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Abstract

The aim of this article is to study the Ext ring associated to a Koszul R-
ring and to use it to provide further characterisations of the latter. As such,
for R being a semisimple ring and A a graded Koszul R-ring, we will prove
that there is an isomorphism of DG rings between E(A) := Ext•A(R,R) and
∗-gr T(A) ' E(∗-grA). Also, the Ext R-ring will prove to be isomorphic
to the shriek ring of the left graded dual of A, namely E(A) ' (∗-grA)!.
As an application, these isomorphisms will be studied in the context of
incidence R-(co)rings for Koszul posets. Thus, we will obtain a description
and method of computing the shriek ring for kc[P], the incidence R-coring of
a Koszul poset. Another application is provided for monoid rings associated
to submonoids of Zn.
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1 Introduction

In [3], the authors jointly developed an approach for studying Koszul R-rings
using what was called Koszul pairs, a construction which we briefly recall. Let R
be a semisimple ring. By an R-ring is indicated an algebra in the tensor category
of R-bimodules. Let A be a graded and connected R-ring, A = ⊕n≥0 A

n, with
A0 = R and C be a graded and connected R-coring, C = ⊕n≥0 Cn, with C0 = R.
The pair (A,C) is called an almost-Koszul pair if there exists an isomorphism of
R-bimodules θC,A : C1 → A1 such that the following composition gives the zero
map:

C2
∆1,1−−−→ C1 ⊗ C1

θC,A⊗θC,A−−−−−−−→ A1 ⊗A1 µ1,1

−−→ A2. (1.1)

Note that ∆1,1 is the component of the comultiplication for C, the map µ1,1

is the corresponding component of the multiplication for A and any unadorned
tensor products are considered over R.
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The study of almost Koszul pairs is continued by associating to them three
cochain complexes and three chain complexes, situated in different categories and
which measure how far is A from being a Koszul ring. Theorem 2.3 in [3] shows
that if any of the six complexes is exact, then all of them are so, case in which
the pair (A,C) is called a Koszul pair. It is also proved in the cited article that
this approach agrees with the classical one from [1], in the sense that a Koszul
pair consists of a Koszul R-ring and a Koszul R-coring. The latter structure was
introduced and studied at length as a natural dualisation of the former in [4].

To the components of any (almost) Koszul pair one associates a graded , con-
nected coring and a similar ring. Namely, define T (A) := TorA• (R,R), which is a
connected, graded coring and E(C) := Ext•C(R,R), which is a connected, graded
R-ring. Note that, in general, the construction of E(C) and T (A) works for arbi-
trary graded, connected (co)rings. The properties and the interplay between the
pair (A,C) and these two structures are studied at length in [3] and [4].

Another structure that is of great use is the graded linear dual of a left locally
finite R-(co)ring. For such a structure A, the left graded linear dual is defined
taking into consideration left R-module structures as:

∗-grA = ⊕n≥0
∗(An) = ⊕n≥0 HomR(RA,RR).

The right version is defined analogously. Dually, for a left locally finite con-
nected R-coring C, one can define ∗-gr C and prove that ∗-grA becomes a graded,
connected Rop-coring and ∗-grC becomes a graded, connected Rop-ring. The pro-
perties and some basic results involving the graded linear duals are presented in
[4]. Also, we remark that the notion of a left (right) dual for a left (right) finitely
generated R-ring was first introduced in [2, §17.9].

In this article, for a Koszul pair (A,C), we are interested in studying the
connections between the R-coring T (A) and the R-ring E(C), on the one hand,
and the Ext R-ring E(A) := Ext•A(R,R), on the other. This will be computed
using the left normalised bar resolution of A, denoted by βl•(A), which we will
compare with the Koszul resolution Kl

•(A,C). We will prove that there is a
morphism ϕ : Kl

•(A,C)→ βl•(A), which is a quasi-isomorphism and thus induces
an isomorphism of rings from E(A) to ∗-gr T (A). Further, they are also isomorphic
to E(∗-grA).

