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Abstract

Conformally flat generalized globally framed f -space-forms are studied.
In particular, in the case of corank s > 2, the ϕ-sectional curvature c,
which is pointwise constant, determines the curvature tensor field. The
constancy of c implies the flatness of the manifold. If c is not constant,
a local classification of the considered spaces is obtained. This allows to
produce explicit examples and to discuss the existence of those spaces whose
underlying f -structure is of a particular type.
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1 Introduction

The study of the curvature and the classification of Riemannian manifolds in
the context of almost Hermitian or contact Geometry are classical problems.
Analogously, interesting questions arise looking at the behavior of the curvature
of manifolds carrying a metric f -structure with parallelizable kernel (briefly, f.pk-
structure).

In particular, in [12], we introduced the concept of generalized f.pk-space
form, requiring that the curvature of a metric f.pk-manifold (M2n+s, ϕ, ξi, η

i, g),
i ∈ {1, . . . , s}, involves a set of smooth functions F1, F2, Fij , with Fij = Fji
for i, j ∈ {1, . . . , s}. Even if the problem of the classification of these spaces is
quite far from being solved, several results are known. In particular one gets the
pointwise constancy of the ϕ-sectional curvature c.

In this paper we study conformally flat generalized f.pk-space-forms of any
dimension 2n+ s, with n ≥ 1 and s > 2. The paper is organized as follows.
In Sections 2, 3, several properties of these spaces are stated, showing that the
curvature tensor depends on the function c, only. The constancy of c implies the



406 M. Falcitelli and A. M. Pastore

flatness of the manifold. In Section 4, which is devoted to the case c non constant,
we prove that in an open neighborhood of a point p such that c(p) 6= 0, we have
c < 0 and (M, g) is locally a warped product manifold. Moreover, a conformal
change of g determines a new metric ḡ so that (M, ḡ) is locally isometric with the
Riemannian product of two manifolds, both with constant sectional curvature,
one the opposite of the other. We also give explicit examples of conformally flat
generalized f.pk-space-forms with negative ϕ-sectional curvature. Finally, in Sec-
tion 5, we discuss the existence of conformally flat generalized f.pk-space-forms
whose underlying structure is of special type.

All manifolds are assumed to be connected. Following [18], for the curvature
of a Riemannian manifold we adopt the definitions R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ],
R(X,Y, Z,W ) = g(X,R(Z,W, Y )) and, for any 1-form η, for any X,Y ∈ Γ(TM),
2dη(X,Y ) = X(ηY ) − Y (ηX) − η[X,Y ]. We also use the Einstein convention,
omitting the sum symbol for repeated indexes, if there is no doubt.

2 Preliminaries

An f.pk-manifold, also called a globally framed f -manifold, is a manifold M2n+s

on which is defined an f -structure, that is a (1, 1)-tensor field ϕ of rank 2n and
corank s, such that ϕ3+ϕ = 0 and the subbundle ker ϕ is parallelizable, [4, 9, 14].
Hence ker ϕ admits a global frame {ξi}, i ∈ {1, . . . , s}, and 1-forms ηi, satisfying
ηi(ξj) = δij and ϕ2 = −I + ηi ⊗ ξi, from which ϕ(ξi) = 0, ηi ◦ ϕ = 0 follow.

It is well-known that one can consider a Riemannian metric g on M2n+s sati-
sfying the compatibility condition g(ϕX,ϕY ) = g(X,Y )−

∑s
i=1 η

i(X)ηi(Y ), for
any X,Y ∈ Γ(TM2n+s), and the structure (ϕ, ξi, η

i, g) is then called a metric
f.pk-structure. So, TM2n+s splits as orthogonal sum of its subbundles Imϕ and
ker ϕ. We denote their respective differentiable distributions by D and D⊥. Ob-
viously, ϕ|D determines an almost Hermitian structure on the distribution D. Let
Φ be the fundamental 2-form on M2n+s, defined by Φ(X,Y ) = g(X,ϕY ), for any
X,Y ∈ Γ(TM2n+s). An f.pk-structure on M2n+s is said to be normal if the ten-
sor field N = [ϕ,ϕ]+2dηi⊗ξi vanishes, [ϕ,ϕ] denoting the Nijenhuis torsion of ϕ.

Given a metric f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) let F denote any set of

smooth functions Fij on M2n+s such that Fij = Fji for any i, j ∈ {1, . . . , s}. Then
M2n+s is called a generalized f.pk-space-form, if there exist smooth functions
F1, F2,F such that the curvature tensor field satisfies:

R(X,Y, Z) = F1{g(ϕX,ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X}
+F2{g(Z,ϕY )ϕX − g(Z,ϕX)ϕY + 2g(X,ϕY )ϕZ}
+
∑s
i,j=1 Fij{ηi(X)ηj(Z)ϕ2Y − ηi(Y )ηj(Z)ϕ2X

+g(ϕY, ϕZ)ηi(X)ξj − g(ϕX,ϕZ)ηi(Y )ξj}.

