 or if p = 2, then (q + ε)/2 is not a degree of H.

2. If f is odd, p = 3, and H = S〈ϕ〉, then i 6= 1.

3. If f is odd, p = 3, and H = A, then j 6= 1.

4. If f is odd, p = 2, 3 or 5, and H = S〈ϕ〉, then j 6= 1.

5. If f ≡ 2 (mod 4), p = 2 or 3, and H = S〈ϕ〉 or H = S〈δ̄ϕ〉, then j 6= 2.

If n is an integer and r is a prime number, then we write rα‖n, when rα | n but rα+1 - n.
Also if r is a prime number we denote by Sylr(G), the set of Sylow r-subgroups of G and we
denote by nr(G), the number of elements of Sylr(G). All groups considered are finite and all
characters are complex characters. We write H ch G if H is a characteristic subgroup of G. All
other notations are standard and we refer to [4].

2 The Main Results

Theorem 1. Let G be a finite group such that |G| = |PGL(2, 5)| = |S5| = 23 ·3 ·5 and β(1) = 5
be the second largest element of cd(G). Then G ∼= PGL(2, 5) ∼= S5 or G ∼= 2 ·A5

∼= SL(2, 5).

Proof: First we prove that G is nonsolvable. Otherwise let H be a Hall subgroup of G of order
235. Then |G : H| = 3 and so G/HG ↪→ S3, where HG = CoreG(H) � G. Therefore 5 | |HG|
and if P is a Sylow 5-subgroup of HG, then |P | = 5 and P ch HG � G, which implies that
P �G. Then by Itō’s Theorem, it follows that 5 = β(1) | |G : P | = 24, which is a contradiction.
Hence G is a nonsolvable group. Now by Lemma 5 we conclude that G has a normal series
1 � H � K � G such that K/H is a direct product of isomorphic nonabelian simple groups
and |G/K| | |Out(K/H)|. Exercise 2.10(iii) in Chapter 3, page 309 in [24] states that A5 is
the only noncyclic simple group of order at most 120 = |PGL(2, 5)|. Therefore K/H ∼= A5 and
|G/K| · |H| = 2.
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If |G/K| = 1, then |H| = 2 and so H ⊆ Z(G). Since the Schur multiplier of A5 is 2, we get
that G ∼= Z2 × A5 or G ∼= 2 · A5. Since 5 is the greatest element of cd(Z2 × A5), we get that
G ∼= 2 ·A5

∼= SL(2, 5).
Also if |G/K| = 2, then G ∼= A5 · 2 ∼= S5

∼= PGL(2, 5).

Remark 1. We note that by [4], cd(SL(2, 5)) = {1, 2, 3, 4, 5, 6} and cd(PGL(2, 5)) = {1, 4, 5, 6}.
Therefore Z2 × PSL(2, 5), SL(2, 5) and PGL(2, 5) are uniquely determined by their character
degrees and their orders.

Lemma 7. Let G be a group of order p(p + 1) with p prime, and np(G) = p + 1. Then p + 1
is a power of a prime q, and a Sylow q-subgroup of G is normal in G and elementary abelian.
(Hence either p = 2 and G = S3, or p is odd and q = 2.)

Proof: Since np(G) = p+ 1, G has exactly (p− 1)(p+ 1) elements of order p. Let Q be the set
of elements not of order p. So |Q| = p+ 1. If P is a Sylow p-subgroup of G, then NG(P ) = P ,
so no element of P can centralize any element of Q − {1}. Hence the p elements of Q − {1}
are all conjugate under P , so they all have the same order, which must be a prime q. So all
elements of G have order 1, q or p, so no other primes divide |G| and hence p+ 1 is a power of
q, and clearly Q must be the unique (and hence normal) Sylow q-subgroup of G. Since all of
its elements are conjugate in G, Q is elementary abelian.

Theorem 2. Let p > 5 be an odd prime number. If G is a finite group such that

(i) |G| = 2|PSL(2, p)|,

(ii) p ∈ cd(G),

(iii) there does not exist any θ ∈ Irr(G) such that 2p | θ(1),

(iv) If p = 2α − 1, for some α > 0, then there exists an element b ∈ cd(G) such that 4 | b,

then G has a unique nonabelian composition factor isomorphic to PSL(2, p).

Proof: Let χ ∈ Irr(G) such that χ(1) = p. We prove the result in the following steps:
Step 1. First we prove that if |G| has a divisor of the form np = kp + 1, then np = 1 or
np = p+ 1.

By assumption np = (1 + kp) | (p − 1)(p + 1). If k ≥ 1, then there exists a natural
number t such that t(1 + kp) = p2 − 1. Hence p | (t + 1) and so there exists s ∈ N such that
t+ 1 = ps. Therefore p2 − 1 = (ps− 1)(kp+ 1). Now it is obvious that if s > 1 or k > 1, then
p2 − 1 < (sp− 1)(kp+ 1) and so k = s = 1. Therefore np = p+ 1.
Step 2. Now we prove that G is a nonsolvable group.