As an application, we study the particular case of Koszul posets. Thus, if P
is a finite, graded poset which is Koszul (see [5]) and A := ka[P] is its incidence
R-ring, then ∗-grA ' kc[P], cf. [4]. Moreover, in this particular case, E(A) '
kc[P]!, the shriek ring associated to the incidence R-coring for the poset P. This
isomorphism will give us an easier way of computing the former structure and
concrete examples will be provided in the case of Koszul posets. Furthermore,
we discuss an example in the direction of monoid rings associated to submonoids
of Zn. The Koszulity of the respective monoid ring will be proved using tools
from commutative algebra. Also, the results developed in the second part of the
article will allow a concrete description of the Ext algebra.
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2 Preliminaries

We will present here some results and definitions that are needed later on in the
article. They will be heavily based on [3] and [4], so we indicate these articles as
comprehensive reads for the notions that we introduce and use.

2.1. Notation. Some shorthand notations are used throughout the article and
we collect them here. For the graded, connected R-ring A = ⊕n≥0 An, we
will denote by A+ := ⊕n>0A

n. We can further make the identification A+ =
A/A0. The same notation will be used for the graded, connected R-coring C =
⊕n≥0 Cn, hence we have C+ = C/C0. Note that the (co)multiplications of A
and C respectively induce maps µ+ : A+ ⊗ A+ → A+ and ∆+ : C+ → C+ ⊗ C+

respectively.

The n-fold tensor product of A with itself will be denoted by A(n).

Given that we are working with graded (co)rings, it is worth making a no-
tational remark regarding Sweedler’s notation for comultiplication and a respec-
tive one for multiplication. As such, for the R-ring A, the multiplication map
µ : A⊗A→ A has, for any m,n ≥ 0, the components µm,n : Am ⊗An → Am+n.
The coring A will be called strongly graded if all of these maps are surjective, for
all m, n. Correspondingly, the comultiplication ∆ : C → C ⊗ C of the R-coring
C has its components ∆m,n : Cm+n → Cm⊗Cn and C is called strongly graded if
all of these maps are injective. Graded Sweedler’s sigma notation for the image
of an element c ∈ Cm+n is:

∆m,n(c) =
∑

c1,m ⊗ c2,n.

Also, the identity map of any set M will be denoted by IdM .

2.2. The Normalised (Co)Chain Complex. For computing T (A) and E(C),
respectively, we start by recalling the normalised (co)chain complexes that are
required. We will be brief in doing this and we indicate [4] and [3, §1.5 and §1.15]
for further details.

To start off, Tn(A) = TorAn (R,R) is the n-th homology group of the normalised

bar complex (Ω•(A), d•), where Ωn(A) = A
(n)
+ . The differentials dn : Ωn(A) →

Ωn−1(A) are defined as d1 = 0 and for n ≥ 1:

dn(a1 ⊗ a2 ⊗ · · · ⊗ an) =

n−1∑
i=1

(−1)i−1a1 ⊗ a2 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

It is well known the fact that the normalised bar complex is a DG coalgebra
in the category of R-bimodules, thence T (A) = ⊕n≥0Tn(A) becomes canonically
a connected, graded R-coring.

Dually, if C is a graded connected R-coring, the corresponding normalised

bar complex (Ω•(C), d•) has the terms Ωn(C) = C
(n)
+ and the differentials dn :
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Ωn(C)→ Ωn+1(C) defined as d0 = 0 and for all n ≥ 1:

dn =

n∑
i=1

(−1)i−1IdCi−1
+
⊗∆+ ⊗ IdCn−i

+
.

Now, as in the dual case, En(C) is the n-th cohomology group of this complex,
computed as ExtnC(R,R) and E(C) = ⊕n≥0 E

n(C) has a canonical structure of a
connected, graded R-ring with respect to the concatenation of tensor monomials.

2.3. The Shriek (Co)Ring. Using the notation and the notions from [4], for
and R-bimodule M and a sub-bimodule N ⊆M⊗M , define the R-ring 〈M,N〉 as
being the quotient of the tensor algebra for the R-bimodule M by the two-sided
ideal generated by N , i.e. T aR(M)/〈N〉. It is worth noting that 〈N〉 =

∑
n≥0〈N〉n,

where this n-th degree component is obtained by:

〈N〉n =

n−1∑
i=1

M (i−1) ⊗N ⊗M (n−i−1).

Similarly, one could also define the graded R-coring {M,N} by {M,N}0 = R,
{M,N}1 = M and for all n ≥ 2:

{M,N}n =

n−1⋂
t=1

M (t−1) ⊗N ⊗M (n−t−1).