(2.1)
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Then, for the Ricci tensor ρ, the Ricci operator Q, the scalar curvature τ , we get:

ρ(X,Y ) = ((2n−1)F1 +3F2 +

s∑
i=1

Fii)g(ϕX,ϕY )+2n

s∑
i,j=1

Fijη
i(X)ηj(Y ) (2.2)

Q(X) = −((2n− 1)F1 + 3F2 +

s∑
i=1

Fii)ϕ
2X + 2n

s∑
i,j=1

Fijη
i(X)ξj (2.3)

τ = 2n((2n− 1)F1 + 3F2 + 2

s∑
i=1

Fii) (2.4)

Moreover, as proved in [12], from (2.1) we get that the ϕ-sectional curvature is
p.c. c = F1 + 3F2 and the mixed sectional curvatures are K(ξk, X) = Fkk.
For s = 1, we obtain a generalized Sasakian-space-form M2n+1(f1, f2, f3) with
f1 = F1, f2 = F2 and f3 = F1 − F11. Generalized Sasakian-space-forms, intro-
duced and studied by Alegre, Blair and Carriazo [1], are locally described, under
the conformal flatness hypothesis, by U.K. Kim in [17], as follows.

Theorem 1. Given a generalized Sasakian-space-form M2n+1(f1, f2, f3), one
has:
1) if n > 1, then M is conformally flat if and only if f2 = 0,
2) if M is conformally flat and ξ is a Killing vector field, then M is flat, or of
constant curvature, or locally the product N1 × N2n, N1 being a 1-dimensional
manifold and N2n an almost Hermitian manifold of constant curvature.
In any case, M is locally symmetric and has constant ϕ-sectional curvature.

In order to study conformally flat generalized f.pk-space-forms, we recall that,
given a Riemannian manifold (M, g), dimM = m ≥ 3, the Weyl curvature tensor
field C is defined by

C(X,Y, Z) = R(X,Y, Z)
+ 1
m−2 (ρ(X,Z)Y − ρ(Y, Z)X + g(X,Z)Q(Y )− g(Y,Z)Q(X))

+ τ
(m−1)(m−2) (g(Y,Z)X − g(X,Z)Y ).

(2.5)

If m ≥ 4, then M is conformally flat if and only if C = 0. Moreover, if C = 0

the Schouten tensor L = − 1
m−2

(
Q− τ

2(m−1)I
)

is a Codazzi tensor, that is it

satisfies (∇XL)Y = (∇Y L)X, ∇ denoting the Levi-Civita connection, [23].

3 Algebraic properties

We begin this section considering f.pk-manifolds (M2n+s, ϕ, ξi, η
i, g), s ≥ 2.

Proposition 1. Let T1, T2 be the (1, 3)-tensor fields defined by

T1(X,Y, Z) = g(ϕX,ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X
T2(X,Y, Z) = g(Z,ϕY )ϕX − g(Z,ϕX)ϕY + 2g(X,ϕY )ϕZ

Then, if n = 1, one has T2 = 3T1.
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Proof: Assuming n = 1, since T1 and T2 both vanish on any triplet of vector
fields such that one of them is in D⊥, it is enough to evaluate them on the triplets
(X,ϕX,Z), with X,Z ∈ D. Given X,Z ∈ D there exist smooth functions λ, µ
such that Z = λX + µϕX and by direct calculation one has

T1(X,ϕX,Z) = −λg(X,X)ϕX + µg(X,X)X
T2(X,ϕX,Z) = −3λg(X,X)ϕX + 3µg(X,X)X = 3T1(X,ϕX,Z).

Lemma 1. Let M2n+s(F1, F2,F) be a conformally flat generalized f.pk-space-
form. If n ≥ 2, then F2 = 0 and c = F1 is the ϕ-sectional curvature.

Proof: Let X,Z be orthonormal vector fields in D such that g(Z,ϕX) = 0.
By (2.5), (2.1), (2.2) one has 0 = C(X,ϕX,Z) = −2F2 ϕZ, so F2 = 0 and
c = F1.

Proposition 2. Let M2n+s(F1, F2,F) be a conformally flat generalized f.pk-
space-form with ϕ-sectional curvature c. Then, one has:

R(X,Y, Z) = c{g(ϕX,ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X}
+
∑s
i,j=1 Fij{ηi(X)ηj(Z)ϕ2Y − ηi(Y )ηj(Z)ϕ2X

+g(ϕY, ϕZ)ηi(X)ξj − g(ϕX,ϕZ)ηi(Y )ξj},
(3.1)

Proof: The statement easily follows by (2.1), Proposition 1 and Lemma 1.

