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A note on the Diophantine equation px2 + q2n = yp
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Abstract

Let p, q be odd primes such that p ≡ 1(mod 4) and p 6= q. In this paper, we prove
that if q < 4p− 1 or q < 149, then the equation px2 + q2n = yp has no positive integer
solutions (x, y, n) with gcd(x, y) = 1.
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1 Introduction

Let Z,N be the sets of all integers and positive integers respectively. Let p be an odd prime
with p 6≡ 7(mod 8) and let q be a prime with q 6= p. The solutions (x, y, n) of the equation

px2 + q2n = yp , x, y, n ∈ N, gcd(x, y) = 1 (1.1)

and its varieties have been investigated in many papers (see [1], [2], [5], [7], [8], [10], [11],
[12], [14] and [15]).

For instance, by the results of S.Rabinowicz [11], M.-H.Le [8] and F.S. Abu Muriefah
[1], if q ∈ {2, 3}, then (1.1) has no solutions (x, y, n). Let p, q be primes and p > 3. Let
further x,y and n be positive integers such that (x, y) = 1. In [2], F.S. Abu Muriefah was
solved (1.1) completely. Recently, A. Laradji, M. Mignotte and N. Tzanakis [7] proved
that if p ≡ 3(mod 8), then (1.1) has no solutions (x, y, n). In [14], W. Yongxing and W.
Tingting proved that the Diophantine equation 2m + nx2 = yn has no positive integer
solution (x, y,m) with gcd(x, y) = 1. In [10], it was proved that the Diophantine equation
2m+nx2 = yn in positive integers x, y,m, n has the only solution (x, y,m, n) = (21, 11, 3, 3)
with n > 1 and gcd(nx, y) = 1 by F. Luca and G. Soydan. In [12], G. Soydan, and I.N.
Cangul, noted corrections to the paper of W. Yongxing and W. Tingting [14].

For the remained cases, namely p ≡ 1(mod 4), the solving of (1.1) is a very difficult
problem, even when p = 5 it is still open. By [7], if p = 5 and either q 6≡ 1(mod 600) or
q < 3× 109, then (1.1) has no solutions (x, y, n).

In this paper, using certain properties of exponential diophantine equations and the
existence results of primitive divisors of Lehmer numbers, we shall show that (1.1) has no
solutions for small q. We prove the following result:

Theorem. Let p, q be odd primes such that p ≡ 1(mod4) and p 6= q, if q < 4p − 1 or
q < 149, then (1.1) has no solutions (x, y, n).
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2 Preliminaries

For any positive integer d, let h(−4d) denote the class number of positive binary quadratic
forms of discriminant −4d.

Lemma 1. ([15, Lemma 3]). If d > 1, then d > h(−4d).

Lemma 2. If p ≡ 1(mod 4) and q is an odd prime with q 6= p, then

h(−4pq2) =

(
q − (−1)(q−1)/2

(
q

p

))
h(−4p), (2.1)

where
(
q
p

)
is the Kronecker symbol.

Proof: Since p ≡ 1(mod 4), −4p ≡ 12 (mod 16) and −4p is a fundamental discriminant.
Hence, by Theorems 12.10.1 and 12.11.2 of [6], we have

h(−4p) =
2
√
p

π
K(−4p) (2.2)

and

h(−4pq2) =
2q
√
p

π
K(−4pq2) =

2q
√
p

π

(
1−

(
−4p

q

)
1

q

)
K(−4p),

where

K(−4p) =

∞∑
m=1

(
−4p

m

)
1

m
.

The combination of (2.2) and (2.3) yields

h(−4pq2) =

(
q −

(
−4p

q

))
h(−4p). (2.4)

Further, since p ≡ 1(mod 4) and q is an odd prime with q 6= p,(
−4p

q

)
= (−1)(q−1)/2

(
4p

q

)
= (−1)(q−1)/2

(
p

q

)
= (−1)(q−1)/2

(
q

p

)
. (2.5)

Substitute (2.5) into (2.4), we get (2.1) immediately. So, the proof is completed.

Lemma 3. ([9,Theorems 1 and 3]). Let d1, d2, k be positive integers such that min{d1, d2, k} >
1 and gcd(d1, d2)=gcd(k, 2d1d2) = 1. If the equation

d1X
2 + d2Y

2 = kZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (2.6)

has solutions (X,Y, Z), then every solution (X,Y, Z) of (2.6) can be expressed as

Z = Z1t, t ∈ N, 2 - t ,

X
√
d1 + Y

√
−d2 = λ1(X1

√
d1 + λ2Y1

√
−d2)t, λ1, λ2 ∈ {±1} ,

where X1, Y1, Z1 are positive integers satisfying

d1X1
2 + d2Y1

2 = kZ1 , gcd(X1, Y1) = 1 , 2Z1 | h(−4d1d2).
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Lemma 4. ([3, Theorem 1.1]). If p ∈ {13, 17}, then the equation

Xn + Y n = pZ2, X, Y, Z ∈ Z, XY Z 6= 0, X > Y, gcd(X,Y ) = 1, n ∈ N, n ≥ 4. (2.7)

has no solution (X,Y, Z, n).

