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Abstract

The paper study the asymptotic behaviour of the heat transfer in a
bounded domain formed by two interwoven connected components sepa-
rated by an interface on which the heat flux is continuous and the temper-
ature subjects to a first-order jump condition. The macroscopic laws and
their effective coefficients are obtained by means of the two-scale conver-
gence technique of the periodic homogenization theory for several orders of
magnitude of the conductivities and of the jump transmission coefficient.
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1 Introduction

This paper deals with the asymptotic behaviour (for € — 0) of the heat trans-
fer problem in the framework introduced by [10], a realistic e-periodic structure
composed of two connected components. The reference conductor (where the con-
ductivity is of unity order with respect to ¢) is set in the ambient component, the
only one which is reaching the boundary of the domain. The second component
contains the core material, where the conductivity is of e2#-order, with 3 € (0, 1].
The jump transfer coefficient of the interface has e"-order, with r € (—1,1].

Since now, this problem has been treated only for § = 0 and when the core
material is composed of isolated grains (see [2], [3], [5], [7] and [8]). For a structure
with connected core material, only the case § = 0 and r = 1 has been rigorously
studied (see [6]).

In order to derive the macroscopic behaviour we obtain the two-scale homog-
enized systems by applying the two-scale convergence technique of the periodic
homogenization theory (see [1] and [9]). In each distinct case we uncouple the
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local-periodic problems and determine the specific effective coefficients of the
macroscopic problems, which, luckily here, are well-posed and therefore, uniquely
defining the asymptotic behaviour of the temperature.

2 The heat conduction problem

Let 2 be an open connected bounded set in RY (N > 3), locally located on one
side of the boundary 02, a Lipschitz manifold composed of a finite number of
connected components.

Let Y, be a Lipschitz open connected subset of the unit cube Y = (0,1). We
assume that Y, = Y \ Y, has a locally Lipschitz boundary, that the intersections
of Y, with 9Y are reproduced identically on the opposite faces of Y,

Y ={yecdY:y =1}, Y ={ycdY: y, =0}, Vic{1,2,...,N}, (2.1)

and that Y, N % cc *. We assume also that repeating Y by periodicity,
the reunion of all the Y, parts is a connected domain in RY with a locally C?
boundary; we denote it by RY and we set the origin of the coordinate system
such that there exists R > 0 with the property B(0, R) C Rflv . Moreover, we
denote I' := 9Y, N dY}, and v the normal on I' (exterior to Y;).

If e; stands for the unit vector of the canonmical basis in R then, for any
e € (0,1), we introduce

Z.={keZ": ck+eY CQ}, (2.2)
I.={k€Z.: cktee,+eY CQ, Vie{l,..,N}}. (2.3)
The core component of our structure is defined by
Q. = int ( U ek + ayb)> (2.4)
kel.
and the reference conductor by

Qea = Q\ Qo (2.5)

The interface between the two components is denoted by
I'c = 0Qcq N Oy, = 0Ny, (2.6)

and we have to remark that all the boundaries are at least locally Lipschitz, that
Q.. is connected and that ., can be also connected.
Next, we introduce the Hilbert space

H6:{1)6L2(Q):vQ GHl(Qm),vQ GHl(stLv:OonaQ} (2.7)
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endowed with the scalar product

(1, 0) . = / Vavo+ 22 [ VuVo e / o], (2.8)
Qea Qep e
where [u] = Yepu — Yequ and yequ, Yepu are the traces of w on I'c defined in

HY(Q.4) and H(Q.,), respectively.
Our domain has the following well-known properties (see [4], [6]):

Lemma 1. There exists an extension operator P. € L (H'(Qeq); H(Q)) such
that
P.v=vin Qg, (2.9)

|VP&-U‘L2(Q) S C IV’U|L2(QEQ) 5 Yv € Hl(QEa), (210)
where C' > 0 is a constant independent of €.