Lemma 2. Let M2n+s(F1, F2,F) be a conformally flat generalized f.pk-space-
form with ϕ-sectional curvature c. Then, one has: sc = 2

∑s
i=1 Fii.

Proof: Let X ∈ D be a unit vector field. By (2.1), (2.2) and (2.3) we have
R(X,ϕX,X) = −(F1 + 3F2)ϕX, ρ(X,X) = (2n − 1)F1 + 3F2 +

∑s
i=1 Fii and

ρ(X,ϕX) = 0. So, the condition C(X,ϕX,X) = 0 implies:

s(1− s)(F1 + 3F2)− 12(n− 1)(n+ s− 1)F2 − 2(1− s)
s∑
i=1

Fii = 0.

Since s ≥ 2, assuming n = 1, we obtain sc = s(F1 + 3F2) = 2
∑s
i=1 Fii. In the

case n ≥ 2, one gets the statement also applying Lemma 1.

Proposition 3. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form. Then
M2n+s is conformally flat and Einstein if and only is it is flat.

Proof: Let M2n+s be conformally flat and Einstein. Since dimM2n+s ≥ 4,
M2n+s has constant sectional curvature c = F1 + 3F2. On the other hand, for
any unit X ∈ D and k ∈ {1, . . . , s} we have K(X, ξk) = Fkk. It follows Fkk = c
and, combining with Lemma 2 we get c = 0. Then, from (2.2) and (3.1), R = 0
follows. The converse statement is obvious.
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3.1 The case of corank s > 2

From now on we assume s > 2, since the case s = 2 is very special and it will be
discussed separately [13].

Proposition 4. Let M2n+s(F1, F2,F), s > 2, be a conformally flat generalized
f.pk-space-form with ϕ-sectional curvature c. Then, for any h, k ∈ {1, . . . , s},
one has Fhk = c

2δhk.

Proof: LetX ∈ D be a unit vector field and h ∈ {1, . . . , s}. By direct calculation,
from C(X, ξk, X) = 0, also applying Lemma 2, we have:

0 = −(s− 2)
∑s
j=i Fhjξj + 1

2n+s−1 (2(n− 1)(s− 1)F1 + ((s− 1)( s2 + 1)− ns)c)ξh.

Being s > 2, taking the scalar product with ξk, k 6= h we have Fhk = 0, while
the scalar product with ξh gives

(s− 2)Fhh =
4(n− 1)(s− 1)F1 + ((s− 1)(s+ 2)− 2ns)c

2(2n+ s− 1)
.

Hence, for any h, k ∈ {1, . . . , s} one has Fhh = Fkk and, by Lemma 2, one gets
sc = 2sFhh i.e. Fhh = c

2 .

Theorem 2. Let M2n+s(F1, F2,F), s > 2, be a generalized f.pk-space-form with
ϕ-sectional curvature c. Then M2n+s is conformally flat if and only if R satisfies

R(X,Y, Z) = c(g(Y,Z)X − g(X,Z)Y )
+ c

2

∑s
i=1(ηi(X)ηi(Z)Y − ηi(Y )ηi(Z)X

−g(Y,Z)ηi(X)ξi + g(X,Z)ηi(Y )ξi),
(3.2)

for any X,Y, Z.
Moreover, if M2n+s is conformally flat (or equivalently (3.2) holds), then the
Ricci tensor ρ, the Ricci operator Q and the scalar curvature τ are given by:

ρ(X,Y ) = c(2n+
s

2
− 1)g(X,Y )− c(n+

s

2
− 1)

s∑
i=1

ηi(X)ηi(Y ) (3.3)

Q(X) = −c(2n+
s

2
− 1)ϕ2X + nc

s∑
i=1

ηi(X)ξi (3.4)

τ = 2n(2n+ s− 1)c (3.5)

Proof: Assume that M2n+s is conformally flat. By (3.1) and Proposition 4 we
have

R(X,Y, Z) = c(g(ϕX,ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X)
+ c

2

∑s
i=1(ηi(X)ηi(Z)ϕ2Y − ηi(Y )ηi(Z)ϕ2X

+g(ϕY, ϕZ)ηi(X)ξi − g(ϕX,ϕZ)ηi(Y )ξi).
(3.6)
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By direct calculation we get (3.2) and then (3.3), (3.4), (3.5). Conversely, if R
satisfies (3.2), then (3.3), (3.4), (3.5) hold and one easily gets C = 0.

From Theorem 2, using also Lemma 1 and Proposition 4, one easily obtains
the following characterizations.

Theorem 3. Let M2n+s(F1, F2,F), s > 2, be a generalized f.pk-space-form with
ϕ-sectional curvature c. Then one has:
i) if n ≥ 2, then M2n+s is conformally flat if and only if F2 = 0, Fhk = c

2δhk =
F1

2 δhk, for any h, k ∈ {1, . . . , s}.
ii) if n = 1, then M2+s is conformally flat if and only if Fhk = c

2δhk = F1+3F2

2 δhk,
for any h, k ∈ {1, . . . , s}.

