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Abstract

Let %(n) denote the number of positive regular integers (mod n) less than or equal
to n and let %r(n) (r ≥ 1) be the multidimensional generalization of the arithmetic
function %(n). We study the behaviour of the sequence (%r(n + 1) − %r(n))n≥1. We

also investigate the average orders of the functions
%r(n)

ψr(n)
,
%r(n)

σr(n)
and

%r(n)

σ∗
r (n)

. Here

the functions ψr(n), σr(n), σ∗
r (n) generalize the Dedekind function, the sum of the

divisors of n and the sum of the unitary divisors of n, respectively. Finally, we give the
extremal orders of some compositions involving the functions mentioned previously
and the functions φr(n) and φ∗

r(n) which generalize φ(n), the Euler function and the
unitary function corresponding to φ(n).
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1 Introduction

Let n > 1 be a positive integer. An integer a is called regular (mod n) if there exists an
integer x such that a2x ≡ a (mod n). Properties of regular integers (mod n) were studied
by many authors. Several statements were proved elementary by Morgado [9], [10]. One
of them tells us that a > 1 is regular (mod n) if and only if gcd (a, n) is a unitary divisor of
n. We recall that d is said to be a unitary divisor of n if d | n and gcd(d, n/d) = 1, notation
d ‖ n. Using ring theoretic considerations, Alkam and Osba [1] rediscovered some of these
results, while Tóth [13] gave direct proofs of them.

Let us consider the set Regn = {a : 1 ≤ a ≤ n and a is regular (mod n)}, and %(n) =
#Regn.
The function % is multiplicative and %(pα) = φ(pα) + 1 = pα − pα−1 + 1 for every prime

power pα, where φ(n) is the Euler function. Consequently, %(n) =
∑
d‖n

φ(d), for every n ≥ 1.

Also φ(n) < %(n) ≤ n, for every n > 1, and %(n) = n if and only if n is a squarefree, see
[10], [13], [1].
Thus, the function %(n) is an analogue of the Euler function φ(n).

Apostol and Tóth [6] considered the multidimensional generalization %r(n) of the func-
tion %(n), defined for every fixed integer r ≥ 1 as follows: %r(n) is the number of ordered
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r-tuples (a1, . . . , ar) ∈ {1, . . . , n}r such that gcd(a1, . . . , ar) is regular (mod n). If r = 1,
then %1 = %.
The function %r(n) is multiplicative and %r(p

α) = φr(p
α) + 1 = pαr − p(α−1)r + 1, where

φr(n) is the Jordan function of order r. Consequently, %r(n) =
∑
d‖n φr(d), for every n ≥ 1.

Also φr(n) < %r(n) ≤ nr for every n > 1 and %r(n) = nr if and only if n is squarefree, see
[6].

In Section 2 we present some notation and results involving arithmetical functions.
Section 3 is devoted to the study of the sequence (%r(n + 1) − %r(n))n≥1. Average orders
of the function %r(n) in connection with ψr(n), σr(n) and σ∗r (n) are given in Section 4. In
Section 5 we give extremal orders of compositions of arithmetical functions.

For other properties concerning regular integers modulo n and compositions of arith-
metic functions see [8], [11] and [12].

2 Preliminaries

In what follows let n = pα1
1 · · · p

αk
k > 1 be a positive integer. We will use throughout the

paper the following notation:
• p1, p2, . . . - the sequence of the primes;

• d ‖ n - d is a unitary divisor of n, that is d | n and gcd(d,
n

d
) = 1;

• σr(n) - the generalization of σ(n), defined by σr(n) =

k∏
i=1

p
(αi+1)r
i − 1

pri − 1
;

• ψr(n) - the generalization of ψ(n), defined by ψr(n) = nr
∏
p|n

(
1 +

1

pr

)
;

• φr(n) - the Jordan function of order r, φr(n) = nr
∏
p|n

(
1− 1

pr

)
;

• ζ(s) - the Riemann zeta function, ζ(s) =
∏
p

(
1− 1

ps

)−1
, s = σ + it ∈ C and σ > 1;

• γ - the Euler constant, γ = lim
n→∞

(1 +
1

2
+ . . .+

1

n
− log n);