We will be interested in a particular case of this construction. Namely, for a
graded, connected R-ring A, consider the graded R-coring {A,Kerµ1,1}, which
will be denoted by A! and called the shriek coring of A. Dually, for a graded
connected R-coring C, consider 〈C, Im∆1,1〉, which we denote by C ! and call the
shriek ring of C. For all positive integers n, the n-th degree components of these
(co)rings will be denoted, for simplicity, by A!

n and C !
n, respectively.

2.4. The Koszul Complexes. As mentioned in the introduction, the Koszulity
of an almost Koszul pair is conditioned by the exactness of any one of six Koszul
complexes. We will present the construction of one of them, then explain how
the others can be defined.

Let (A,C) be an almost-Koszul pair. Define a complex of graded left A-
modules (Kl

•(A,C), dl•) as follows. Let Kl
n(A,C) = A ⊗ Cn, for all n ≥ 0 and

the maps dl0(a⊗ c) = π0
A(a)c, where πtA : A → At is the canonical projection on

the homogeneous component of degree t. For n ≥ 1, the differential is defined by
the following equation:

dln(a⊗ c) =
∑

aθC,A(c1,1)⊗ c2,n−1.

Working over the opposite structure, i.e. considering the almost-Koszul pair
(Aop, Cop), one can construct a complex of graded rightA-modules (Kr

•(A,C), dr•)
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whose n-th degree component is Kr
n(A,C) = Cn ⊗A. Also, these two complexes

could be put together to form a complex of graded A-bimodules (K•(A,C), d•)
for which K•(A,C) = A⊗ Cn ⊗A and d• = dln ⊗ IdA + (−1)nIdA ⊗ drn.

By duality, one can construct three complexes of graded left (right, bi-) C-
comodules and using [3, Theorem 2.3], infer that if any of the six complexes is
exact, then all of them are so. If this is the case, the pair (A,C) is called a Koszul
pair.

Theorem 2.13 in [3], Theorems 2.1 and 3.4 in [4] prove that this notion agrees
with the “classical” (cf. [1]) notion of Koszulity, in the sense that a Koszul pair
consists of a Koszul R-ring A and a Koszul R-coring C. Moreover, by [3, Corollary
2.5], the complexes provide appropriate resolutions for A and C, respectively.

2.5. Examples of (Almost) Koszul Pairs. There are a few basic and im-
portant examples of (almost) Koszul pairs that are worth mentioning. These
involve the shriek (co)rings that we introduced and also the R-coring T (A) and
the R-ring E(C), for an (almost) Koszul pair (A,C).

Thus, [3, Proposition 1.18] proves that starting with any strongly graded,
connected R-ring A, there is an almost Koszul pair (A, T (A)). As remarked
in §2.2, T (A) is a DG coring and the map θT (A),A : T1(A) → A1 is induced
by the projection A+ → A1 (note that A being strongly graded implies that
T1(A) = A+/A

2
+ ' A1).

By duality, the same result shows that if C is any strongly graded, connected
R-coring, the pair (E(C), C) is almost Koszul. The R-ring structure of E(C) is
presented in §2.2 and the structural isomorphism θC,E(C) : C1 → E1(C) acts as
θC,E(C)(c) = c+ C0 ∈ C/C0 ' C+, since E1(C) = Ker∆+.

The shriek structures also provide immediate examples of almost Koszul pairs.
Using the fact that A!

1 = A1, take θA!,A = IdA1 and note that A!
2 = Kerµ1,1, so

the condition (1.1) is trivially satisfied and the pair (A,A!) is almost Koszul.

Dually, the pair (C !, C) is almost Koszul as well with respect to the isomor-
phism θC,C! = IdC1 , which satisfies the equation (1.1), as C !

2 = (C1⊗C1)/Im∆1,1.

To end this section, we remark that Theorems 2.1 and 3.4 in [4] provide
necessary and sufficient conditions for these pairs to be Koszul.

3 The Ext and Convolution Rings

All of the R-rings and corings considered are left locally finite, so we can work
with left graded duals without any further assumptions.

Thus, let (A,C) be an almost Koszul pair, with θ := θC,A being the structural
isomorphism. Recall that Kl

•(A,C) = A ⊗ C• is the Koszul complex (in the
category of left A-modules) of the R-ring A and βl•(A) = A ⊗ A•+ is the left
normalised bar resolution for A. Define φ• : Kl

•(A,C)→ βl•(A) as φ−1 = IdR, the
identity on A ' A⊗C0 = Kl

0(A,C) = βl0(A) and for all n ≥ 1 and a ∈ A, c ∈ Cn:

φ : Kl
n(A,C)→ βln(A), φn(a⊗ c) =

∑
a⊗ θ(c1,1)⊗ θ(c2,1)⊗ . . .⊗ θ(cn,1).
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With this definition, using [3, Proposition 1.24] we conclude that φ• is a
morphism of complexes, that lifts the identity of R.