Proof: In both cases, i) and ii), the necessary condition follows from Lemma 1
and Proposition 4.
Vice versa, (2.1) becomes (3.6), taking account of Proposition 1 when n = 1.
Then, by direct calculation we obtain (3.2) and conclude as in Theorem 2.

Proposition 5. Let M2n+s(F1, F2,F), s > 2, be a conformally flat generalized
f.pk-space-form. If the ϕ-sectional curvature is constant, then M2n+s is flat.

Proof: Assume that c is constant and, arguing by contradiction, suppose c 6= 0.
Applying (3.5), τ is constant, so that the Ricci tensor is a Codazzi tensor, [3].
By (3.4) the Ricci operator has two distinct eigenfunctions λ1 = (2n + s

2 − 1)c
and λ2 = nc. The corresponding eigendistributions are D,D⊥ of rank 2n ≥ 2
and s > 2, respectively, and, since λ1, λ2 are constant, they are orthogonal and
totally geodesic. It follows that M2n+s is locally a Riemannian product N2n×Ns,
N2n being a leaf of D and Ns a leaf of D⊥. Hence, given k ∈ {1, . . . , s} and
X ∈ D, for the sectional curvature we have K(X, ξk) = 0. On the other hand
K(X, ξk) = Fkk = c

2 , so obtaining a contradiction. Therefore, c = 0 and then
R = 0.

4 A local description in the case c 6= 0

We are going to describe locally the conformally flat generalized f.pk-space-forms
M2n+s(F1, F2,F), s > 2, for which the ϕ-sectional curvature does not vanish and
then, by Proposition 5, it is a non-constant function. Firstly, we recall a result
given in [2] as Theorem 4.6, p. 129.

Proposition 6. Let F be a totally geodesic foliation on a Riemannian manifold
(M, g). If all the mixed sectional curvatures in a point x0 ∈M are positive, then
the transverse distribution is not integrable.
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Lemma 3. Let M2n+s(F1, F2,F), s > 2, be a generalized f.pk-space-form with
ϕ-sectional curvature c. For any X ∈ D and ξ ∈ D⊥, for the sectional curvature
one has K(X, ξ) = c

2 .

Proof: Considering X ∈ D and ξ ∈ D⊥, ‖X‖ = 1, ‖ξ‖ = 1, using (3.2) one
obtains K(X, ξ) = g(R(X, ξ, ξ), X) = c− c

2

∑s
i=1 η

i(ξ)ηi(ξ) = c
2 .

Theorem 4. Let M2n+s(F1, F2,F), s > 2, be a conformally flat generalized
f.pk-space-form with f.pk-structure (ϕ, ξi, η

i, g) and ϕ-sectional curvature c 6= 0.
Then, for any point p such that c(p) 6= 0, there exists an open set W where c < 0
and (W, g) is a warped product N1×f N2, with warping function f = 1

|c| , (N1, g0)

and (N2, g2) being leaves of D⊥ and D, respectively. Moreover (N1, g0) is a flat
manifold.

Proof: Since c is a smooth function the set Mc = {p ∈ M | c(p) 6= 0} is an
open subset. Moreover, being M2n+s conformally flat, using (3.4) and (3.5) the
Schouten tensor acts as L(X) = c

2ϕ
2X, so, at any p ∈Mc, it has two eigenvalues

λ1(p) = − c(p)2 and λ2(p) = 0. Following [3, 16.10, p. 436], Mc is dense in M2n+s,
and, fixing a point p ∈Mc, we consider its connected component in Mc, W , which
is an open subset of M2n+s, and c|W 6= 0 everywhere. Hence L|W has two distinct
eigenfunctions λ1 = − c

2 and λ2 = 0 and the corresponding eigendistributions are
V1 = D|W and V2 = D⊥|W , of rank 2n ≥ 2 and s > 2, respectively. We obtain

that V1, V2 are integrable and totally umbilical distributions and X(λ1) = 0 for
any X ∈ V1, [3, 7, 21]. Hence the function c is constant on the leaves of V1. We
recall that if λ, µ are distinct eigenfunctions, for any Y ∈ Vλ, X,Z ∈ Vµ one has

Y (µ)g(X,Z) = (λ− µ)g(∇XY,Z). (4.1)

