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Asymptotic properties of some functions
related to regular integers modulo n
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Abstract

Let o(n) denote the number of positive regular integers (mod n) less than or equal
to n and let o-(n) (r > 1) be the multidimensional generalization of the arithmetic
function g(n). We study the behaviour of the sequence (g-(n 4+ 1) — or(n))n>1. We

o) erln) o)
¥r(n)” or(n) o7 (n)
the functions ¥,(n), o-(n), oy(n) generalize the Dedekind function, the sum of the
divisors of n and the sum of the unitary divisors of n, respectively. Finally, we give the
extremal orders of some compositions involving the functions mentioned previously
and the functions ¢,(n) and ¢;.(n) which generalize ¢(n), the Euler function and the
unitary function corresponding to ¢(n).

also investigate the average orders of the functions Here
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1 Introduction

Let n > 1 be a positive integer. An integer a is called regular (mod n) if there exists an
integer x such that a?z = a (mod n). Properties of regular integers (mod n) were studied
by many authors. Several statements were proved elementary by Morgado [9], [10]. One
of them tells us that a > 1 is regular (mod n) if and only if ged (a,n) is a unitary divisor of
n. We recall that d is said to be a unitary divisor of n if d | n and ged(d, n/d) = 1, notation
d || n. Using ring theoretic considerations, Alkam and Osba [1] rediscovered some of these
results, while Téth [13] gave direct proofs of them.

Let us consider the set Reg, = {a:1 <a <n and a is regular (mod n)}, and p(n) =
#Reg,,.
The function g is multiplicative and o(p®) = ¢(p®) + 1 = p® — p®*~1 + 1 for every prime
power p®, where ¢(n) is the Euler function. Consequently, o(n) = Z ¢(d), for every n > 1.

d|ln

Also ¢(n) < o(n) < n, for every n > 1, and o(n) = n if and only if n is a squarefree, see
[10], [13], [1].
Thus, the function g(n) is an analogue of the Euler function ¢(n).

Apostol and Téth [6] considered the multidimensional generalization g,-(n) of the func-
tion o(n), defined for every fixed integer r > 1 as follows: g,.(n) is the number of ordered
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r-tuples (as,...,a,) € {1,...,n}" such that ged(as,...,a,) is regular (mod n). If r = 1,
then o1 = o.

The function g,(n) is multiplicative and o,(p®) = ¢, (p®) + 1 = p®" — p(e=" 4 1, where
¢r(n) is the Jordan function of order r. Consequently, o, (n) = Zdun or(d), for every n > 1.
Also ¢,.(n) < or(n) < n” for every n > 1 and p,.(n) = n" if and only if n is squarefree, see
[6].

In Section 2 we present some notation and results involving arithmetical functions.
Section 3 is devoted to the study of the sequence (o,(n + 1) — ¢,(n))n>1. Average orders
of the function g,(n) in connection with ,(n), o,(n) and o}(n) are given in Section 4. In
Section 5 we give extremal orders of compositions of arithmetical functions.

For other properties concerning regular integers modulo n and compositions of arith-
metic functions see [8], [11] and [12].

2 Preliminaries

In what follows let n = pi* ---pp*
paper the following notation:

. D1, P2, ... - the sequence of the primes;

> 1 be a positive integer. We will use throughout the

. d || n - d is a unitary divisor of n, that is d | n and ged(d, g) =1;
k p(a,i+1)7' _1

. or(n) - the generalization of o(n), defined by o,(n) = H -

o1 Pl
1
. ¥r(n) - the generalization of ¥(n), defined by ¥,.(n) = n" H (1 + r);
p
pln

° ¢r(n) - the Jordan function of order r, ¢,(n) =n" H <1 - 1);
p?"

pln
-1
1
. ¢(s) - the Riemann zeta function, ((s) = H(l - s) ,s=o0+iteCando>1;
1 ’ 1
. ~ - the Euler constant, v = nlingo(l + 3 +...+ — logn);

Now we consider the functions o*(n) and ¢*(n), representing the sum of the unitary
divisors of n and the unitary Euler function, respectively.
The functions o*(n) and ¢*(n) are multiplicative. If n = p{* ---p}
tion of n > 1, then

k is the prime factorisa-

¢*(n) = (pi* = 1) (p* = 1), o"(n) =" +1)--(pp" +1)
Note that o*(n) = a(n), ¢*(n) = ¢(n) for all squarefree n, and for every n > 1
b(n) < ¢"(n) <n < 0" (n) < o(n).