On the contrary let G be a solvable group. Now we consider two cases:
Case 1. Let p+ 1 have an odd prime divisor r and rα | |G| and rα+1 - |G|.

Then let H be a Hall subgroup of order p(p − 1)(p + 1)/rα of G. Then |G : H| = rα

and so G/HG ↪→ Srα . By assumptions, since rα ≤ (p + 1)/2, it follows that p | |HG|. Let
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Q ∈ Sylp(HG). Then np(HG) = 1, since (p+ 1) - |HG|. Therefore Q ch HG �G and so Q�G
and Q is abelian. Now using Itō’s Theorem we get a contradiction since χ(1) = p.
Case 2. Let p+ 1 = 2α, for some α > 0.

In this case we see that if R ∈ Syl2(G), then |R| = 2α+1. Let H be a Hall subgroup of
G of order 2p(p + 1) = 2α+1p. Then |G : H| = (p − 1)/2 and so G/HG ↪→ S(p−1)/2. Hence
p | |HG| and |HG| | 2α+1p. Therefore |HG| = 2γp, where 0 ≤ γ ≤ α + 1. If γ ≤ α − 1, then
|HG| < p(p+ 1) and so np(HG) = 1. Therefore if Q ∈ Sylp(HG), then Q�G and Q is abelian.
Now using Itō’s Theorem we get a contradiction. So in the sequel we consider two possibilities:
|HG| = p(p+ 1) and |HG| = 2p(p+ 1).

(2.1) Let |HG| = p(p+ 1) = 2αp.
Similarly to the previous discussion we get that if Op(HG) 6= 1, then Op(G) 6= 1 and we get a
contradiction by Itō’s Theorem. So np(HG) = p+1. Let R ∈ Syl2(HG). By the above discussion
and Lemma 7, it follows that R is elementary abelian and R ch HG � G and so R � G. Now
since there exists an irreducible character β such that 4 | β(1), we get a contradiction by Itō’s
Theorem.

(2.2) Let |HG| = 2p(p+ 1) = 2α+1p, i.e. HG = H.
Similarly to above Op(H) = 1, and so O2(H) 6= 1. Let Z = Z(O2(H)). Then Z � G and

|Z| = 2i, for some i > 0. Since there exists an irreducible character β such that 4 | β(1), we
get that 1 < |Z| ≤ 2α−1 = (p + 1)/2, by Itō’s Theorem. Also H/Z � G/Z. Now if |Z| > 2,
then |H/Z| < p(p + 1), np(H/Z) = 1 and if Q/Z ∈ Sylp(H/Z) and P ∈ Sylp(Q), then P �G,
which is a contradiction. Otherwise |Z| = 2 and |H/Z| = p(p + 1). If Q/Z ∈ Sylp(H/Z) is a
normal subgroup of H/Z, then similarly to the previous cases we get a contradiction by Itō’s
Theorem. Therefore np(H/Z) = p+1. Let R/Z ∈ Syl2(H/Z). Analogy to the above discussion
and using Lemma 7 it follows that R/Z is elementary abelian and R/Z ch H/Z �G/Z and so
R�G. Then R is nilpotent of class 2 and |Z(R)| = 2. Also R′ = Z(R). So R is an extraspecial
group. Now the commutator map is non-degenerate, bilinear and alternating and we get an
induced map R/Z(R) × R/Z(R) → Z(R), which forces R/Z(R) to be elementary abelian of
even dimension over the field of order 2. Hence R is of order 2k, where k is odd, which is a
contradiction since p = 2α − 1 > 5 is a prime and so α is an odd prime number.

Therefore G is not a solvable group.
Step 3. Now we prove that G has a unique nonabelian composition factor isomorphic to
PSL(2, p).

By the above discussion and using Lemma 5 we get that G has a normal series 1�H�K�G
such that K/H is a direct product of m copies of a nonabelian simple group S and |G/K| |
|Out(K/H)|.

First we claim that p - |G/K|. Otherwise p | |G/K| and since Out(K/H) ∼= Out(S) o Sm, it
follows that p | |Sm| or p | |Out(S)|. If p | |Sm|, then m ≥ p. Now since the smallest order of
a nonabelian simple group is 60, it follows that (p2 − 1) ≥ |K/H| ≥ 60p, which is impossible.
Hence p | |Out(S)| and p ≥ 7. Then by [4] we get that S is not isomorphic to a sporadic simple
group or an alternating group. Therefore S is a simple group of Lie type over GF(q), where

q = pf0 . By assumption, p - |S| and p | |Out(S)| = dfg, where d, f and g are the orders of
diagonal, field and graph automorphisms of S (see [4]). Since π(dg) ⊂ π(S), it follows that
p | f . Then 2p ≤ q ≤ |S| ≤ p2 − 1, which is a contradiction. Therefore p - |G/K|.