Now we consider the functions σ∗(n) and φ∗(n), representing the sum of the unitary
divisors of n and the unitary Euler function, respectively.
The functions σ∗(n) and φ∗(n) are multiplicative. If n = pα1

1 · · · p
αk
k is the prime factorisa-

tion of n > 1, then

φ∗(n) = (pα1
1 − 1) · · · (pαkk − 1), σ∗(n) = (pα1

1 + 1) · · · (pαkk + 1)

Note that σ∗(n) = σ(n), φ∗(n) = φ(n) for all squarefree n, and for every n ≥ 1

φ(n) ≤ φ∗(n) ≤ n ≤ σ∗(n) ≤ σ(n).

Moreover, let σ∗r (n) and φ∗r(n) be the functions representing the generalizations for the
sum of the unitary divisors of n and the unitary analogue Euler function, respectively.
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If r ≥ 1 is a fixed integer, then we have σ∗r (n) =
∑
d‖n

dr and σ∗r (pα) = pαr + 1. Also,

φ∗r(n) :=
∑

(a1,...,ar)∈{1,2,...,n}r
gcd(gcd(a1,a2,...,ar),n)∗=1

1 =
∑
d‖n

drµ∗(
n

d
), hence φ∗r(p

α) = pαr−1. Here gcd(a, b)∗ =

max{d : d|a, d ‖ b} and µ∗(n) is the unitary analogue of the Möbius function, given by
µ∗(n) = (−1)ω(n) where ω(n) is the number of distinct prime factors of n. The functions
σ∗r (n) and φ∗r(n) are multiplicative. Let n = pα1

1 · · · pαrr be the prime factorisation of n > 1.
We obtain

φ∗r(n) = (pα1r
1 − 1) · · · (pαkrk − 1) and σ∗r (n) = (pα1r

1 + 1) · · · (pαkrk + 1).

Observe that σ∗r (n) = σr(n) and φ∗r(n) = φr(n) for all squarefree n. Furthermore, for
every n ≥ 1,

φr(n) ≤ φ∗r(n) ≤ nr ≤ σ∗r (n) ≤ σr(n).

3 The sequence (%r(n+ 1)− %r(n))n≥1

Studying the convexity and concavity of the sequence (pn)n≥1, Erdős and Turán [7] proved
that the inequality

pn+1 − 2pn + pn−1 > 0

holds for infinitely many indices and the inequality

pn+1 − 2pn + pn−1 < 0

also holds for infinitely many indices.
So, the sequence (pn)n≥1 is neither convex nor concave.

We will prove that for each r ≥ 1 the sequence (%r(n))n≥1 has the same property.
We begin with:

Proposition 1. If r ≥ 1, then

lim sup
n→∞

(%r(n+ 1)− %r(n)) =∞ and lim inf
n→∞

(%r(n+ 1)− %r(n)) = −∞.

Proof: Let n = 2tm, (t ≥ 1, m odd) be an even number. Since %r(n) is multiplicative,

%r(n) = %r(2
t)%r(m) ≤ mr(2rt − 2r(t−1) + 1) = mr2rt

(
1− 1

2r

)
+

nr

(2t)r
.

So

%r(n) ≤ nr
(

1− 1

2r
+

1

4r

)
,

for every n which is a multiple of 4.
Let p be a prime number of the form p = 4t + 1. Then %r(p) = pr, so by the above

inequality we have

%r(p)− %r(p− 1) ≥ pr −
(

1− 1

2r
+

1

4r

)
(p− 1)r.
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Since (according to Dirichlet’s theorem of arithmetic progressions) we may take p as large
as we please, the first assertion is proved.

Now take p a prime number of the form p = 4t+ 3. Then 4 | p+ 1 and deduce

%r(p)− %r(p+ 1) ≥ pr −
(

1− 1

2r
+

1

4r

)
(p+ 1)r.

Since p in the above relation may be taken arbitrarily large, the second assertion is proved.

As an immediate consequence of Proposition 1 we obtain

Proposition 2. For r ≥ 1, the function %r(n) is neither convex nor concave.

Proof: Assume that the sequence of positive integers (%r(n))n≥1 is convex (concave). Then
the sequence (%r(n+1)−%r(n))n≥1 is increasing (decreasing), wich contradicts Proposition
1.

