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Abstract

Let E = K 〈e1, . . . , en〉 be the exterior algebra over an n-dimensional
vector space V with basis e1, . . . , en over some field K. We introduce the
universal lexsegment ideals in E and we devote our attention to their Hilbert
function. Hence, we analyze the depth and the graded Betti numbers of a
graded ideal with a given Hilbert function in E, via such a class of monomial
ideals.
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1 Introduction

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra over
an n-dimensional K-vector space V with basis e1, . . . , en. A monomial ideal
I ( E is called a lexsegment ideal if for all monomials u ∈ I and all monomials
v ∈ E with deg u = deg v and v >lex u, then v ∈ I, where >lex is the lexico-
graphic order on the set Mond(E) of all monomials of degree d ≥ 1 in E. Set
E[m] = K〈e1, . . . , en, en+1, . . . , en+m〉, where m is a positive integer. A universal
lexsegment ideal (ULI) of E is a lexsegment ideal I of E which still remains a
lexsegment ideal when we regard I as an ideal of the exterior algebra E[m] for all
m ≥ 1.

Let I ( E be a graded ideal and HE/I the Hilbert function of the quotient
algebra E/I. Thus, HE/I(q) = dimK(E/I)q (q ≥ 1) is the dimension of the
K-subspace of E/I spanned by the homogeneous elements of E/I of degree q. A
result due to Kruskal-Katona [2, 11] guarantees that, given a numerical function
H : N → N, where N is the set of non negative integers, there exists a graded
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ideal I ( E such that H is the Hilbert function of the quotient algebra E/I if
and only if

H(0) = 1, H(1) ≤ n, H(q + 1) ≤ H(q)(q), for q ≥ 1, (1.1)

where the integer H(q)(q) is defined in [2].
Aramova, Herzog and Hibi [2, Theorem 4.1] proved that if I ( E is a graded

ideal, then there exists always a unique lexsegment ideal I lex ( E such that
HE/I = HE/Ilex . This property justifies the next definitions. A numerical func-
tion H satisfying the properties (1.1) is said critical if the lexsegment ideal I of E
with HE/I = H is a ULI, and a graded ideal I ( E is said critical if the Hilbert
function of the graded algebra E/I is critical.

In this paper, we first introduce the class of universal lexsegment ideals in E,
and then we deeply study their Hilbert function. Using combinatorial arguments,
we give a precise description of the Hilbert function of a ULI. Such a description
allows us to obtain some relevant results on the depth and on the graded Betti
numbers of a graded ideal I ( E with a given Hilbert function.

The plan of the paper is as follows. In Section 2, some notions that will be used
throughout the paper are recalled. In Section 3, the universal lexsegment ideals
in the exterior algebra E = K〈e1, . . . , en〉 are examined, and a characterization
of such graded ideals given. In Section 4, the Hilbert function of a ULI in E
is analyzed; the main result is a criterion stating when a numerical function
satisfying some conditions is a critical Hilbert function. This criterion allows us
to obtain the main result of Section 5. In fact, we prove that for a critical graded
ideal I in E, one has depthEE/I = depthEE/I

lex. Furthermore, we show that a
critical ideal I ( E and the corresponding lexsegment ideal I lex have the same
graded Betti numbers.

2 Preliminaries and notations

Let K be a field. We denote by E = K 〈e1, . . . , en〉 the exterior algebra over an n-
dimensional K-vector space V with basis e1, . . . , en. For a subset σ = {i1, . . . , id}
of [n] = {1, . . . , n} with i1 < i2 < · · · < id, we write eσ = ei1 ∧ . . . ∧ eid , and call
eσ a monomial of degree d. We set eσ = 1, if σ = ∅.

In order to simplify the notation, we write fg instead of f ∧ g for any two
elements f and g in E. An element f ∈ E is called homogeneous of degree j if
f ∈ Ej , where Ej =

∧j
V .

LetM be the category of finitely generated Z-graded left and right E-modules
M satisfying am = (−1)deg a degmma for all homogeneous elements a ∈ E, m ∈
M . Let M ∈M. The supremum of the length of a maximal M -regular sequence
is called the depth of M over E and denoted by depthEM [1].