Let M be a left R-module. Recall that, by definition, we have Ωn(A,M) =
HomR(An+,M) and Kn

l (A,M) = HomR(Cn,M), for any n ≥ 0. Thus, by ap-
plying the contravariant functor HomA(−,M) to φ• and using the adjunction
theorem, we get a morphism of complexes:

φ• : Ω•(A,M)→ K•l (A,M),

which acts on f : A
(n)
+ →M and c ∈ Cn as:

φ(f)(c) = f
(∑

θ(c1,1)⊗ θ(c2,1)⊗ . . .⊗ θ(cn,1)
)
.

The particular case that we are interested in is when M = R. Let us note
that the differential ∂n of the first complex is null. Indeed, since the action of A
on R is trivial, for c ∈ Cn+1 and f ∈ HomR(Cn, R), we have:

∂n(f)(c) =
∑

θ(c1,1)f(c2,n).

In particular, taking the cohomology it follows that φ• induces a map from
∗-grC = ⊕n≥0 HomR(Cn, R) to Ext•A(R,R) = E(A).

Now we can prove the following result.

Proposition 1. Let (A,C) be an almost Koszul pair. There exists a canonical
morphism of graded R-rings from E(A) = Ext•A(R,R) with the cup product to the
left graded dual of C with the graded convolution product.

In order to show this, we first proceed with a lemma.

Lemma 1. (a) Let C be a differential graded (DG) coring. Then its left graded
dual, ∗-grC, is a DG ring.

(b) If f : C → D is a morphism of DG corings, then the transpose of this
morphism, ∗f : ∗-grD → ∗-grC is a morphism of DG rings.

In other words, ∗-gr(−) is a functor from the category of DG corings to the
category of DG rings.

Proof: (a) We know by [4] that the left graded dual of an R-ring is an Rop-coring.
Thus, we are left with proving that the multiplication of ∗-grC is compatible with
the differential. Hence, if d denotes the differential of C, then ∗d, its transpose,
is the differential of ∗-grC. We know that d is a coderivation, hence ∆d(c) =∑
d(c1,n)⊗ c2,m + (−1)n

∑
c1,n ⊗ d(c2,m), where ∆ is the comultiplication of C

and c ∈ Cn+m+1. We have to show that:

(∗d)(α ∗ β) = (∗dα) ∗ β + (−1)nα ∗ (∗dβ),
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for all α ∈ HomR(Cn, R), β ∈ HomR(Cm, R). Furthermore, we recall the convo-
lution product of ∗-grC that is defined by:

(α ∗ β)(c) =
∑

α(c1,nβ(c2,m)),

for any α, β as above and c ∈ Cn+m.
Indeed, for c ∈ Cn+m+1, using the notations above, we compute the following:

((∗dα) ∗ β)(c) =
∑

∗dα(c1,n+1β(c2,m)) =
∑

α(d(c1,n+1)β(c2,m)).

The other summand is:

(α ∗ (∗dβ))(c) =
∑

α(c1,n(∗dβ)(c2,m+1))) =
∑

α(c1,nβ(d(c2,m+1))).

Finally,

(∗d(α∗β))(c) = (α∗β)(dc) =
∑

α(d(c1,n+1)β(c2,m))+(−1)n
∑

α(c1,nβ(d(c2,m+1))).

The first equality follows by the definition of ∗d and the second, by the coderiva-
tion property of d and the definition of the convolution product.

(b) The second part of the lemma is easily proved using the definitions. We
already know that the transpose of a graded coring map is a graded ring map,
so we have to show that it is also compatible with the differentials. Let dC and
dD be the corresponding differentials of the DG corings C and D, respectively.
Then f being a morphism of DG corings implies that f ◦ dC = dD ◦ f . Using
only the definitions of the transposed maps we obtain that ∗f ◦ ∗dD = ∗dC ◦ ∗f ,
as needed.

Now we can prove the Proposition 1.

Proof: Recall that there is a morphism of complexes:

φ• : Kl
•(A,C)→ βl•(A,C).

