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Abstract

We prove that Riemannian polyhedra admit explicit exponential maps at points in
codimension–one strata, that behave similarly to the classical case.
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1 Introduction

Riemannian polyhedra are canonical generalizations of Riemannian differentiable manifolds.
It is natural to believe that many of the geometric properties of manifolds extend suitably
to polyhedra.

One major geometric ingredient in the geometry of Riemannian manifolds is the expo-
nential map. It is known that it establish a connection between the tangent space of a
manifold, at origin, and the manifold itself, by carrying the straight lines through origin
of the tangent space to geodesics of the manifold. Moreover, the exponential map defined
around a given point, gives a local diffeomorphism between the tangent space at that point
and the manifold (see for example [8]). The exponential map has numerous applications
in the theory of Riemmannian manifolds, e.g. it is used in the definition of the sectional
curvature.

The exponential map can also be defined for manifolds with boundary (see [7], [6], [10]).
Starting from this fact, the aim of the paper is to prove that Riemannian polyhedra also
admit explicit exponential maps at points in codimension–one strata, that behave similarly
to the classical case. The main difficulty is to replace the tangent space, which is of little
use at singular points, with the tangent cone. We need a reinterpretation of the tangent
cone, originally defined in [1, pag. 179] to a definition that suits better our purposes. Then
locally, around a point in a codimension–one stratum, the tangent cone looks like a union
of closed semi–spaces and the exponential map can be defined on each of these components.
The exponential map is a first necessary step towards finding a good definition for the
sectional curvature for polyhedra, which is still an open project.

The outline of the paper is as follows. Section 2 is an overview of the Riemannian poly-
hedra and exponential maps on manifolds with boundary. In Section 3, we reformulate the
definition of the tangent cone, we define the exponential map on an admissible Riemannian
polyhedron and we prove that the exponential map is a local homeomorphism.
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2 Preliminaries.

In this section we recall some basic notions and results which will be used throughout the
paper.

2.1 Riemannian admissible polyhedra. [1], [3], [4], [5], [9]

Let K be a locally finite simplicial complex. Considering the set of all formal finite linear
combinations α =

∑
v∈K α(v)v of vertices v of K, such that 0 6 α(v) 6 1,

∑
v∈K α(v) = 1

and {v;α(v) > 0} is a simplex of K, we obtain the space |K| which is a subset in lin(K),
the linear space of all formal finite linear combinations of vertices of K. Note that |K| is
endowed with a natural distance, called the barycentric distance, [5, page 43].

The complexK is admissible, if it is dimensionally homogeneous, and for every connected
open subset U of K, the open set U \ {U ∩ {(n− 2)− skeleton }} is connected, where n is
the dimension of K (i.e. K is (n− 1)-chainable).

We understand by polyhedron, a connected locally compact separable Hausdorff space
X, for which there exists a pair (K, θ), where K is a simplicial complex and θ : |K| → X
is a homeomorphism. The pair (K, θ) is called a triangulation of K. The complex K is
necessarily countable and locally finite (see [9, page 120] or [5, page 44]) and the space X is
path connected and locally contractible. The dimension of X is by definition the dimension
of K and it is independent of the triangulation.

The vertices, simplexes, i-skeletons (the set of simplexes of dimensions lower or equal to
i) of a polyhedron X with specified triangulation (K, θ) are the images under θ of vertices,
simplexes, i-skeletons of K. Thus our simplexes become compact subsets of X.

A Lip polyhedron, [5, page 46], is a metric space X which is the image of |K| under a
Lip homeomorphism θ : |K| → X where |K| is endowed with the barycentric distance, as
above. Note that every polyhedron X with a triangulation (K, θ) can be considered to be
a Lip polyhedron if X is given the metric corresponding to the barycentric distance of |K|
via θ.

Using the property mentioned in [5, Lemma 4.1], every Lip polyhedron is mapped Lip
homemorphically and simplexwise affine onto a closed subset of an Euclidean space.

A Riemannian polyhedron (X, g) (see [5]) is a Lip polyhedron X with a specific Lip
triangulation (K, θ) and a covariant bounded measurable Riemannian metric tensor gS on
each maximal simplex S of X. It is also required, [5, page 47] that an ellipticity condition,
given as follows, is satisfied. Suppose that X has homogeneous dimension n. We are given

a measurable Riemannian metric ĝS on the open Euclidean n-simplex θ−1(
o

S) of |K|, the
pullback via θ of gS .