Lemma 2. For any v € H. there exists C > 0, independent of e, such that

W20y < C V0l 2y - (2.11)
Y eqvlar,, < C (|U|L2(Qm) te |W|L2(Qm)) , (2.12)
[ol5(0,,) < € (22 Pestliae,) + 2 V0l ) - (2.13)

Remark 1. Taking in account the L2—norm of the jump on T, the results of the
previous Lemma have an important consequence:

|U|L2(ng) <C |U|HE Vo € H. (2.14)

For ¢ € (0,1) we introduce the transmission factor h®(x) = h(z/e), where
h € C(Y), and the symmetric conductivities af;(z) = a;;(z/¢), b5;(x) = bij(x/e),
where a;;, b;; € L2, (Y), with the property that there exists § > 0 such that

per

h >4, ae onY, (2.15)

ai;&&; > 6&& and bj&&; > 66, VEERY, ae. on Y. (2.16)

Finally, considering 8 € (0,1], r € (—1,1] and f € L?(Q2), we look for the
temperature distribution u® which satisfies the heat conduction equations

0 ou®
9 (e — finQ.,, 2.1
o (4 axj) fin (2.17)
0 ou®
_g28 €2 ) = fi
€ oz, (bwax]) fin Qg, (2.18)

and the following transmission and boundary conditions
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u® ou® -
a?.ijf zﬁbfja v; = €"h® (Yepu® — Yequ®) on I, (2.19)

u: =0 on ON. (2.20)

The variational formulation of the problem (2.17)-(2.20) is the following:
To find u® € H, such that

Qu® dv ous v
| bE. —— L R _ v . (291
/szlj 8Jjj ox; te /Q bz] 813] 6551 +e AE [U M’U] \/Qf’l)7 v E ( )

Applying Lax-Milgram Theorem and using (2.11)-(2.16), we get:

Theorem 1. For any € € (0,1) there exists a unique u® € H_, solution of the
problem (2.21).

3 A priori estimates of the temperature

First, using coerciveness property and the inequalities (2.11)-(2.14), we find some
C > 0, independent of ¢, such that

0] L2y < O VU] o) < Oy €7 |V Lo,y S C, 2 [0 pop, < C. (3.1)

Next, using the notations

~ _Ju  in Q. —~c¢ [ Vu in Q.
fo ™ { 0 inQ-0Q, Vit = { 0 inQ- Q. (32)

Vu € H'(Q20), o € {a, b}, and introducing the Hilbert spaces

Hp., Ya) = {¢ € H.,, (RY) : ¢is Y-periodic} , (3.3)
0, (Y,) = {(p € HL, (RY): /Y =0 and ¢ is Y-periodic}, (3.4)

we can present the main compactness result:

Theorem 2. For every 3 € (0,1] and r € (—1,1] there exists u, € Hi(Q), 4 €
(Q H;ET(Y )) and w, € L?(Q, L2,,.(Y;)) such that the following convergences

per

hold on some subsequence

62La = Xa (vxua + vyna('a y)) ) (36)

~¢ 25
uli = XpUp, (37)
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where Xo 1 L2(QxYy) = L2(QxY), a € {a,b}, denotes the straight prolongation
with zero; sometimes it can be identified with the characteristic value of Y,.
When 8 € (0,1) we find that wy is independent of y, with uy € L*(Q).
When 8 =1 it holds

eV, 22\, V. (3.8)

Proof: The properties (3.5)-(3.7) follow from the a priori estimates. They can
be proved by adapting the methods of [1], except the fact that u, has to vanish

on 9. For this, as the estimations (3.1) imply that {|VuZ|L2(Q )} is bounded,
ga £

then using the Poincaré-Friedrichs inequality and the extension operator (2.9)-
(2.10) we obtain

|PsUZ|H5(Q) <cC \VP5u§|L2(Q) <cC |vuz€z|L2(Qm) <G,

which shows that {P.ug}, is bounded in Hg(€2). Hence, there exists u}, € Hg ()
such that P.u§ — uj, in Hg(2) and consequently xo({%})P.u; 2 Xa(y)ul,. On
the other hand, as Xa({%})PsuZ = u¢ and ug 2 Xa(y)uq, then, by identifying
the limits, we get u, =, in Q.

When g € (0,1), we have to prove that wu; is independent of y. Using the a

N
priori estimates (3.1), for any ¥ € {D(Q; c (Y))} it holds

per

Vo, N de =8B | Y z
6/9Vub(x)\ll (ac, 5) dex =¢ Pe /QVub(x)\I/ (ﬂc, 5) dx — 0, (3.9)

which is identical to that from which the same property follows in the classical
way (see [1]).