Thus, for any Y ∈ D|W , ξ, ξ′ ∈ D⊥|W we get cg(∇ξY, ξ′) = 0 so that g(∇ξξ′, Y ) = 0

and the distribution D⊥|W is totally geodesic. By Proposition 6 and Lemma 3

we have c|W < 0. It follows that (W, g|W ) is locally isometric to a twisted

product manifold N1 ×f N2 = (N1 × N2, g0 + f2g2), where N1 is a leaf of D⊥,
N2 a leaf of D, f a smooth positive function such that H = −grad logf is the
mean curvature vector field of N2, [22]. We prove that f is constant on N2 and
f = 1

|c| . In fact, applying (4.1), for any X,Z ∈ D and i ∈ {1, . . . , s}, one has

− 1
2ξi(c)g(X,Z) = c

2g(∇Xξi, Z) so that

g(∇XZ, ξi) = ξi(log|c|)g(X,Z). (4.2)

It follows that H =
∑s
i=1 ξi(log|c|)ξi = grad log|c|. Moreover, for any X tangent

to N2, we have [H,X] = 0 so ∇XH = ∇HX is tangent to N2, D⊥|W being totally

geodesic. It follows ∇⊥XH = 0. Hence D|W is a spherical foliation, N1 ×f N2 a
warped product manifold, that is f is constant on N2. Finally, by the relation
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H = −grad logf = grad log|c| we get |c|f = α, α being a constant and choosing
α = 1 we have f = 1

|c| . Finally, the Riemannian manifold (N1, g0) is flat. In fact

it is a leaf of D⊥|W which is totally geodesic and flat.

In order to obtain more information on the Riemannian structure of the mani-
folds considered in Theorem 4, we firstly recall a result due to Yau, [24].

Theorem 5. Let Mm, m ≥ 3, be a conformally flat Riemannian manifold. Sup-
pose that M is a non trivial Riemannian product M1 ×M2. Then both M1,M2

have constant curvature and if both M1, M2 have dimension ≥ 2, then the cur-
vatures of M1,M2 differ by a sign.

Now, we consider an f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) as in Theorem 4, the

open set W such that c|W < 0 and the metric ḡ = c2g|W . Then, both the

distributions D|W , D⊥|W , which are ḡ-orthogonal, are totally geodesic, [3]. This
can be checked by direct calculation, observing that the Levi-Civita connections
∇, ∇ of ḡ, g are related by

∇XY = ∇XY + g(H,X)Y + g(H,Y )X − g(X,Y )H, (4.3)

where H = grad log|c| ∈ D⊥ is the mean curvature vector field of the foliation D
on (W, g|W ).
Hence (W, ḡ) is locally isometric to the Riemannian product (N1, ḡ1)× (N2, ḡ2),
(N1, ḡ1) being a leaf of D⊥, (N2, ḡ2) a leaf of D. Note that (W, ḡ) is conformally
flat, also. By Theorem 5, either ḡ is a flat metric, so that both the metrics
ḡ1, ḡ2 are flat, or (N1, ḡ1) and (N2, ḡ2) have non zero constant curvature, one the
opposite of the other. Now we evaluate the curvature of (N2, ḡ2). Firstly we
remark that the curvature R of ḡ, for every vector fields X,Y, Z, acts as:

R(X,Y, Z) = R(X,Y, Z) + g(X,Z)(∇YH − g(Y,H)H)
−g(Y, Z)(∇XH − g(X,H)H)
−(g(∇YH,Z)− g(Y,H)g(Z,H) + ‖H‖2g(Y, Z))X
+(g(∇XH,Z)− g(X,H)g(Z,H) + ‖H‖2g(X,Z))Y

(4.4)

where ‖H‖2 = g(H,H).
Moreover, for any X ∈ D , since ∇XH = 0, by (4.3) we have

∇XH = −‖H‖2X (4.5)

In particular ‖H‖ is constant on any leaf of D.
Let X,Y ∈ D be ḡ-orthonormal. By (4.4), (4.5) and (3.2) we get

R(X,Y, Y ) = R(X,Y, Y ) + ‖H‖2g(Y, Y )X =
c+ ‖H‖2

c2
X.

Then, for the sectional curvature we have K(X,Y ) = c+‖H‖2
c2 and it follows that

(N2, ḡ2) has constant curvature k = c+‖H‖2
c2 .



Conformally flat generalized f.pk-space-forms 413

Obviously −k is the constant sectional curvature of the leaves of D⊥.
Finally, we point out that the condition R(X, ξ, Z) = 0 for any X,Z ∈ D and
ξ ∈ D⊥ gives

∇ξH = g(ξ,H)H +
c

2
ξ. (4.6)

Summing up, the sign of k = c+‖H‖2
c2 determines the model spaces of the

manifold (W, ḡ). More precisely, these spaces are Hs(−k)× S2n(k), Rs × R2n =
R2n+s, Ss(−k)×H2n(k) according the cases k > 0, k = 0, k < 0, respectively.
As usual, Hm(k), Sm(k) denote, respectively, the hyperbolic space and the sphere
endowed with the metric of curvature k, as well as Rm is endowed with the
Euclidean metric.