Moreover, let o (n) and ¢}(n) be the functions representing the generalizations for the
sum of the unitary divisors of n and the unitary analogue Euler function, respectively.
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If » > 1is a fixed integer, then we have o) (n) = Zdr and o (p*) = p*" + 1. Also,
d|ln
o1 (n) = > L= )" d'w (5), hence 67 (p*) = p°" ~ 1. Here ged(a,b). =

(@1ysar)E{1,2,.0m}" dlln
ged(ged(ar,az,...,ar),n) =1

max{d : dla,d || b} and p*(n) is the unitary analogue of the Md&bius function, given by
p*(n) = (=1)“(™ where w(n) is the number of distinct prime factors of n. The functions
o} (n) and ¢} (n) are multiplicative. Let n = pi* - - - p2r be the prime factorisation of n > 1.
We obtain

Pr(n) = (p" — 1)+ (pp*" = 1) and of(n) = (pP*" + 1) (Pp*" +1).

Observe that o) (n) = o.(n) and ¢f(n) = ¢,(n) for all squarefree n. Furthermore, for
every n > 1,
br(n) < 61 (n) < 0" < 2 (n) < o0 (n).

r =

3 The sequence (g,(n+ 1) — 0,(n))n>1

Studying the convexity and concavity of the sequence (py)n>1, Erdés and Turdn [7] proved
that the inequality

DPnt1 = 2Pp +Pn-1 >0

holds for infinitely many indices and the inequality

Pn+1 — 2pp + pn—1 <0

also holds for infinitely many indices.

So, the sequence (p,)n>1 is neither convex nor concave.
We will prove that for each r > 1 the sequence (o,(n)),>1 has the same property.
We begin with:

Proposition 1. Ifr > 1, then

limsup(g,(n 4+ 1) — o-(n)) = 00 and liminf(g,.(n+ 1) — 0,.(n)) = —cc.

n—oo n—oo

Proof: Let n = 2'm, (t > 1, m odd) be an even number. Since p,(n) is multiplicative,

r

1
or () = 0 ()0 ) < (2= 20 ) =2 (1 )

27’
1 1
Qr(n)<nr<1—+>,

for every n which is a multiple of 4.
Let p be a prime number of the form p = 4¢ + 1. Then o,(p) = p”, so by the above
inequality we have

(2"

or(p) —or(p—1)>p" — (1 - % + 41) (p—1".
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Since (according to Dirichlet’s theorem of arithmetic progressions) we may take p as large
as we please, the first assertion is proved.
Now take p a prime number of the form p = 4¢ + 3. Then 4 | p + 1 and deduce

or(p) —or(p+1) > p" — (1 ~ o 4r) (p+1)"

Since p in the above relation may be taken arbitrarily large, the second assertion is proved.
0

As an immediate consequence of Proposition 1 we obtain

Proposition 2. For r > 1, the function o.(n) is neither convex nor concave.

Proof: Assume that the sequence of positive integers (g, (n)),>1 is convex (concave). Then
the sequence (o,(n+1) — 0,(n))n>1 is increasing (decreasing), wich contradicts Proposition
1. 0

4 Average orders

o(n) o(n) 1
¢(n)’ o(n)’ o(n)
o(n

We prove similar results

In [13] there are given average orders for the functions Apostol and

o(n) o(n)
b(n)” o(n) " oy

. If k is a nonnegative integer, we define the function idy

Petrescu [5] considered average orders for

QT(”)’ or(n) and Q;(n)
b ()’ onln) ™ ox(n)
by idg(n) = n¥; let 1 = idy. It is well-known that 1 is the inverse of the Mébius function
1 with respect to the Dirichlet convolution.

involving

Proposition 3. For ecvery fized r > 2 we have

3 Z((Z)) — K,a+0(1),

(afl)r +1
whereKT—H(l—) (1—|—Z M_’_p(a O )

or(n)
Yr(n)’