By deleting the component of degree -1 and applying the functor (−) ⊗A R,
this induces a morphism (which we will still denote by φ•) of DG corings:

φ• : Kl
•(A,R)→ Ω•(A).

But as remarked previously, the first DG coring is C• with the trivial differen-
tial. Then, by the first part of Lemma 1, it follows ∗-grC is a DG ring. The second
part of the Lemma 1 and the identification ∗-grΩ•(A) = Ω•(A,R) complete the
proof by passing to cohomology.

Theorem 3.1. If the pair (A,C) is Koszul, then φ• is invertible and it induces
an isomorphism

E(A) ' ∗-gr T (A).
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Proof: Koszulity of (A,C) ensures that the map φ• is a quasi-isomorphism, as
it is obtained from a map between the Koszul and bar resolutions, which lifts
the identity of R. Hence the morphism φ• = H•(φ•, R) is bijective. Using [3,
Theorem 2.9], when (A,C) is a Koszul pair, C ' T (A) and A ' E(C). Since
both of the structures are left locally finite, taking left graded duals preserves the
isomorphisms. Thus, we obtain the required result.

Corollary 1. The isomorphism in the theorem can be further expanded to E(A) '
E(∗-grA).

Proof: If (A,C) is a Koszul pair, using the results in [4], we know that ∗-gr T (A) '
E(∗-grA). Using this isomorphism in the theorem, by transitivity, we obtain
E(A) ' E(∗-grA), as needed.

We can formulate yet another result that characterises Koszulity in terms
of some properties of the Ext ring. In fact, in a more general framework, the
following result holds true:

Lemma 2. Let R be a semisimple ring and V, W be R-bimodules, which are
finitely generated as left R-modules. A morphism of R-bimodules f : V → W is
injective if and only if its left dual ∗f = HomR(f,R) is surjective.

Proof: Let X be the kernel of f , so the sequence 0 → X → V
f−→ W is exact.

Since R is a semisimple ring, it follows that R is an injective R-module. Hence

the functor HomR(−, R) is contravariant exact and the sequence ∗W
∗f−→ ∗V →

∗X → 0 is also exact. It follows that ∗X is the cokernel of f .

Now we can make a remark: X = 0 if and only if ∗X = 0. Indeed, if X = 0,
the result holds trivially. Conversely, assume that ∗X = 0. We will prove that
if X 6= 0, then we can construct a nonzero left R-linear map from X to R, thus
obtaining a contradiction.

Hence, suppose that there exists x 6= 0 an element in X. There is an injective
mapping Rx → X and we will use the fact that R is an injective R-module to
extend this to a map X → R. Let ϕ be the map R → Rx that sends 1 to x.
Then Kerϕ is a left R-submodule of R and R/Kerϕ ' Rx.

Note that if Kerϕ = R, then ϕ = 0, but this contradicts the isomorphism of
R/Kerϕ with Rx, as x was assumed to be nonzero.

For Kerϕ 6= R, since R is semisimple, Kerϕ is a direct summand of R, hence
there exists a left R-submodule J such that R ' Kerϕ ⊕ J . Then we have the
following:

Rx ' R/Kerϕ ' J ↪→ R,

so we can define a map ψ : Rx → R as the composition of the last isomorphism
and the inclusion.
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Thus, using the fact that R is an injective left R-module, we can complete
the diagram:

0 // Rx

ψ

��

// X

g
zz

R

The nonzero map g : X → R provides a contradiction and completes the proof.

We will now make use of this result in the context of the left graded dual
of an R-coring A. We refer the reader to [4] for the construction and the basic
properties of such structures. For any n, m ∈ N, consider the diagram:

∗An+m

∗µn,m //

∆n,m ''

∗(An ⊗Am)

��
∗An ⊗ ∗Am

The vertical arrow is an isomorphism and ∗µn,m is the transpose of the mul-
tiplication of A. Also, the map ∆n,m is the comultiplication of the Rop-coring
∗-grA. Note also that if Ap is a finitely generated R-bimodule, for all p ∈ N, then
An ⊗Am is also finitely generated, for all positive integers n, m.

Using the lemma above, we can prove immediately the following:

Proposition 2. The R-ring A is strongly graded if and only if the Rop-coring
∗-grA is strongly graded.

Proof: Looking at the diagram above, it suffices to note that A is strongly graded
if and only if µn,m is surjective, for all n, m ∈ N. This holds if and only if ∗µn,m
is injective and ∆n,m, which is its composition with an isomorphism, is also
injective. This, in turn, according to the definition, makes the Rop-coring ∗-grA
strongly graded.