The next proposition characterizes the conformal flatness of the local models
N1 ×f N2 of the manifold (W, g|W ) considered in Theorem 4.

Proposition 7. Let (M1, g0) be a flat Riemannian manifold with dimM1 ≥ 2,
c : M1 → R a non-constant smooth function such that c 6= 0 everywhere and put
H = grad log|c|. Given a Riemannian manifold (M2, g2) with constant sectional
curvature k, the following conditions are equivalent:
i) the warped product manifold M1 × 1

|c|
M2 is conformally flat

ii) k = c+‖H‖2
c2 and ∇0

ξH = g0(ξ,H)H + c
2ξ, for any ξ ∈ TM1, ∇0 denoting the

Levi-Civita connection of (M1, g0).

Proof: The statement follows by Theorem 3.3 in [6], which characterizes the
conformal flatness of multiply warped product spaces.

We recall the following result coming from Theorem 3.4 in [6].

Proposition 8. Let M = Us ×f F be a warped product space where Us ⊂ Rs,
s ≥ 2 and dimF ≥ 2. Then, M is conformally flat if and only if the warping
function satisfies f(x) = a‖x‖2 + g0(b, x) + d for all x ∈ U , where a > 0, d ∈ R
and b ∈ Rs.
Moreover, the sectional curvature of F is given by K = ‖b‖2 − 4ad.

Finally, for any s ∈ N, s > 2, we give explicit examples of conformally flat
generalized f.pk-space-forms with negative ϕ-sectional curvature.

Example 1. Given s ∈ N, s > 2, and k ∈ R, k > 0, we consider the open set
U = {t = (t1, . . . , ts) ∈ Rs | ‖t‖2 > 4k} and the function c : U → R defined by
c(t) = 4

4k−‖t‖2 . Put f = 1
|c| . On the warped product M2n+s = U ×f S2n we want

to define an f.pk-structure (ϕ, ξi, η
i) compatible with the metric g = g0 + 1

c2 g2,
g2 being the metric of constant curvature k on S2n. To this aim one needs to
require that S2n admits an almost Hermitian structure (J, g2) and then n = 1
or n = 3, [18]. By direct calculation from Proposition 7 or by Proposition 8,
choosing a = 1

4 , b = 0, d = −k, we have that M2n+s, n = 1, 3, is conformally
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flat. For any i ∈ {1, . . . , s} we put ξi = ∂
∂ti , ηi = dti and define ϕ by ϕ(ξi) = 0

and ϕ(X) = J(X) for any X ∈ TS2n, n = 1, 3.
Then it is easy to check that (ϕ, ξi, η

i, g0 + 1
c2 g2) is a metric f.pk-structure on

M2n+s, n = 1, 3. Finally, a direct calculation, using the curvature formulas of
a warped product, allows to show that (3.2) holds and M2n+s, n = 1, 3, is a
generalized f.pk-space-form with ϕ-sectional curvature c.

Example 2. Let c be the smooth function defined on ((Rs)∗, g0) by c(t) = − 4
‖t‖2 .

For any n ≥ 1 we consider the canonical Hermitian structure (J0, g
′
0) on R2n. We

put f = 1
|c| and consider the warped product M2n+s = (Rs)∗ ×f R2n. By direct

calculation from Proposition 7 or by Theorem 8, choosing a = 1
4 , b = 0, d = 0,

we have that M2n+s is conformally flat. For any i ∈ {1, . . . , s} we put ξi = ∂
∂ti ,

ηi = dti and define ϕ by ϕ(ξi) = 0 and ϕ(X) = J(X) for any X ∈ TR2n.
Then it is easy to check that (ϕ, ξi, η

i, g), g = g0+ 1
c2 g
′
0, is a metric f.pk-structure

on M2n+s. Finally, computing the curvature tensor field, as in Example 1, we
obtain (3.2) so that the manifold is a generalized f.pk-space-form with ϕ-sectional
curvature c.

Example 3. Given s > 2 and k ∈ R, k < 0, we define on Rs the smooth function
c by c(t) = 4

4k−‖t‖2 and we put f = 1
|c| . We consider (D2n

r , gr), where r = 1√
−k ,

D2n
r = {x ∈ R2n| ‖x‖2 < r2}, gr = ( 2r2

r2−‖x‖2 )2g′0. Hence gr is compatible with the

almost complex structure J induced on D2n
r by the canonical complex structure on

R2n. Then, by direct calculation from Proposition 7 or by Theorem 8, choosing
a = 1

4 , b = 0, d = −k, we have that the warped product M2n+s = Rs ×f D2n
r is

conformally flat. For any i ∈ {1, . . . , s} we put ξi = ∂
∂ti , ηi = dti and define ϕ

by ϕ(ξi) = 0 and ϕ(X) = J(X) for any X ∈ T (D2n
r ).