Dirichlet convolution and p the Mdbius function, we have g,.(p) = —

Proof: Consider the quotient f.(n) =

Writing g, = wp * fr, where ” x” is the

and for every

prt1
prime power p®, a > 2,

p(a—2)r — por
P 4 p(a—l)r)(p(a—l)r + p(a—2)r) :

g-(p*) = (
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We obtain |g,(p™)| < for every a > 2. If 0 = Re s, observe that

(a—1)r?
gr(p%)
(p™)*

For a =1,

1—
and (o — 1)r + ao > 1 for every o > 2, if 0 >

p(af r+ac
9:(P)| _

S r+o

and r+o0 >1if ¢ > 1 —r. So, if we take into account that g,

is multiplicative, as a Dirichlet convolution of two multiplicative arithmetic functions, the

9r(n)

oo

1—

Dirichlet series G,(s) = Z converges absolutely for o > Tr This implies that
n=1

G (s) converges absolutely for o = 0, also.
Since g, = pu * f, we have f, = u~t*g, =1%g, =g, 1 and

or(n) _ B v
7;0 Ur(n) d;g’“(d) = 1= ggr(@ <d + 0(1)>,

SO

3 o) (1) + o(1).

It follows that

and the proof is complete. O

or(n)
Yr(n)

Proposition 4. For every fized r > 2 and for every € > 0 we have

Corollary 1. For all r > 2 the average order of s K.

Qr(n) —Cox+ O(m%+s),

n<x 0'7»(7’1)

_ 1 — 1 (=D —pl 41
whereC’r—lgl(l—p)<1—|—;pa~ pFDr — 1 .
Proof: Let f.(n) = (Q;EZ; and g, = p * f. Then, for every prime p,

1 , .
Jr (p) = _pT 1 and for every prime power p®, o > 2, we get

. 2p(a—1)r + p(a—Z)r _ p(a+1)r
(plotDr —1)(por — 1)

gr(p*) =" 1)
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Observe that |g.(p®)] < for every a > 2. Using a similar argument as in the

(o]
proof of Proposition 3, , the Dirichlet series G,.(s) = Ir (:L) is absolutely convergent for
n

p(a—2)r

1 n=1
oc=Res> 5
Let € > 0, We obtain

QTZ = od ( (1)>:$GT(1)_ngrc(l (DT )

n<lx d<z d>x d<z
SO
Z or(n) =Crx+ O(x%'*'a),
or(n)
n<x
[ee]
L (=D —pbr+1)
where C,. = G,.( H<1—><1+2pa- T 1 : 0
p a=1
Corollary 2. For all v > 2 the average order of or(n) is Cy.
or(n)
Proposition 5. For every fized r > 2 we have
9’" ") _ Azt 0(1),
(n)
n<m
1 s 1 ar _ (a—1)r 1
whereArH<l>(1+z~p b * >
. p = pr 1
_ _ or(n) _ .
Proof: Let f.(n) = ) and g, = p * f.. Then, for every prime p,
or(n
1 . o
gr(p) = _pT 1 and for every prime power p%, o > 2, we get
(a=2)r _ (a=1)r
p p
g’l‘(pa) = 200—1 —1 b
p(a )r+par+p(a )'r+]_
o 1 . ) = gr(n)
so |g-(p*)] < — for every o > 2. The Dirichlet series G,.(s) = is absolutely
par nS

n=1
convergent for 0 = Re s > 1 — r and o = 0 satisfies the previous condition. We obtain

W‘ — 2G,(1) + O(1)

Tl

n<x 7'
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and some easy computation gives

1 el 1 pozrip(afl)r+1
o =TI (1-3) (S T ) =4
a=1

p

as claimed. 0

Qr(n) .
o (n) s A,.

Corollary 3. For all v > 2 the average order of

5 Extremal Orders

We now move to the study of composite arithmetic functions. Sdndor and Téth [11] investi-
gated the maximal order of ¢*(¢(n)). Apostol [2] gives maximal orders of o(¢(n)), o(¢*(n))
and other compositions. Apostol and Petrescu [4] generalize some of these results and find
the maximal orders of o,(¢,(n)) and g,(¢*(n)). We extend the study of exact extremal
orders to other compositions of arithmetical functions, considering also the functions ¢} (n)
and o (n).

