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On the generalized Ramanujan-Nagell equation
x2 + qm = cn with qr + 1 = 2c2

by
Jiayuan Hu † and Xiaoxue Li ††

Abstract

Let q be an odd prime, and let c, r be positive integers with qr +1 = 2c2. For any
nonnegative integer s, let U2s+1 =

(
α2s+1 + β2s+1

)
/2 and V2s+1 =

(
α2s+1 − β2s+1

)
/2
√
2,

where α = 1+
√
2 and β = 1−

√
2. In this paper we prove the following results: (i) If

r > 2, then (q, r, c) = (23, 3, 78) and the equation x2+23m = 78n has only the positive
integer solution (x,m, n) = (6083, 3, 4). (ii) If r = 2 and (q, c) = (U2s+1, V2s+1) with
s 6≡ 0(mod4), then the equation x2 + qm = cn has only the positive integer solution
(x,m, n) = (c2 − 1, 2, 4).

Key Words: exponential diophantine equation; generalized Ramanujan-Nagell
equation; Pell number.
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1 Introduction

Let Z, N be the sets of all integers and positive integers respectively. For coprime positive
integers b and c, there were many papers investigated the generalized Ramanujan-Nagell
equations of the form

x2 + bm = cn, x,m, n ∈ N (1.1)

(see [1] and [3]-[19]).
Let q be an odd prime, and let c, r be positive integers with

qr + 1 = 2c2. (1.2)

Recently, N. Terai [15] proved that the equation

x2 + qm = cn, x,m, n ∈ N (1.3)

has only the solution (x,m, n) = (c2− 1, r, 4) under some conditions. In this paper we shall
deal with the solutions of (1.3) for r > 1.

By the Proposition 8.1 of [2], if r > 2, then from (1.2) we get only (q, r, c) = (23, 3, 78).
We completely solve (1.3) in this case as follows:

Theorem 1.1 If (q, c) = (23, 78), then (1.3) has only the solution (x,m, n) = (6083, 3, 4).
For any nonnegative integer k, let

Uk =
1

2

(
αk + βk

)
, Vk =

1

2
√

2

(
αk − βk

)
, (1.4)
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where
α = 1 +

√
2, β = 1−

√
2. (1.5)

It is well known that (u, v) = (U2s, V2s)(s = 1, 2, · · · ) and (U, V ) = (U2s+1, V2s+1)
(s = 0, 1, · · · ) are all solutions of the Pell equations

u2 − 2v2 = 1, u, v ∈ N (1.6)

and
U2 − 2V 2 = −1, U, V ∈ N, (1.7)

respectively. Therefore, if r = 2, then from (1.2) we get

q = U2s+1, c = V2s+1, s ∈ N. (1.8)

In this respect, we prove the following result:
Theorem 1.2 If q and c satisfy (1.8) with s 6≡ 0( mod 4), then (1.3) has only the solution

(x,m, n) = (c2 − 1, 2, 4).

2 Proof of Theorem 1.1

Lemma 2.1 ([20]) Let X, n be positive integers with min{X,n} > 1. Except when
(X,n) = (2, 3), Xn + 1 has a prime divisor p satisfies p - Xm + 1 for any positive integer m
with m < n.

Lemma 2.2 (1.3) has only the solution (x,m, n) = (c2 − 1, r, 4) with 2 | n.
Proof Let (x,m, n) be a solution of (1.3) with 2 | n. Since q is an odd prime, by (1.3),

we have
cn/2 + x = qm, cn/2 − x = 1, (2.1)

whence we get
qm + 1 = 2cn/2. (2.2)

If m < r, then from (1.2) and (2.2) we get n = 2 and

qm + 1 = 2c. (2.3)

By (1.2) and (2.3), qr + 1 has no prime divisor p satisfies p - qm + 1. But, since q 6= 2,
by Lemma 2.1, it is impossible.

Similarly, if m > r, then qm + 1 has no prime divisor p satisfies p - qr + 1. Therefore,
it is impossible. Thus, (1.3) has only the solution (x,m, n) = (c2 − 1, r, 4) with 2 | n. The
lemma is proved.

Let D be a positive integer which is not a square.
Lemma 2.3 ([13, Theorem 8.1]) The Pell equation

u2 −Dv2 = 1, u, v ∈ N (2.4)

has positive integer solutions (u, v), and it has unique positive integer solution (u1, v1) such
that u1 + v1

√
D ≤ u + v

√
D, where (u, v) through all positive integer solutions of (2.4).
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The solution (u1, v1) is called the least solution of (2.4). Every solution (u, v) of (2.4) can
be expressed as

u+ v
√
D = λ1

(
u1 + λ2v1

√
D
)t
, t ∈ Z, t ≥ 0.