It is easy to check that (ϕ, ξi, η
i, g), when g = g0+ 1

c2 gr, is a metric f.pk-structure
on M2n+s. As in the above examples, a direct calculation gives (3.2) showing that
M2n+s is a generalized f.pk-space-form with ϕ-sectional curvature c.

5 Compatibility with underlying geometric structures

Several subclasses of metric f.pk-manifolds have been studied from different
points of view (see [4, 5, 8, 9, 10, 11] and references therein). In this section
we discuss the existence of conformally flat generalized f.pk-space-forms M2n+s,
n ≥ 1, s > 2, whose underlying f.pk-structure is of some special type.

We begin considering K-structures. As in [4], a metric f.pk-manifold is said
to be:

i) a K-manifold if it is normal and the fundamental 2-form Φ is closed. In
such a manifold the vector fields ξi, i ∈ {1, . . . , s}, are Killing,

ii) an S-manifold if it is a K-manifold such that dηi = Φ, i ∈ {1, . . . , s},
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iii) a C-manifold if it is a K-manifold such that dηi = 0, i ∈ {1, . . . , s}.

We shall prove that a conformally flat generalized f.pk-space-form M2n+s,
n ≥ 1, s > 2, with underlying K-structure, is a flat C-manifold. Then, M2n+s is
locally Rs × Cn, according to the well-known result stating that a C-manifold is
locally a product of a flat s-dimensional manifold and a 2n-dimensional Kähler
manifold.
Namely, let us suppose c 6= 0 and recall that, owing to the normality, a K-
manifold satisfies [ξi, ξj ] = 0 and Lξjηi = 0 for any i, j ∈ {1, . . . , s}, [4, 14]. Hence
dηi(X, ξj) = 0 for any X ∈ Γ(TM2n+s). By the results of the previous section,
the conformal flatness, when c 6= 0, implies that the distribution D should be
integrable so involutive and 2dηi(X,Y ) = −ηi([X,Y ]) = 0, for any X,Y ∈ D and
i ∈ {1, . . . , s}. Thus, dηi = 0 for every i ∈ {1, . . . , s}. That forces the structure
to be a C-structure and by Remark 2 in [12] we know that if M2n+s(F1, F2,F)
is a generalized f.pk-space-form with an underlying C-structure, then Fij = 0
for any i, j ∈ {1, . . . , s} and F1 = F2. Hence, the conformal flatness implies, for
n ≥ 2, F2 = 0, c = F1 = 0 and, for n = 1, F1 + 3F2 = c, 0 = Fhh = c

2 and c = 0.

Therefore, the case to be discussed is that of flat K-manifolds. Obviously,
S-manifolds are excluded since they cannot have constant curvature [19].
Now, in a K-manifold, the Killing condition on the ξi’s and [ξi, ξj ] = 0 imply
∇ξiξj = 0 and ∇Xξi ∈ D, ∇ξiX ∈ D, for any X ∈ D. Then, evaluating the
mixed sectional curvatures, we obtain K(X, ξi) = ‖∇Xξi‖2 and the flatness im-
plies ∇Xξi = 0. Thus ∇ξi = 0 and the manifold is a C-manifold.

We recall that the condition dηi = 0 for any i ∈ {1, . . . , s} holds for the classes
of almost C-manifolds and of (almost) Kenmotsu f.pk-manifolds, [10].

Firstly, we consider a conformally flat generalized f.pk-space-form with underly-
ing almost C-structure, with ϕ-sectional curvature c, and we prove that such a
structure turns out to be a C-structure, so we fall in the above described situation.
In fact, by definition, we have dΦ = 0, dηi = 0, 1 ≤ i ≤ s, and the leaves
of the foliation defined by the distribution D, called the canonical foliation, are
almost Kähler and minimal, [15]. Now, assume that c 6= 0. Being H = 0, directly
by (4.6), we get c|W = 0 on each W provided by Theorem 4. It follows that
Mc = ∅ and c vanishes everywhere on M2n+s, obtaining a contradiction.
Hence we get c = 0 and then R = 0. As proved in [20] in any almost C-manifold
one has τ − τ∗ −

∑s
i=1Ric(ξi, ξi) + 1

2‖∇ϕ‖
2 = 0, where τ denotes the scalar

curvature and τ∗ the *-scalar curvature. Hence, we get ∇ϕ = 0, and the metric
f.pk-manifold is a C-manifold, [4].