Next, let ny = p1 - - - pr be the product of the first k primes. Since

im £7Q0W) <1— 1> (1— 1) =0,
k— oo Nk k—oco P1 Pk
we get lim inf

5 om)
For the minimal order of the composition ¢*(o(n)), where r > 1, we show

Proposition 6. Forr > 1,

fp Giletn) 1

n=oo (o(n))"  ((r)

and forr =1,

Jim g £(0(m) loglogn
n—o00 Q(n)

Proof: With n, from above, observe that for every n > 2 there is k = k(n) such that
ng <n < ngyi1. We will need the following inequality:

o (en) _ #2(e(m)
@) = () 5-1)

To show this let o(n) = qll’1 ---gbs | where ¢ < ga < ... < g5 are the prime factors of o(n)

and by,...,bs > 1. Then
dilem) _rf, 1
oy 11 (1 ) |

b;r
i=1 q;
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But o(n) <n < ng + 1, that is s < k. Since ¢; > p; for i = 1, s, we obtain

and (5.1) is proved. For r > 1 we have
o1 (e(n)) (1.2
lim 2 iy <1) .
k=oo (0(nk))" koot Pl ¢(r)
Hence it follows that

b o))~ &)

According to the result of Mertens

1
i — ) =7
nhm logn | I (1 p> e 7,

p<n

for r = 1 we deduce that

N k _ _
o) (L) e
o(nk) 5 pi) logpr  loglogny

when k — oo, taking into account that logn; = pr(1 + O(1)). By (5.1), for sufficiently
large n, we have

¢*(o(n)) loglogn S o*(o(ng)) log log ng, .

o(n) - o(n)
So
lim inf ¢"(e(n)) loglogn — e
n—o0 o(n)
and the proof is complete. 0

It is obvious that

(1) () -

as k — oo, so
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If we refer to the composion o} (p(n)), using similar arguments as in the proof of Propo-

sition 6, observe that
ar(e(n) _ or(e(nk))
nt = ny

Also, for r > 1

o)) (L) o o
ikk_g(l_;i)”qmlog“”c(z)

loglogng, (k— o0).

Therefore, the maximal order of o} (g(n)) is %nr for r > 1 and the maximal order of

e
the same function is ——nloglogn for r = 1.

¢(2)
The extremal orders of the quotient Zing were investigated in [13]. In [4] there are
n
given extremal orders concerning classical generalized arithmetic functions, e.g. Urgns and
or(n

¥r(n)
or(n)

Consider now the quotient er(;l) Proposition 7 shows that the maximal order of the

o(n
T/ - 1
function ¢r(n) is e log logn.
e(n) YC(r)

Proposition 7. For everyr > 2,

Vo) _ 1

lim su =e .
THoop o(n)loglogn J/C(r)

Proof: Apply the following general result, see (T6th, Wirsing [14, Corollary 1]): If f is a
nonnegative real-valued multiplicative arithmetic function such that for each prime p,

-1
() p(p) = sup(f(p*)) < (1 - 1> , and

a>0 p
1
(i3) there is an exponent e, = p°!) € N satisfying f(p®) > 1+ —,
p

. f(n) ( 1)
then limsup —4— =¢” 1-—- .
msup 1;[ 5 )@
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For r > 2, let f.(n) = ?’()n) be a nonnegative real-valued multiplicative arithmetic
o(n
function.
For v > 0
o 1 r 1
Pl V1
fr(0%) = a 1 7~ < T
Prl-ptp) ™ 1-y
SO
01— L
o P’ 1,1
pr(p) = sup f(p*) = - < (1- ).
a>0 » p

Some easy computations lead us to choose e, = 4 for r = 2,3,4 and e, = 3, for r > 5.
We obtain

01— L
\/ Or 1 T 1
lim sup _Vorn) =e" H(l - =) 1p =e" ,
n—oo 0(n)loglogn P p’ 11— P /C(r)
as desired. O
Note that i}
timinf 2000 _ g 207 0)
n— 00 n" n—o0o T
We have
or(0(nk)) _ or((pr—1)---(px — 1))
pr—1) (e — 1) 1 1 .-
Dm0 g g Ly
P1 Py b1 Pk
SO . .
tim 2O - Ly Lo,
k—o0 77,2 k—o0 P1 Pk

similarly the other relation.
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