Using the same method as in the proof of Lemma 3 of [8], we can obtain the following
lemma immediately.

Lemma 2.4 Let p be an odd prime with p - D. If the equation

X2 −DY 2 = (−p)Z , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (2.5)

has solutions (X,Y, Z), then it has a unique solution (X1, Y1, Z1) such that X1 > 0, Y1 > 0,
Z1 ≤ Z and

1 <

∣∣∣∣∣X1 + Y1
√
D

X1 − Y1
√
D

∣∣∣∣∣ < u1 + v1
√
D,

where Z through all solutions (X,Y, Z) of (2.5), (u1, v1) is the least solution of (2.4). The
solution (X1, Y1, Z1) is called the least solution of (2.5). Every solution (X,Y, Z) can be
expressed as

Z = Z1t, t ∈ N,

X + Y
√
D =

(
X1 + λY1

√
D
)t (

u+ v
√
D
)
, λ ∈ {1,−1},

where (u, v) is a solution of (2.4).
Proof of Theorem 1.1 We now assume that (x,m, n) is a solution of the equation

x2 + 23m = 78n, x,m, n ∈ N (2.6)

with (x,m, n) 6= (6083, 3, 4). By Lemma 2.2, we have 2 - n. Obviously, (2.6) has no solutions
(x,m, n) with n ∈ {1, 3}, we get

2 - n, n ≥ 5. (2.7)

Further, by (2.6) and (2.7), we have 2 - x and 0 ≡ 78n ≡ x2 + 23m ≡ 1 + (−1)m(mod4).
It implies that

2 - m. (2.8)

Since 2 - n, we see from (2.6) that the equation

X2 − 78Y 2 = (−23)Z , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (2.9)

has the solution
(X,Y, Z) = (x, 78(n−1)/2,m). (2.10)

Notice that (u1, v1) = (53, 6) is the least solution of the Pell equation

u2 − 78v2 = 1, u, v ∈ Z, (2.11)

and (X,Y, Z) = (17, 2, 1) is a positive integer solution of (2.9) satisfies 1 < |(17 +
+ 2
√

78)/
(
17− 2

√
78
)
| < 53 + 6

√
78. It implies that (X1, Y1, Z1) = (17, 2, 1) is the least

solution of (2.9). Therefore, applying Lemma 2.4 to (2.9) and (2.10), we get

x+ 78(n−1)/2
√

78 =
(

17 + 2λ
√

78
)m (

u+ v
√

78
)
, λ ∈ {1,−1}, (2.12)
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where (u, v) is a solution of (2.11).
We first consider the case of λ = 1. Then, by (2.12), we get

x+ 78(n−1)/2
√

78 =
(

17 + 2
√

78
)m (

u+ v
√

78
)
. (2.13)

Since x+ 78(n−1)/2
√

78 > 0 and 17 + 2
√

78 > 0, we have u+ v
√

78 > 0. Hence, by Lemma
2.3, we have

u+ v
√

78 =
(

53 + 6λ′
√

78
)t
, λ′ ∈ {1,−1}, t ∈ Z, t ≥ 0. (2.14)

Let

X + Y
√

78 =
(

17 + 2
√

78
)m

. (2.15)

Then X and Y are positive integers. By (2.13) and (2.15), we have

x+ 78(n−1)/2
√

78 =
(
X + Y

√
78
)m (

u+ v
√

78
)
. (2.16)

whence we get
78(n−1)/2 = Xv + Y u. (2.17)

By (2.14) and (2.15), we have

u ≡ 53t(mod78), v ≡ 53t−1 · 6t(mod78) (2.18)

and
X ≡ 17m(mod78), Y ≡ 17m−1 · 2m(mod78), (2.19)

respectively. Therefore, since n ≥ 5 and gcd(17, 78) = gcd(53, 78) = 1, we get from (2.17),
(2.18) and (2.19) that 0 ≡ 78(n−1)/2 ≡ 17m · 53t−1 · 6t+ 53t · 17m−1 · 2m(mod78) and

51t+ 53m ≡ 0(mod39). (2.20)

Further, since 3 | 39, 3 | 51 and 3 - 53, by (2.20), we have

3 | m. (2.21)

Let k = [t/3] be the integer part of t/3. Since t ≥ 0, k is a nonnegative integer satisfies

t = 3k + l, l ∈ {0, 1, 2}. (2.22)