4 Average orders

In [13] there are given average orders for the functions
%(n)

φ(n)
,
φ(n)

%(n)
,

1

%(n)
. Apostol and

Petrescu [5] considered average orders for
%(n)

ψ(n)
,
%(n)

σ(n)
and

%(n)

σ∗(n)
. We prove similar results

involving
%r(n)

ψr(n)
,
%r(n)

σr(n)
and

%r(n)

σ∗r (n)
. If k is a nonnegative integer, we define the function idk

by idk(n) = nk; let 1 = id0. It is well-known that 1 is the inverse of the Möbius function
µ with respect to the Dirichlet convolution.

Proposition 3. For every fixed r ≥ 2 we have∑
n≤x

%r(n)

ψr(n)
= Krx+O

(
1
)
,

where Kr =
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

1

pα
· p

αr − p(α−1)r + 1

pαr + p(α−1)r

)
.

Proof: Consider the quotient fr(n) =
%r(n)

ψr(n)
. Writing gr = µ ∗ fr, where ” ∗ ” is the

Dirichlet convolution and µ the Möbius function, we have gr(p) = − 1

pr + 1
and for every

prime power pα, α ≥ 2,

gr(p
α) =

p(α−2)r − pαr

(pαr + p(α−1)r)(p(α−1)r + p(α−2)r)
.
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We obtain |gr(pα)| < 1

p(α−1)r
, for every α ≥ 2. If σ = Re s, observe that∣∣∣∣gr(pα)

(pα)s

∣∣∣∣ < 1

p(α−1)r+ασ
and (α− 1)r + ασ > 1 for every α ≥ 2, if σ >

1− r
2

.

For α = 1,

∣∣∣∣gr(p)ps

∣∣∣∣ < 1

pr+σ
and r + σ > 1 if σ > 1− r. So, if we take into account that gr

is multiplicative, as a Dirichlet convolution of two multiplicative arithmetic functions, the

Dirichlet series Gr(s) =

∞∑
n=1

gr(n)

ns
converges absolutely for σ >

1− r
2

. This implies that

Gr(s) converges absolutely for σ = 0, also.
Since gr = µ ∗ fr we have fr = µ−1 ∗ gr = 1 ∗ gr = gr ∗ 1 and∑

n≤x

%r(n)

ψr(n)
=
∑
d≤x

gr(d)
∑
n≤ xd

1 =
∑
d≤x

gr(d)

(
x

d
+O(1)

)
,

so ∑
n≤x

%r(n)

ψr(n)
= Gr(1)x+O

(
1).

It follows that

Kr = Gr(1) =

∞∑
n=1

gr(n)

n
=
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

fr(p
α)

pα

)
=

=
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

1

pα
· p

αr − p(α−1)r + 1

pαr + p(α−1)r

)
and the proof is complete.

Corollary 1. For all r ≥ 2 the average order of
%r(n)

ψr(n)
is Kr.

Proposition 4. For every fixed r ≥ 2 and for every ε > 0 we have∑
n≤x

%r(n)

σr(n)
= Crx+O

(
x

1
2+ε
)
,

where Cr =
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

1

pα
· (pr − 1)(pαr − p(α−1)r + 1)

p(α+1)r − 1

)
.

Proof: Let fr(n) =
%r(n)

σr(n)
and gr = µ ∗ fr. Then, for every prime p,

gr(p) = − 1

pr + 1
and for every prime power pα, α ≥ 2, we get

gr(p
α) = (pr − 1) · 2p(α−1)r + p(α−2)r − p(α+1)r

(p(α+1)r − 1)(pαr − 1)
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Observe that |gr(pα)| < 1

p(α−2)r
for every α ≥ 2. Using a similar argument as in the

proof of Proposition 3, , the Dirichlet series Gr(s) =

∞∑
n=1

gr(n)

ns
is absolutely convergent for

σ = Re s >
1

2
.

Let ε > 0, We obtain

∑
n≤x

%r(n)

σr(n)
=
∑
d≤x

gr(d)

(
x

d
+O(1)

)
= xGr(1)− x

∑
d>x

gr(d)

d
+O

(∑
d≤x

|gr(d)|
)
,

so ∑
n≤x

%r(n)

σr(n)
= Crx+O

(
x

1
2+ε
)
,

where Cr = Gr(1) =
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

1

pα
· (pr − 1)(pαr − p(α−1)r + 1)

p(α+1)r − 1

)
.