When § = 1, the estimations (3.1) imply that {5%2} is bounded in L?(Q)
and hence we can assume that it has a two-scale limit on fuhe same subsequence
as {Eﬂ%}e(see the main compactness theorem of [1] or [9]). The form of this

limit, that is (3.8), can still be found by adapting the standard methods (see
Proposition 1.14 of [1]).
O

Now, for any k € {1,2,..., N}, we define n,, € PMI;ET (Y,) as the unique solution
of the local-periodic problem

9 0 (Nak + yr) .
.. arv IR/ Y 1
i (au a9, 0 inYy, (3.10)
aij 9 (ar: + yr) v; =0 onl. (3.11)

y;
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The symmetric and positively defined effective conductivity A is given by

Aij:/ (i + a2 yay, Vije{1,2,.,N}. (312
Y, Oy,

a

Finally, we introduce the functions wy and wi, which are the only solutions
in H',.(Y;) of the following two local-problems:

per
0 (’)wo .
_aiyz ( Uay?> =1 1m Yb, Wo = 0 on ].—‘7 (313)
0 ow, . ow,
—87% ( L‘]ay‘j> :lln Yb, Z‘]a l/z+hw1 —OOHF (314)

Due to the existence of the first-order jump 1nterface I'., there are two effective
coeflicients describing the microscopic transfer:

e /F hy)do  and  wih— /F w1 (y)h(y)do. (3.15)

4 The homogenization process for 5 € (0,1) and r =1

Remark 2. Using Theorem 2, we pass (2.21) to the limit, with the following test
function

o(z) = (cba(x) + £pq (:g f) By (2) + 0 (:c g)) : (4.1)
where ®, € D(Q) and ¢, € D(Q;Cpe,(Ya)), a € {a,b}. We get
3% 0%, a@a o .
Q><Y ( 3yj> (83;‘i + a%‘) Jr/Qh(ub —ug)(Pp — P,) =
=/ (Xa®a + x6Pp) f- (4.2)
axy

Introducing the Hilbert space Vi := Hg () x L2(Q) x L*(9, H;ST(Y ), endowed
with the following scalar product

(tas 15, 70) » (By By, 0, / Vita Vb, + / (up — wa) (B — D) +
Q

+/ VynaVypa (4.3)
QxY,

then by density arguments we prove that (ug, up,m,) s the only solution of:
To find (uq,up,n,) € Vi satisfying

B aua ana a¢a a@a 7 o _ —
/QxYa i <3$j " 8yj) <3$i * Y ) +h/ﬂ (= a)(® = Pa) =

- / (Xaq)a + Xb(I)b) f7 v ((I)av (pba @a) S Vl- (44)
QXY
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Theorem 3. If u. is the solution of the problem (2.21) the convergences (3.5)-
(3.8) hold on the whole sequence and the limit (uq,up) € HE(Q) x L2(2) is the
unique solution of the homogenized problem

Oug 09, ~ B
[ Asgie g+ [ B - @ - 0. = [ (Vilwe+ i g

V(®,, ®p) € HY(Q) x L2(Q). (4.5)
Consequently, the homogenization process is summarized in this case by:
Theorem 4. If u® is the solution of the problem (2.21) then

25 Y,
u® =X u+ | hbxbf, (4.6)

where u € H}(Q) is the unique solution of the Dirichlet problem

AVuV® = / fo, V& € HL(Q). (4.7)
Q Q

5 The homogenization process for 5 € (0,1) and r € (—1,1)

Remark 3. Multiplying the variational problem (2.21) with e'=", setting (4.1)
as test function and passing to the limit, we find that:

uq = up € Hy(Q) (5.1)

Neat, passing to the limit with (4.1) as test function in (2.21) with &, = @, = @,

we obtain
Oug  On, 0P Oy, /
i dxdy = dd 5.2
Jo oo (o ) (o ) o= [ e 62

By density arguments we remark that (u,n,) € Va := Hg(Q) x L*(%, H;er(Y )
is solution of the problem:
To find (u,n,) € Va satisfying

ou 877a> (5‘@ &pa) /
aij | =— + + dxdy = ddx
/Qm d <8xj oy, ) \ow, "oy, ) Y= )T

V(®,paq) € Va. (5.3)

It easy to verify that (5.3) is a well-posed problem in the Hilbert space Va,
endowed with the scalar product:

((u;ma) , (2, 0a)) / Vuve + / VynaVyPa- (5.4)
QxY,
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In the present case the asymptotic behavior is summarized by:

Theorem 5. If u® is the solution of the problem (2.21) then,

)

u Ry (5.5)

where u € H} () is the unique solution of (4.7).