Now we are going to discuss Kenmotsu f.pk-manifolds.
By definition, a metric f.pk-manifold M2n+s, with f.pk-structure (ϕ, ξi, η

i, g),
is said to be a Kenmotsu f.pk-manifold if it is normal, the 1-forms ηi’s are all
closed and dΦ = 2ηj ∧ Φ for some and then only for one 1-form, that, up to
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a rearrangement, we fix as η1. We recall that in a Kenmotsu f.pk-manifold
we have ∇ξ1 = −ϕ2, ∇ξi = 0, i ∈ {2, . . . , s}. In [12] we proved that, if
M2n+s(F1, F2,F) is a generalized f.pk-space-form with structure of Kenmotsu
type and p.c. ϕ-sectional curvature c, then F11 = −1 and Fij = 0 for any
(i, j) 6= (1, 1). Hence we get:

Proposition 9. Let M2n+s(F1, F2,F), s > 2, be a generalized f.pk-space-form
with underlying structure of Kenmotsu type, and p.c. ϕ-sectional curvature c.
Then M2n+s cannot be conformally flat.

Proof: Assuming that M2n+s is conformally flat, by Theorem 3 we have Fhh = c
2

for any h ∈ {1, . . . , s}, so F22 = 0 implies c = 0 and then 0 = F11 = −1, a
contradiction.

Finally, we consider almost Kenmotsu f.pk-manifolds.

Definition 1. A metric f.pk-manifold M of dimension 2n + s, s ≥ 1, with
f.pk-structure (ϕ, ξi, η

i, g), is said to be an almost Kenmotsu f.pk-manifold if
the 1-forms ηi’s are closed and dΦ = 2η1 ∧ Φ.

In the next Lemma we summarize some properties stated in [11]. As usual,
N denotes the normality tensor field, N = [ϕ,ϕ] + 2dηi ⊗ ξi.

Lemma 4. Let M2n+s be an almost Kenmotsu f.pk-manifold. Then, considering
hi = 1

2Lξiϕ, for each i ∈ {1, . . . , s}, one has:
1) hi is a symmetric operator and hi ◦ ϕ+ ϕ ◦ hi = 0,
2) ∇Xξi = −ϕhiX, for any i ∈ {2, . . . , s}, for any X ∈ Γ(TM2n+s),
3) ∇Xξ1 = −ϕ2(X)− ϕh1X, for any X ∈ Γ(TM2n+s),
4) N(Y, ξi) = 2ϕhi(Y ), for any i ∈ {1, . . . , s}, for any Y ∈ Γ(TM2n+s).

Proposition 10. Let M2n+s, s > 2, be a generalized f.pk-space-form with un-
derlying almost Kenmotsu f.pk-structure. Then M2n+s cannot be conformally
flat.

Proof: Suppose that M2n+s, s > 2, is a conformally flat generalized f.pk-space-
form with underlying almost Kenmotsu f.pk-structure and c 6= 0. In each W
provided by Theorem 4, the leaves of D are totally umbilical with mean curvature
vector field H = −ξ1 and applying (4.6) for ξ = ξi, i ≥ 2, we get 0 = c

2ξi and so
c = 0, a contradiction. We conclude that c = 0 and R = 0.
Firstly, we prove that any integral manifold N2n of D is Kähler. Denoting by ∇′
the induced connection on the almost Kähler N2n and putting J = ϕ|N2n , using
the Gauss equation, we compute the scalar curvature τ ′ and the *-scalar curvature
τ ′∗. We get τ ′ = 2n(2n − 1) −

∑s
j=1 tr(h

2
j ) and τ ′∗ = 2n −

∑s
j=1 tr(h

2
j ). Hence

τ ′ − τ ′∗ = 4n(n − 1) and using the well-known formula τ ′ − τ ′∗ = − 1
2‖∇

′J‖2
we obtain ∇′J = 0 and n = 1. Thus the case n ≥ 2 is excluded. Assuming
n = 1, we consider a ϕ-basis (X,ϕX, ξ1, . . . , ξs) and, by direct calculation, using
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Lemma 4, for each i ≥ 2, we get ρ(ξi, ξi) = ‖hiX‖2 = 0. Hence hiX = 0 and
hi(ϕX) = −ϕ(hiX) = 0 imply hi = 0 and ∇ξi = 0, i ≥ 2.
Now, we consider the splitting (D⊕ < ξ1 >)⊕ < ξ2, . . . , ξs > and observe that the
integrable distributions D⊕ < ξ1 > and < ξ2, . . . , ξs > are both totally geodesic.
Namely, for the second fundamental form of a leaf of D⊕ < ξ1 >, we have

α(X,Y ) =

s∑
i=2

g(∇XY, ξi)ξi = −
s∑
i=2

g(Y,∇Xξi)ξi = 0.

It follows that M2+s is locally a Riemannian product N3 × Rs−1 and both the
factors are flat. On the other hand, N3 inherits an almost Kenmotsu structure.
As proved in [8], an almost Kenmotsu manifold of constant curvature K is a
Kenmotsu manifold and K = −1. So, in our case we should have 0 = −1.
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