In the hypothesis of A being a Koszul ring, we can provide another isomor-
phism that connects the Ext and the shriek structures.

Theorem 3.2. Let A be a connected, left locally finite R-ring. If A is Koszul,
then E(A) is a Koszul R-ring and there exists an isomorphism E(A) ' (∗-grA)!.

Proof: Using the characterisation theorem in [4], A is a Koszul R-ring if and
only if T (A) is a Koszul R-coring. Further, this is equivalent to ∗-gr T (A) being a
Koszul R-ring. Now the isomorphism E(A) ' ∗-gr T (A) from Theorem 3.1 makes
E(A) a Koszul R-ring. Moreover, since ∗-grA is Koszul, using the graded linear
duality theory from [4], we know that E(∗-grA) ' (∗-grA)!. Using Corollary 1, the
required isomorphism follows.



60 Adrian Manea

Note that if E(A) is a Koszul R-ring, then, in particular, it is strongly graded.
This means that it is generated by its homogeneous component of degree 1 or,
equivalently, that the components of the cup product ∪p,q : Ep(A) ⊗ Eq(A) →
Ep+q(A) are surjective, for all p, q ∈ N.

The interplay between Koszulity and the Ext ring can be further put together
in a simple, yet comprehensive corollary:

Corollary 2. If A is a Koszul R-ring then T (A) is a strongly graded R-coring
and E(A) is a strongly graded R-ring.

4 Applications

4.1 Koszul Posets

Let P be a finite partially ordered set (poset). We call P graded if all of the
maximal chains in P have the same length. It is a basic fact that P is graded if
and only if the incidence algebra of P is graded (hence the name).

Let k be a field. We are interested in applying the results in the previous
section for A = ka[P], the incidence algebra of P which is an R-ring with respect
to the semisimple ring R = k#P . We will also consider kc[P], which is the
incidence R-coring of the poset P. Call the poset P Koszul when ka[P] is a
Koszul R-ring (or, equivalently, when kc[P] is a Koszul R-coring). For more
details on these structures, we indicate [5, §2].

Now we can apply Theorem 3.2 in this context.

Proposition 3. Let (P,≤) be a Koszul poset. Let A = ka[P] be its incidence
R-ring and C = kc[P] be its incidence R-coring. Then there is an isomorphism
of graded R-rings:

E(ka[P]) ' kc[P]!,

where the former is the shriek ring associated to the incidence R-coring of P.

Proof: Using Theorem 3.2 above, note that, by the graded linear duality theory
developed in [4], applied to the incidence R-ring ka[P], we have the isomorphism
ka[P] ' ∗-gr kc[P]. Since P is Koszul, it follows that (A,C) is a Koszul pair. We
know that the pair (A,A!) is Koszul as well and that there exists a canonical
isomorphism A! → T (A). Moreover, T (A) ' C and the pair (C !, C) is also
Koszul. Putting these together in Theorem 3.1, we obtain the desired result.

This result brings a simplification for computing the Ext structure of an inci-
dence ring. It will provide a method of presenting the structure in a generators
and relations form. This can be done using an isomorphism with a shriek ring, as
follows. Let Γ be the finite quiver associated to the poset P that is its Hasse dia-
gram. Then, via the isomorphism in the proposition above, we have the following
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(a) Planar Koszul Tiling
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(b) Nested Koszul Diamond

Figure 1: Concrete Examples of Koszul Posets

explicit description:

E(ka[P]) ' kc[P]! =
ka[Γ]〈 ∑

x<z<y

ex,z ⊗ ez,y
∣∣∣ l([x, y]) = 2

〉 . (4.1)

For example, the poset in Figure 1(a) is Koszul, by [5, §2.12]. Thus, the
incidence algebra of the corresponding quiver, A = ka[Γ] is generated by the set
B = {e1,2, e1,3, e2,4, e3,4, e3,5, e4,6, e5,6}. The relations are given by the k-
vector space R spanned by parallel paths (i.e. sharing the source and the target)
of length two. Namely: R = 〈e1,2 ⊗ e2,4 + e1,3 ⊗ e3,4, e3,4 ⊗ e4,6 + e3,5 ⊗ e5,6〉.

Therefore, the identification in equation (4.1) gives the isomorphism:

E(ka[P]) ' kc[P]! = ka[Γ]/R.