6 The homogenization process for =1 and r=1

Remark 4. For ® € D(Q) and ¢, € D (;C53,.(Ya)) , with a € {a,b}, we pass
(2.21) to the limit, using the test function

xT

v(z) = (@(x) + €pq (x, g) s b (x, g)> , x el (6.1)

It follows that

Oug  Ong 0P 8<pa) / Ouy, Oy,
ij + »
/QXYG, 9 (ij 8yj> (8%— - y; - QxY, Jayj Oy; *

t [ hwew@-o= [ ges [ e ©2)
QxT QxY, QxYy,
Denoting Vs := Hj(Q) x L*(Q; H,,,.(Y3)) x L* (2, ﬁ;e,«(Ya)), we find by density

arguments that (uq, up,nq) is the only solution of the problem:
To find (ug,up,na) € V3 satisfying

dug 87711 0P 8<pa> /
i + h — Uq )
/ﬂxYa o (3%‘ " 3yj> (5% * dyi X (up = ua) (0 — @) +

Oup O
+ / by e O _ / fo+ / Fon V(@ onpa) € Vi (63)
QXY 8yj ayi QxY, QxYy

The problem (6.3) is well-posed in V3, Hilbert space with the scalar product:

<(ua,’LLb,77a) y ((b7<pa7(Pb)>V3 = / Vu, Vo +/ VUbVLPb—f—
Q QxY

4 / (wy — ua) (g — ®) + / Y, 0aVy . (6.4)
QxI QxY,

Theorem 6. If u® is the solution of (2.21) then

2s

ue 2 (| Y, | +@z)u+w1be, (6.5)

where u € H} () and wy € H}

per

(V) are defined by (4.7) and (3.14).
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Proof: If u € H}(Q) is the solution of the homogenized system (4.7) then it is
easy to verify that the only solution of the problem (6.3) is given by

ua(:c):(| Ya\+wTh)u(x), zeQ, (6.6)
up(@,y) = (| Ya | +wih) ul@) + wi(p) f(@), (2,9) €Qx Vi, (6.7)

nae9) = (| Ya | +00) 1o () -0, (09) €9% Yo (69)

7  The homogenization process for S =1 and r € (—1,1)

The preliminary result of this case is the following:

Lemma 3. For any ® € D(Q) and ¢, € D(Q;C2,.(Ya)), o € {a,b} such that

per
ou(7,y) = @(z), Y(2,y) € A x T (7.1)
we have:
Ouy 877&) (8(13 6‘g0a> / Ouy, Oy,
a;; + + + bij— =
/QxYa ’ <53?j yj ) \Oz; Oy, axv,  Oy; Oy
:/ fo —|—/ fop. (7.2)
QXYQ QXY],
Moreover,
Ug = up on L x . (7.3)

Proof: Multiplying (2.21) with !, setting the test function (6.1) with ® €
D(Q), vo € D(2;C2.(YR)), b € D(Q;C2,.(Y3)) and passing to the limit we get

per per

/Q ) () = e (w) (r(a.1) = B(z) = 0 (7.4)

which obviously imply (7.3).

In order to obtain (7.2) we set in (2.21) the test function (6.1) with the
supplementary condition (7.1). The proof is completed again by passing to the
limit, the term corresponding to the integral on I'. being of order e'*7/2. 0

In the light of the previous result, we introduce the space

V= {(®,¢) € Hy(Q) x L*(% H ), (Y3), p=PonQxT}. (7.5

per
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Remark 5. Using density arguments it follows that
((tgsup),na) € Vi :=V x L2(Q; HY,,(Y,)) is solution of the problem:

per

To find ((ua,up),Na) € Va satisfying

Ouy 87}a) ( 0P 8g0a) / Ouy, Oy,
aij + + + bij5——=— =
/Qxya ! <3$j dy; ) \Oz; ~ 0Oy axy, Oy Oy

- / 1o+ / fon V(@ 0n)00) € Vi (7.6)
QxY, QXY

The problem (7.6) is a well-posed in the Hilbert space Vy, endowed with the
scalar product:

((ta ). 10) » (2 0), 00 v = / VuaVo+ [ Vet [ VyeaVyia
Q QxYy QAxY,

Thus, in the present case the results of the homogenization process can be
summarized by:

Theorem 7. If u® is the solution of the problem (2.21) then,

ut B Yo lu+ woxsf, (7.7)
where u € H}(Q) and wo € HY,,. (V) are defined by (4.7) and (3.13).

per

Proof: If u € H}(Q) is the unique solution of (4.7) then we verify that the unique
solution of (7.6) is the following:

ou
Uq = |Ya|u7 Up = |Ya‘u+w0.f7 Na = ‘Ya|77ak87$k7

where 7% and wq are defined by the problems (3.10)-(3.11) and (3.13). O
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