Lemma 5. ([7, Proposition 2.1]). If (x, y, n) is a solution of (1.1), then

qn = ±
(p−1)/2∑
i=0

(
p

2i

)(
−pa2

)i
,with a ∈ N, 2 | a. (2.8)

Let α, β be algebraic integers. If (α+β)2 and αβ are nonzero coprime integers and α/β
is not a root of unity, then (α, β) is called a Lehmer pair. Further, let a = (α + β)2 and
c = αβ. Then we have

α =
1

2
(
√
a+ λ

√
b), β =

1

2
(
√
a− λ

√
b), λ ∈ {±1},

where b = a − 4c. Such (a, b) is called the parameters of Lehmer pair (α, β). Two Lehmer
pairs (α1, β1) and (α2, β2) are called equivalent if α1/α2 = β1/β2 ∈

{
±1,±

√
−1
}

. Ob-
viously, if (α1, β1) and (α2, β2) are equivalent Lehmer pairs with parameters (a1, b1) and
(a2, b2) respectively, then (a2, b2) = (δa1, δa2), where δ ∈ {±1}. For a fixed Lehmer pair
(α, β), one defines the corresponding sequence of Lehmer numbers by

Lr(α, β) =


αr−βr

α−β , if 2 - r,

αr−βr

α2−β2 , if 2 | r,
, r ∈ N. (2.9)

Then, Lehmer numbers Lr(α, β) (r = 1, 2, · · ·) are nonzero integers. Further, for equivalent
Lehmer pairs (α1, β1) and (α2, β2), we have Lr(α1, β1) = ±Lr(α2, β2) for any r. A prime
l is called a primitive divisor of the Lehmer number Lr(α, β) (r > 1), if l | Lr(α, β) and
l - abL1(α, β) · · ·Lr−1(α, β), where (a, b) is the parameter of Lehmer pair (α, β). A Lehmer
pair (α, β) such that Lr(α, β) has no primitive divisor will be called r-defective Lehmer pair.

Lemma 6. ([13]). Let r be such that 6 < r ≤ 30 and r 6= 8, 10, 12. Then, up to equivalence,
all parameters (a, b) (a > 0) of r-defective Lehmer pairs are given as follows:

(i) r = 7, (a, b) = (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22).
(ii) r = 9, (a, b) = (5,−3), (7,−1), (7,−5).
(iii) r = 13, (a, b) = (1,−7).
(iv) r = 14, (a, b) = (3,−13), (5,−3), (7,−1), (7,−5), (19,−1), (22,−14).
(v) r = 15, (a, b) = (7,−1), (10,−2).
(vi) r = 18, (a, b) = (1,−7), (3,−5), (5,−7).
(vii) r = 24, (a, b) = (3,−5), (5,−3).
(viii)r = 26, (a, b) = (7,−1).
(ix) r = 30, (a, b) = (1,−7), (2,−10).

Lemma 7. ([4, Theorem 1.4]). If r > 30, then no Lehmer pair is r-defective.



54 A note on the Diophantine equation px2 + q2n = yp

3 Proof of Theorem

Lemma 8. If (1.1) has solutions (x, y, n), then p ≡ 1(mod 4) and

q − (−1)(q−1)/2 ≡ 0(mod 4p) . (3.1)

In particular, if p - n, then

q − (−1)(q−1)/2 ≡ 0(mod 4p2). (3.2)

Proof: We now assume that (x, y, n) is a solution of (1.1). By the results of [7], we have
p ≡ 1(mod 4) and the lemma holds for p = 5. Then, by (1.1), the equation

pX2 + q2Y 2 = yZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (3.3)

has a solution
(X,Y, Z) = (x, qn−1, p). (3.4)

Since p ≡ 1(mod 4), y is odd. Applying Lemma 3 to (3.3) and (3.4), we have

p = Z1t, t ∈ N, 2 - t, (3.5)

x
√
p+ qn−1

√
−q2 = λ1(X1

√
p+ λ2Y1

√
−q2)

t
, λ1, λ2 ∈ {±1} , (3.6)

where X1, Y1, Z1 are positive integers satisfying

pX1
2 + q2Y1

2 = yZ1 , gcd(X1, Y1) = 1 (3.7)

and
2Z1 | h(−4pq2). (3.8)