Now let p | |H|. Let η ∈ Irr(H) such that [χH , η] 6= 0. Then χ(1)/η(1) | |G : H|, which
implies that η(1) = p. Therefore χH = η ∈ Irr(H) and by Gallagher’s Theorem βχ ∈ Irr(G),
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for each β ∈ Irr(G/H). Since K/H is a normal subgroup of G/H, each character degree of
G/H will be θ(1) · j, for some irreducible character θ of K/H and some divisor j of |G : K|.
Also K/H is a direct product of m copies of a nonabelian simple group S and using Itō-Michler
Theorem we know that S has an even irreducible character degree and so K/H has such a
character degree. Therefore there exists an irreducible character η ∈ Irr(G) such that 2p | η(1),
which is a contradiction.

Therefore p | |K/H|. Since p2 - |G|, it follows that K/H is a nonabelian simple group, say S,
such that p is the largest prime divisor of |S| and |S| | p(p2−1). Now we use the classification of
finite simple groups in [4]. The orders of sporadic simple groups show that S is not a sporadic
simple group. If S ∼= An, where n ≥ 5, then 7 ≤ p ≤ n and so n!/2 = |An| ≤ p(p2 − 1) ≤
n(n2−1), which is a contradiction. Therefore K/H is isomorphic to a simple group of Lie type.

If S is a nonabelian simple group of Lie type over GF(q), where p - q, then there exists i > 0
such that p | (qi − 1) or p | (qi + 1). Now the order of S shows that the only possibility for S is
PSL(3, 2) ∼= PSL(2, 7).

If S is a nonabelian simple group of Lie type over a field of characteristic p, say F, then
F = GF(p). Now by easy computation we see that p2 - |S| and |S| | p(p2 − 1) imply that
S ∼= PSL(2, p).

Therefore K/H ∼= PSL(2, p) and so |H| = 2 or |G/K| = 2. Therefore the main theorem is
proved.

Theorem 3. Let G be a finite group satisfying the hypothesis of Theorem 2 and ε = (−1)(p−1)/2.
Then the following hold:

1. If (p+ ε)/2 6∈ cd(G), then G ∼= PGL(2, p);

2. if (p+ ε)/2 ∈ cd(G) and (p− ε)/2 6∈ cd(G), then G ∼= Z2 × PSL(2, p);

3. if (p+ ε)/2, (p− ε)/2 ∈ cd(G), then G ∼= SL(2, p).

Proof: Using Theorem 2 we know that G has a normal series 1�H�K�G such that K/H ∼=
PSL(2, p) and |H| · |G/K| = 2. If |G/K| = 2, then G ∼= PGL(2, p). Let |H| = 2. Since the Schur
multiplier of PSL(2, p) is 2, it follows that G ∼= Z2 × PSL(2, p) or G ∼= 2 · PSL(2, p) ∼= SL(2, p),
and in each case (p+ε)/2 ∈ cd(G). Also (p−ε)/2 6∈ cd(PSL(2,p)) and (p−ε)/2 ∈ cd(SL(2,p)).
So we get the result in each case.

In [25] Tong-Viet posed the following question:
Question. Which groups can be uniquely determined by the structure of their complex group
algebras?

It was shown in [22] that the symmetric groups are uniquely determined by the structure
of their complex group algebras. It was conjectured that all nonabelian simple groups are
uniquely determined by the structure of their complex group algebras. This conjecture was
verified in [20, 23, 26] for the alternating groups, the sporadic simple groups, the Tits group
and the simple exceptional groups of Lie type. We note that abelian groups are not determined
by the structure of their complex group algebras. In fact the complex group algebras of any
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two abelian groups of the same orders are isomorphic. There are also examples of nonabelian
p-groups with isomorphic complex group algebras, for example the dihedral group of order 8
and the quaternion group of order 8.

As a consequence of our results we get the following result:

Corollary 1. Let p be a prime number and M = PGL(2, p), M = Z2 × PSL(2, p) or M =
SL(2, p). If G is a finite group such that X1(G) = X1(M), then G ∼= M .

The following result is an answer to the above question in [25].

Corollary 2. Let p be a prime number and M = PGL(2, p), M = Z2 × PSL(2, p) or M =
SL(2, p). If G is a group such that CG ∼= CM , then G ∼= M . Thus PGL(2, p), Z2 × PSL(2, p)
and SL(2, p) are uniquely determined by the structure of their complex group algebras.
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