Further let

a+ b
√

78 =


(

17 + 2
√

78
)m/3 (

53 + 6λ′
√

78
)k
, if l ∈ {0, 1},(

17 + 2
√

78
)m/3 (

53 + 6λ′
√

78
)k+1

, if l = 2.
(2.23)

Since 3 | m, by Lemma 2.4, a and b are integers satisfy

a2 − 78b2 = −23m/3, gcd(a, b) = 1. (2.24)
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Since 1/
(
53 + 6λ′

√
78
)

= 53− 6λ′
√

78, by (2.13), (2.14), (2.21), (2.22) and (2.23), we have

x+ 78(n−1)/2
√

78 =


(
a+ b

√
78
)3
, if l = 0,

(
a+ b

√
78
)3 (

53 + 6λ′′
√

78
)
, if l 6= 0.

(2.25)

where λ′′ ∈ {1,−1}.
If l = 0, then from (2.25) we get

78(n−1)/2 = 3b(a2 + 26b2). (2.26)

Since gcd(a2, 78b2) = 1 by (2.24), we have gcd(26, a2 + 26b2) = 1. Therefore, we see from
(2.26) that

b ≥ 26(n−1)/2, 0 < a2 + 26b2 ≤ 3(n−3)/2, (2.27)

whence we get 3(n−3)/2 ≥ a2 + 26b2 > 26b2 ≥ 26n, a contradiction.
If l 6= 0, then we have

78(n−1)/2 = 6λ′′a3 + 159a2b+ 1404λ′′ab2 + 4134b3. (2.28)

Since 2 - a by (2.24), we get from (2.28) that 2 | b, b = 2d and

6(n−3)/2 · 13(n−1)/2 = λ′′a3 + 53a2b+ 936λ′′ad2 + 5512d3. (2.29)

Further, since n ≥ 5, by (2.29), we have

λ′′a3 + 2a2b+ d3 ≡ 0(mod3). (2.30)

Furthermore, since gcd(a, b) = 1, we get gcd (a, d) = 1 and (a, d) 6= (0, 0)(mod3). There-
fore, since

λ′′a3 + 2a2b+ d3 ≡



1(mod3), if λ′′ = 1 and (a, d) ≡ (0, 1), (1, 0),
(1, 1), (1, 2)(mod3) or λ′′ = −1
and (a, d) ≡ (0, 1), (2, 1)(mod3)

2(mod3), if λ′′ = 1 and (a, d) ≡ (2, 1), (2, 2)
(mod3) or λ′′ = −1 and (a, d) ≡ (1, 0)
(1, 1), (1, 2), (2, 2)(mod3).

(2.30) is impossible. Thus, (2.12) is false for λ = 1.
Using the same method as in the above analysis, we can prove that (2.12) is false for

λ = −1. Thus, (2.6) has the solution (x,m, n) = (6083, 3, 4). The theorem is proved.

3 Proof of the Theorem 1.2

Lemma 3.1 ([11], [12]) The equation

X4 − 2Y 2 = ±1, X, Y ∈ N (3.1)
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has only the solution (X,Y ) = (1, 1).
Lemma 3.2 ([13, Section 15.2]) Let n be an odd positive integer with n > 1. Every

solution (X,Y, Z) of the equation

X2 + Y 2 = Zn, X, Y, Z ∈ N, gcd(X,Y ) = 1 (3.2)

can be expressed as
Z = a2 + b2, a, b ∈ N, gcd(a, b) = 1,

X + Y
√
−1 = λ1

(
a+ λ2b

√
−1
)n
, λ1, λ2 ∈ {1,−1}.

Lemma 3.3 For any nonnegative integer s, we have

U2s+1 =

{
1(mod8), if s ≡ 0(mod2),
7(mod8), if s ≡ 1(mod2),

(3.3)

V2s+1 =

{
1(mod8), if s ≡ 0 or 3(mod4),
5(mod8), if s ≡ 1 or 2(mod4).

(3.4)

Proof By (1.4) and (1.5), we get

U2s+5 − U2s+1 = 4(3U2s+2 + U2s+1). (3.5)

Since 2 - U2s+1U2s+2, we see from (3.5) that U2s+5 ≡ U2s+1(mod8). Therefore, by the
initial values U1 = 1 and U3 = 7, we obtain (3.3).