In terms of Euclidean coordinates {x1, . . . , xn} on θ−1(
o

S), ĝS assigns to almost ev-

ery point x ∈ θ−1(
o

S), an n × n symmetric positive definite matrix (gSij(x))i,j=1,...,n, with
measurable real entries and there is a constant ΛS > 0 such that (ellipticity condition):

Λ−2S

n∑
i=0

(ξi)2 ≤
∑
i,j

gSij(x)ξiξj ≤ Λ2
S

n∑
i=0

(ξi)2

for a.e. x ∈ θ−1(
o

S) and every ξ = (ξ1, . . . , ξn) ∈ Rn. This condition is independent not
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only of the choice of the Euclidean frame on θ−1(
o

S) but also of the chosen triangulation.

Note that ’almost everywhere’ (a.e.) means everywhere except in some null set. A
null set in a Lip polyhedron X is a set Y ⊂ X such that Y meets every maximal simplex
S, relative to a triangulation (K, θ) (hence any) in a set whose pre-image under θ has
n-dimensional Lebesgue measure 0, with n = dimS.

A Riemannian polyhedron X is said to be admissible if for a fixed triangulation (K, θ)
(hence any) the Riemannian simplicial complex K is admissible.

We underline that, for simplicity, the given definition of a Riemannian polyhedron (X, g)
contains already the fact (because of the definition above of the Riemannian admissible
complex) that the metric g is continuous relative to some (hence any) triangulation (i.e.
for every maximal simplex S the metric gS is continuous up to the boundary). This fact
is sometimes omitted in the literature. The polyhedron is said to be simplexwise smooth
if relative to some triangulation (K, θ) (and hence any), the complex K is simplexwise
smooth. Both continuity and simplexwise smoothness are preserved under subdivision.

2.2 Boundary exponential map, boundary normal coordinates. [6],
[10], [7]

Let M be a Riemannian manifold with non-empty boundary ∂M . Similarly to the expo-
nential mapping on a Riemannian manifold without boundary, we can define (see [6]) the
boundary exponential mapping as follows. Let x0 ∈ ∂M be a point and W a small open
chart neighborhood of x0 in ∂M . Consider Uρ = W × [0, ρ) a collar neighbourhood of
W × {0} in the boundary cylinder ∂M × R+. For ρ sufficiently small, we define

exp∂M : Uρ →M,

by: exp∂M (z, t) = γz,ν(t), where γz,ν denotes the normal geodesic to ∂M whose derivative
at zero equals ν, the unitary normal vector to ∂M at the point z. It is clear that the
definition does not depend on the choice of W nor of ρ. Moreover, if M is compact, the
boundary exponential map is well-defined on ∂M × R+, see [6, Chapter 2].

Using the boundary exponential mapping, one introduced (see for example [6] or [10])
the boundary normal (or semi-geodesic) coordinates, analogously to the Riemann normal
coordinates. Compared to the classical case of empty boundary, instead of a set of geodesics
starting from a point one considers the set of geodesics normal to ∂M.

Denote by Vρ = exp∂M (Uρ) and define (Vρ, x1, . . . , xn) local coordinates in M (the
boundary normal coordinates) in the following way:

for x ∈ Vρ, xn := d(x, ∂M), where z ∈ W ⊂ ∂M is the unique boundary point such
that d(x, z) = d(x, ∂M) and (x1, . . . , xn−1) on are local coordinates around z on W . ρ is
chosen small enough such that γz,ν(t) is the unique shortest geodesic to ∂M for t < ρ and
hence Vρ = {x ∈M ; d(x, ∂M) < ρ}.
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3 The exponential map on Riemannian polyhedra

3.1 The tangent cone.

Let (X, g) be an n-dimensional admissible Riemannian polyhedron and p a point in the
((n− 1)-skeleton)\ ((n− 2)-skeleton).

We shall slightly reformulate the definition of the tangent cone previously introduced in
[1].

Suppose that p is in
o

Ŝn−1, the topological interior of the (n − 1)-simplex Sn−1. Let
S1
n, S

2
n, . . . , S

k
n, k ≥ 2, denote the n-simplexes adjacent to Sn−1. Then each S`n, for ` =

1, . . . , k, can be viewed as an affine simplex in Rn, that is S`n =
⋂n
i=0Hi where Hi are

closed half spaces in Rn. The Riemannian metric gS`
n

is the restriction to S`n of a smooth

Riemannian metric defined in an open neighbourhood of S`n in Rn.