Corollary 2. For all r ≥ 2 the average order of
%r(n)

σr(n)
is Cr.

Proposition 5. For every fixed r ≥ 2 we have

∑
n≤x

%r(n)

σ∗r (n)
= Arx+O(1),

where Ar =
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

1

pα
· p

αr − p(α−1)r + 1

pαr + 1

)
.

Proof: Let fr(n) =
%r(n)

σ∗r (n)
and gr = µ ∗ fr. Then, for every prime p,

gr(p) = − 1

pr + 1
and for every prime power pα, α ≥ 2, we get

gr(p
α) =

p(α−2)r − p(α−1)r

p(2α−1)r + pαr + p(α−1)r + 1
,

so |gr(pα)| < 1

pαr
for every α ≥ 2. The Dirichlet series Gr(s) =

∞∑
n=1

gr(n)

ns
is absolutely

convergent for σ = Re s > 1− r and σ = 0 satisfies the previous condition. We obtain

∑
n≤x

%r(n)

σ∗r (n)
= xGr(1) +O(1)
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and some easy computation gives

Gr(1) =
∏
p

(
1− 1

p

)(
1 +

∞∑
α=1

1

pα
· p

αr − p(α−1)r + 1

pαr + 1

)
= Ar,

as claimed.

Corollary 3. For all r ≥ 2 the average order of
%r(n)

σ∗r (n)
is Ar.

5 Extremal Orders

We now move to the study of composite arithmetic functions. Sándor and Tóth [11] investi-
gated the maximal order of φ∗(φ(n)). Apostol [2] gives maximal orders of %(φ(n)), %(φ∗(n))
and other compositions. Apostol and Petrescu [4] generalize some of these results and find
the maximal orders of %r(φr(n)) and %r(φ

∗(n)). We extend the study of exact extremal
orders to other compositions of arithmetical functions, considering also the functions φ∗r(n)
and σ∗r (n).

Next, let nk = p1 · · · pk be the product of the first k primes. Since

lim
k→∞

φ∗(%(nk))

nk
= lim
k→∞

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
= 0,

we get lim inf
n→∞

φ∗(%(n))

n
= 0.

For the minimal order of the composition φ∗r(%(n)), where r ≥ 1, we show

Proposition 6. For r > 1,

lim inf
n→∞

φ∗r(%(n))

(%(n))r
=

1

ζ(r)

and for r = 1,

lim inf
n→∞

φ∗(%(n)) log log n

%(n)
= e−γ .

Proof: With nk from above, observe that for every n ≥ 2 there is k = k(n) such that
nk ≤ n < nk+1. We will need the following inequality:

φ∗r(%(n))

(%(n))
r ≥

φ∗r(%(nk))

(%(nk))r
. (5.1)

To show this let %(n) = qb11 · · · qbss , where q1 < q2 < . . . < qs are the prime factors of %(n)
a̧nd b1, . . . , bs ≥ 1. Then

φ∗r(%(n))

(%(n))r
=

s∏
i=1

(
1− 1

qbiri

)
.
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But %(n) ≤ n < nk + 1, that is s ≤ k. Since qi ≥ pi for i = 1, s, we obtain

φ∗r(%(nk))

(%(nk))r
=

k∏
i=1

(
1− 1

pri

)
≤

k∏
i=1

(
1− 1

pbiri

)

≤
s∏
i=1

(
1− 1

pbiri

)
≤

s∏
i=1

(
1− 1

qbiri

)
and (5.1) is proved. For r > 1 we have

lim
k→∞

φ∗r(%(nk))

(%(nk))r
= lim
k→∞

k∏
i=1

(
1− 1

pri

)
=

1

ζ(r)
.

Hence it follows that

lim inf
n→∞

φ∗r(%(n))

(%(n))r
=

1

ζ(r)
.