Similarly, since 2 - V2s+1V2s+3 and V2s+9 − V2s+1 = 4(51V2s+3 − 9V2s+1), we have
V2s+9 ≡ V2s+1(mod8). Therefore, by the initial values V1 = 1, V3 = 5, V5 = 29 and
V7 = 169, we get (3.4). The lemma is proved.

Lemma 3.4 For any nonnegative integer s, we have (V8s+5/U8s+5) = −1, where (∗/∗)
is the Jacobi symbol.

Proof By (1.4) and (1.5), we have

U8s+5 + V8s+5 = V8s+6 = 2U4s+3V4s+3. (3.6)

Hence, by (3.6), we get(
V8s+5

U8s+5

)
=

(
U8s+5 + V8s+5

U8s+5

)
=

(
V8s+6

U8s+5

)

=

(
2

U8s+5

)(
U4s+3

U8s+5

)(
V4s+3

U8s+5

)
. (3.7)

By Lemma 3.3, we have U8s+5 ≡ 1(mod8) and(
2

U8s+5

)
= 1. (3.8)

Using (1.4) and (1.5) again, we have

U8s+5 = 4U4s+2U4s+3 − 1 = 4V4s+2V4s+3 + 1. (3.9)
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Since U8s+5 ≡ 1(mod4) and U4s+3 ≡ 3(mod4), by (3.9), we get(
U4s+3

U8s+5

)
=

(
U8s+5

U4s+3

)
=

(
−1

U4s+3

)
= −1,

(
V4s+3

U8s+5

)
=

(
U8s+5

U4s+3

)
=

(
1

V4s+3

)
= 1. (3.10)

Therefore, by (3.7), (3.8) and (3.10), the lemma is proved.
Lemma 3.5 The equation

X2 + 1 = V2s+1, X, s ∈ N (3.11)

has only the solution (X, s) = (2, 1).
Proof Let (X, s) be a solution of (3.11). By (1.4) and (1.5), we have

V2s+1 − 1 =

{
2Us+1Vs, if 2 | s,
2UsVs+1, if 2 - s. (3.12)

Since 2 - UsUs+1 and gcd(Us+1, Vs) = gcd(Us, Vs+1) = 1, we see from (3.11) and (3.12) that
either

Us+1 = a2, Vs = 2b2, X = 2ab, a, b ∈ N, 2 | s (3.13)

or
Us = a2, Vs+1 = 2b2, X = 2ab, a, b ∈ N, 2 - s (3.14)

Using Lemma 3.1, by (1.6) and (1.7), (3.13) is false and (3.14) holds if and only if s = 1.
Therefore, (3.11) has only the solution (X, s) = (2, 1). The lemma is proved.

Proof of Theorem 1.2 We now assume that (x,m, n) is a solution of (1.3) with
(x,m, n) 6= (c2 − 1, 2, 4). By Lemma 2.2, we have 2 - n.

If 2 | m, then (3.2) has the solution

(X,Y, Z) = (x, qm/2, c). (3.15)

Applying Lemma 3.2 to (3.15), we get

c = a2 + b2, a, b ∈ N, gcd(a, b) = 1, (3.16)

x+ qm/2
√
−1 = λ1

(
a+ λ2b

√
−1
)n
, λ1, λ2 ∈ {1,−1}. (3.17)

By (3.17), we have b | qm/2. When b > 1, since q is an prime, we have q | b and b ≥ q.
But, by (1.2) and (3.16), we get c = a2 + b2 ≥ 1 + b2 ≥ 1 + q2 = 2c2, a contradiction.
When b = 1, by Lemma 3.5, we get from (1.8) and (3.16) that q = U3 = 7 and c = V3 = 5.
However, since 2 - n, by (1.3), we get 1 = (5/7) = (7/5) = (2/5) = −1, a contraction. So
we have 2 - m.

By Lemma 3.3, we have U2s+1 ≡ (−1)s(mod4) and V2s+1 ≡ 1(mod4). Since 2 | x and
2 - mn, by (1.3), we get 1 ≡ cn ≡ x2 + qm ≡ 0 + q ≡ q ≡ U2s+1 ≡ (−1)s(mod4). It implies
that 2 | s. Further, since s 6≡ 0(mod4), we have 2s + 1 = 8l + 5, where l is a nonnegative
integer. Therefore, by (1.3) and (1.8), we get(

c

q

)
=

(
V8l+5

U8l+5

)
= 1. (3.18)
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But, by Lemma 3.4, (3.18) is false. Thus, if r = 2 and s 6≡ 0(mod4), then (1.3) has only
the solution (x,m, n) = (c2 − 1, 2, 4). The theorem is proved.
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