Since p ∈ ((n − 1) − skeleton) \ ((n − 2) − skeleton), each S`n for ` = 1, . . . , k, can be
viewed, locally around p, as a manifold with boundary, where the boundary is Sn−1. Then
there exists a unique hyperplane, for i = 0, . . . , n, containing p. Define TpS

`
n as the closed

half-space Hi which contains the corresponding hyperplane.

Notice that TpS
`
n can be naturally embedded in lin(S`n) ⊂ lin(K) and

TpS
`
n = TpSn−1 × [0,∞). (3.1)

Define the tangent cone of K over p as: TpK =
⋃k
`=1 TpS

`
n ⊂ lin(K).

The difference from the original definition of Ballmann and Brin (see [1, pag. 179]) is
that we do not need to pass to subdivision of K in order to make the point p become a
vertex. Since the definition of the tangent cone in [1] is practically given for vertices, and
in the next section it will be essential to work at points outside the (n − 2)–skeleton, our
definition is more suitable for our purposes. On the other side, the definition of [1] makes
sense for every point of X, which is clearly not the case with ours. Note however, that the
two definitions are equivalent for points in the ((n − 1) − skeleton) \ ((n − 2) − skeleton.
Indeed, in both definitions the tangent cone is the union of the tangent spaces to faces
adjacent to the point, and by passing to a subdivision, this union does not change as a set.

3.2 The exponential map.

Having defined the tangent cone, and using the boundary exponential map, we can introduce
next the exponential map locally around a point p in the topological interior of an (n− 1)-
simplex Sn−1. This map will be defined in three steps.

Step 1. Take V0 a small neighbourhood of 0 in TpX. The definition of the exponential map
Ep : TpX → X on each maximal face V0

⋂
TpS

`
n, ` = 1, . . . , k is based on the fact that,

locally around p, each S`n becomes a manifold with boundary, with ∂(S`n) = Sn−1. This
allows us to consider the boundary exponential map (see Section 2.2):

exp∂S`
n

: Uρ → Vρ,
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where, for Up a small neighbourhood of p, Uρ = (Up∩Sn−1)×[0, ρ) is a collar neighbourhood
of (Up ∩ Sn−1)× {0} in the boundary cylinder (Up ∩ Sn−1)× R+ and

Vρ = exp∂S`
n
(Uρ) := {x ∈ (Up ∩ S`n); d(x, (Up ∩ Sn−1)) < ρ}.

Using the boundary normal coordinates, the Collar Neighbourhood Theorem (see [2]) asserts
that exp∂S`

n
is a diffeomorphism.

Step 2. On the manifold Sn−1 we consider the usual exponential map at p:

expp : TpSn−1 → Sn−1.

It is a local diffeomorphism around the point p.

Step 3. We use the decomposition TpS
`
n
∼= TpSn−1 × [0,∞), defined by the following map.

Any wp ∈ TpS`n decomposes as a pair wp = (up, vp) where up is tangent to Sn−1 and vp is
orthogonal to Sn−1 and inward pointing. The map under question assigns to wp the pair
(up, ||vp||).

Summing up, we define the exponential map

Ep : V0 ∩ TpX → X

in the following way. Consider wp a tangent vector in TpX. There exists an ` such that
wp ∈ V0∩TpS`n ⊂ TpX. We decompose wp = (up, vp) where up ∈ TpSn−1 and vp is a normal
vector to ∂S`n. Then

Ep(wp) = exp∂S`
n
(expp(up), ||vp||).

Since Ep is a local diffeomorphism on any TpS
`
n and its restrictions to TpS

`
n agree on

tangent space to Sn−1, it is continous, and its inverse is also continous. We obtain

Theorem 1. Let X be an admissible Riemannian polyhedron of dimension n and p be a
point in the topological interior of a (n−1)–simplex Sn−1. Then there exist a neighbourhood
V of p in TpX and a neighbourhood W of p in X such that Ep : V → W is a homeomor-
phism. Moreover, Ep|V ∩TpS`

n
is a diffeomorphism onto W ∩ S`n, where S`n are the maximal

simplexes adjacent to Sn−1.

Note that on every maximal simplex the exponential map defined above maps straight
lines to geodesics, and hence the terminology is natural.
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