Another example that we consider is that of a nested vertical diamond. [5,
§2.14] proves that these posets are also Koszul. As such, consider the poset
in Figure 1(b). A similar reasoning as above provides the generator set B =
{e1,2, e1,3, e1,4, e1,5, e2,6, e3,6, e4,6, e5,6}. In this case, the ideal of relations is
generated by one element:

R =
〈 5∑
i=2

e1,i ⊗ ei,6
〉
.

4.2 Monoid Rings

We can provide another type of examples for Koszul rings, taken from the
class of monoid rings and using the special case of submonoids of Zn, the n-fold
product of the integer set. We will partly follow the approach from [7, §1.2].
The basic setup is as follows. Consider (M,+) an associative and cancellative
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monoid. By definition, this means that if a+b = a+d for some arbitrary elements
a, b, d ∈M , then a can be cancelled and b = d. Analogously, if b+a = d+a, then
b = d. Let k be a field. The monoid ring kM associated to M has a k-vector
space structure with a basis given by the elements {ξm}m∈M indexed on M and
multiplication defined as ξm · ξn = ξm+n, extended k-bilinearly.

To study Koszulity, consider A = kM , which could be decomposed as A =
kξ0 ⊕ A+, where A+ = kξm, m 6= 0. This way A becomes an augmented k-
algebra.

Let A1 be the k-span of all the indecomposable elements of M . That is, those
m ∈ M which cannot be written as m = m1 + m2, with m1, m2 ∈ M , both
nonzero. It is known that A is generated as an k-algebra by A1 and it becomes
N-graded if and only if there exists a functional on Rn which takes the value
1 on all indecomposables m ∈ A1. The homogeneous component of degree n is
generated by elements of the form ξm, where m can be written as a sum of exactly
n indecomposable elements of the monoid. In this case, we write deg(m) = n.

We can describe the Ext algebra of a monoid ring A = kM as follows. As-
sume that A has a finite number of indecomposable elements. Thus An = 〈ξm |
deg(m) = n〉, hence A is finitely generated. Now, the graded linear dual A∗-gr has
a dual basis over the field k in the usual sense. That is, A∗n = 〈ξ∗m | deg(m) = n〉.
The comultiplication ∆ : A∗-gr → A∗-gr ⊗A∗-gr acts as:

∆(ξ∗m) =
∑
m

ξ∗m′ ⊗ ξ∗m′′ .

In the sum above, we have used a Sweedler-type notation, in the sense that
the indices m′ and m′′ are arbitrary and sum up to m.

Then, using the isomorphism in Theorem 3.1, we can provide a presentation
of E(A) with generators and relations. Namely, E(A) is the quotient of the tensor
algebra of ∗A1 modulo the ideal generated by the image of ∆1,1 : ∗A2 → ∗A1⊗∗A1.
Note that for deg(m) = 2, ∆1,1(ξ∗m) =

∑
ξ∗m′ ⊗ ξ∗m′′ , where m′ and m′′ are

indecomposable and m′ +m′′ = m. Thus, we obtain:

E(A) =
k[ξ∗m | deg(m) = 1]〈

∆1,1(ξ∗m) | deg(m) = 2
〉 . (4.2)

As mentioned, Koszulity of monoid rings (and semigroup rings, in general) is
studied in relation to posets in [7]. We will restrict here to studying a concrete
example with a slightly different approach.

Let M be the submonoid of Z2 generated by the elements m1 = (2, 0), m2 =
(0, 2), m3 = (1, 1). These elements are indecomposable in M , so if A = kM , then
A0 = kξ0 ' k and A1 is generated as a k-vector space by the set {m1, m2, m3}.
It is clear that for this particular case, A is an N-graded k-algebra.

Moreover, we can provide a presentation of A with generators and relations.
Note that A is generated by A1 and has as unique relation ξm1

· ξm2
= ξ2

m3
.

Thus, we can identify A with a quotient of a polynomial algebra, namely A '
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k[X,Y, Z]/(X2 − Y Z). The fact that this is a Koszul R-ring can be seen using
[6, Corollary 6.3].

Now we can compute explicitly the Ext algebra of A. Using the presentation
in equation (4.2), make a shorthand notation ξ∗mi

= xi and we obtain readily:

E(A) =
k〈x1, x2, x3〉

〈x2
1, x

2
2, x

2
3 + x1x2 + x2x1, x1x3 + x3x1〉

.
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