If Z1 = 1, then from (3.5), (3.6) and (3.7) we get

x
√
p+ qn−1

√
−q2 = λ1(X1

√
p+ λ2Y1

√
−q2)p, λ1, λ2 ∈ {±1} , (3.9)

and
pX1

2 + q2Y1
2 = y,X1, Y1 ∈ N, gcd(X1, Y1) = 1. (3.10)

By (3.9), we have

qn−1 = Y1

(p−1)/2∑
i=0

(
p

2i+ 1

)
(pX1

2)(p−1)/2−i(−q2Y12)i. (3.11)

Since p 6= q and gcd(x, y) = 1, we see from (1.1) and (3.10) that q - y and q - pX1
2. It

implies that

q -
(p−1)/2∑
i=0

(
p

2i+ 1

)
(pX1

2)(p−1)/2−i(−q2Y12)i. (3.12)

Therefore, by (3.11) and (3.12), we get

Y1 = qn−1 (3.13)
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and
(p−1)/2∑
i=0

(
p

2i+ 1

)
(pX1

2)(p−1)/2−i(−q2n)i = ±1. (3.14)

Let

α =

√
pX1

2 +
√
−q2n, β =

√
pX1

2 −
√
−q2n. (3.15)

Then, (α, β) is a Lehmer pair with parameters (4pX1
2,−4q2n). Further let Lr(α, β) (r =

1, 2, · · ·) denote the Lehmer numbers defined by (2.9). We get from (3.14) and (3.15) that

Lp(α, β) = ±1. (3.16)

It implies that the Lehmer number Lp(α, β) has no primitive divisor. But, since p > 5 and
p ≡ 1(mod 4), by Lemmas 6 and 7, (3.16) is false. So we have Z1 6= 1.

Since Z1 6= 1 and p is an odd prime, by (3.5), we get Z1 = p. Substitute it into (3.8),
we have

2p | h(−4pq2). (3.17)

Further, applying Lemma 2.2 to (3.17), we get

2p |
(
q − (−1)(q−1)/2

(
q

p

))
h(−4p). (3.18)

By Lemma 1, we have p > h(−4p) and p - h(−4p). Therefore, by (3.18), we obtain

p | q − (−1)(q−1)/2
(
q

p

)
. (3.19)

Notice that p ≡ 1(mod 4), (q/p) = ±1 and q ≡ ±1(mod p) by (3.19). We have (q/p) =
(±1/p) = 1. Thus, by (3.19), we get

p | q − (−1)(q−1)/2. (3.20)

Since 4 | q− (−1)(q−1)/2, we see from (3.20) that if (1.1) has solutions, then p and q satisfy
(3.1).

Finally, by Lemma 5, we get from (3.20) that

qn − (−1)n(q−1)/2 ≡ 0(mod 4p2). (3.21)

Therefore, if p - n, then from (3.21) we get (3.2). Thus, the lemma is proved.

Lemma 9. If q−(−1)(q−1)/2 has no odd prime divisor p satisfying the following conditions,
then (1.1) has no solutions (x, y, n):

(i) p = 5 and p3 | q − (−1)(q−1)/2.

(ii) p ∈ {13, 17} and p2 | q − (−1)(q−1)/2.

(iii) p ≡ 1(mod 4) and p > 17.
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Proof: By the results of [7] and Lemma 8, if (1.1) has solutions (x, y, n), then q−(−1)(q−1)/2

has an odd prime divisor p with p ≡ 1( mod 4). Moreover, if p = 5, then p3 | q−(−1)(q−1)/2.
Therefore, the conditions (i) and (iii) are proved.

Obviously, if (1.1) has solutions (x, y, n) with p | n, then (2.7) has the solutions
(X,Y, Z, n) = (yn/p,−q2n/p, x, p). Therefore, by Lemmas 2.5 and 3.1, if p ∈ {13, 17}, then
p2 | q − (−1)(q−1)/2 and the condition (ii) holds. Thus, the lemma is proved.

Proof of Theorem.

By Lemma 8, if (1.1) has solutions (x, y, n), then p and q satisfy (3.1). It implies that
q + 1 ≥ q − (−1)(q−1)/2 ≥ 4p and q ≥ 4p − 1. Therefore, if q < 4p − 1, then (1.1) has no
solutions.

On the other hand, using an easy computation, if q < 149, then q does not satisfy the
conditions of Lemma 9.

Therefore, if q < 149, then (1.1) has no solutions (x, y, n). Thus, the theorem is
proved.
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