According to the result of Mertens

lim
n→∞

log n
∏
p≤n

(
1− 1

p

)
= e−γ ,

for r = 1 we deduce that

φ∗(%(nk))

%(nk)
=

k∏
i=1

(
1− 1

pi

)
∼ e−γ

log pk
∼ e−γ

log log nk

when k → ∞, taking into account that log nk = pk(1 + O(1)). By (5.1), for sufficiently
large n, we have

φ∗(%(n)) log log n

%(n)
≥ φ∗(%(nk)) log log nk

%(nk)
.

So

lim inf
n→∞

φ∗(%(n)) log log n

%(n)
= e−γ

and the proof is complete.

It is obvious that

σ∗(%(nk))

nk
=

(
1 +

1

p1

)
· · ·
(

1 +
1

pk

)
→∞

as k →∞, so

lim sup
n→∞

σ∗(%(n))

n
=∞.
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If we refer to the composion σ∗r (%(n)), using similar arguments as in the proof of Propo-
sition 6, observe that

σ∗r (%(n))

nr
≤ σ∗r (%(nk))

nrk
.

Also, for r > 1

lim
k→∞

σ∗r (%(nk))

nrk
= lim
k→∞

k∏
i=1

(
1 +

1

pri

)
=

ζ(r)

ζ(2r)

and for r = 1

σ∗(%(nk))

nk
=

k∏
i=1

(
1− 1

p2i

)
(

1− 1
pi

) ∼ eγ

ζ(2)
log pk ∼

eγ

ζ(2)
log log nk, (k →∞).

Therefore, the maximal order of σ∗r (%(n)) is ζ(r)
ζ(2r)n

r for r > 1 and the maximal order of

the same function is
eγ

ζ(2)
n log log n for r = 1.

The extremal orders of the quotient
%(n)

φ(n)
were investigated in [13]. In [4] there are

given extremal orders concerning classical generalized arithmetic functions, e.g.
σr(n)

%r(n)
and

ψr(n)

%r(n)
.

Consider now the quotient
r
√
φr(n)

%(n)
. Proposition 7 shows that the maximal order of the

function
r
√
φr(n)

%(n)
is eγ

1
r
√
ζ(r)

log log n.

Proposition 7. For every r ≥ 2,

lim sup
n→∞

r
√
φr(n)

%(n) log log n
= eγ

1
r
√
ζ(r)

.

Proof: Apply the following general result, see (Tóth, Wirsing [14, Corollary 1]): If f is a
nonnegative real-valued multiplicative arithmetic function such that for each prime p,

(i) ρ(p) = sup
α≥0

(f(pα)) ≤
(

1− 1

p

)−1
, and

(ii) there is an exponent ep = po(1) ∈ N satisfying f(pep) ≥ 1 +
1

p
,

then lim sup
n→∞

f(n)

log log n
= eγ

∏
p

(
1− 1

p

)
ρ(p).
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For r ≥ 2, let fr(n) =
r
√
φr(n)

%(n)
be a nonnegative real-valued multiplicative arithmetic

function.
For α ≥ 0

fr(p
α) =

pα r

√
1− 1

pr

pα(1− 1
p + 1

pα )
≤

r

√
1− 1

pr

1− 1
p

,

so

ρr(p) = sup
α≥0

fr(p
α) =

r

√
1− 1

pr

1− 1
p

≤
(
1− 1

p

)−1
.

Some easy computations lead us to choose ep = 4 for r = 2, 3, 4 and ep = 3, for r ≥ 5.
We obtain

lim sup
n→∞

r
√
φr(n)

%(n) log log n
= eγ

∏
p

(1− 1

p
)

r

√
1− 1

pr

1− 1
p

= eγ
1

r
√
ζ(r)

,

as desired.

Note that

lim inf
n→∞

%r(φ(n))

nr
= lim inf

n→∞

%r(φ
∗(n))

nr
= 0.

We have
%r(φ(nk))

nrk
=
%r((p1 − 1) · · · (pk − 1))

pr1 · · · prk

≤ (p1 − 1)r · · · (pk − 1)r

pr1 · · · prk
=
(
(1− 1

p1
) · · · (1− 1

pk
)
)r
,

so

lim
k→∞

%r(φ(nk))

nrk
= lim
k→∞

(
(1− 1

p1
) · · · (1− 1

pk
)
)r

= 0,

similarly the other relation.
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