An important invariant related to free resolutions of M is the Castelnuovo-
Mumford regularity regEM = max{j ∈ Z : βi,i+j(M) 6= 0 for some i ≥ 0} of a
non-zero module M , where βi,j(M) are the graded Betti numbers of M . We
set regE0 = −∞. Recall that a minimal graded free resolution of an E-module
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M ∈ M has always infinite length unless the module is free. Therefore, the
projective dimension is not significant. For this reason one measures the growth
rate of the Betti numbers by the complexity [1] which is defined as follows:

cxEM = inf{c ∈ Z : βi(M) ≤ αic−1 for some α ∈ R and for all i ≥ 1},

where βi(M) =
∑
j βi,j(M) is the (total) Betti number of M .

We close this Section recalling some notions on monomial ideals that will be
useful in the sequel.

For any subset S of E, we denote by Mon(S) the set of all monomials in S, by
Mond(S) the set of all monomials of degree d ≥ 1 in S and by |S| its cardinality.

Let u be a monomial in E. We define

supp(u) = {i ∈ [n] : ei divides u},

and we write
m(u) = max{i ∈ [n] : i ∈ supp(u)}.

We quote the next definition from [6].

Definition 1. Let N be a subset of monomials of degree d < n in E. The set of
monomials of degree d+ 1

Shad(N ) = {(−1)α(σ,j)ejeσ : eσ ∈ N , j /∈ supp(eσ), j = 1, . . . , n},

α(σ, j) = |{r ∈ σ : r < j}|, is called the shadow of N .

We define the i-th shadow recursively by Shadi(N ) = Shad(Shadi−1(N )).
In order to simplify the notations, if I = ⊕d≥0Id is a graded ideal in E, we

set Shad(Id) = Shad(Mond(I)).

Definition 2. Let I  E be a monomial ideal. I is called stable if for each
monomial eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I. I is called
strongly stable if for each monomial eσ ∈ I and each j ∈ σ one has eieσ\{j} ∈ I,
for all i < j.

Finally, if I  E is a monomial ideal, we denote by G(I) the unique minimal
set of monomial generators of I and by G(I)d the set of all monomials of degree
d ≥ 1 of G(I).

3 Universal lexsegment ideals

In this Section, we introduce the universal lexsegment ideals in the exterior alge-
bra E = K〈e1, . . . , en〉.

Denote by >lex the lexicographic order (lex order, in short) on Mond(E), i.e.,
if eσ = ei1ei2 · · · eid and eτ = ej1ej2 · · · ejd are monomials belonging to Mond(E)
with 1 ≤ i1 < i2 < · · · < id ≤ n and 1 ≤ j1 < j2 < · · · < jd ≤ n, then eσ >lex eτ
if i1 = j1, . . ., is−1 = js−1 and is < js for some 1 ≤ s ≤ d.
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Definition 3. A monomial ideal I ( E is called a lexsegment ideal if for all
monomials u ∈ I and all monomials v ∈ E with deg u = deg v and v >lex u, then
v ∈ I.

Every lexsegment ideal of E is obviously a stable ideal.

Set E[m] = K〈e1, . . . , en, en+1, . . . , en+m〉, where m is a positive integer. Fol-
lowing [3], we give the following definition.

Definition 4. A lexsegment ideal I of E is called a universal lexsegment ideal
(ULI), if for any integer m ≥ 1, the monomial ideal IE[m] of the exterior algebra
E[m] is a lexsegment ideal.

Example 1. The lexsegment ideal I = (e1e2, e1e3e4) of E = K〈e1, e2, e3, e4〉 is
a ULI. Indeed, I is a lexsegment ideal of the exterior algebra E[m] for all m ≥ 1.

Example 2. The lexsegment ideal I = (e1e2, e1e3e4, e2e3e4) of the exterior al-
gebra E = K〈e1, e2, e3, e4〉 is not a ULI. Indeed, I is not a lexsegment ideal of
the exterior algebra E[1] = K〈e1, e2, e3, e4, e5〉. In fact e1e3e5 >lex e2e3e4 and
e1e3e5 /∈ IE[1].

Now we discuss the combinatorics of universal lexsegment ideals.
For a sequence of non negative integers (ki)i∈N, we define the following set:

supp(ki)i∈N = {i ∈ N : ki 6= 0}.

If supp(ki)i∈N = {d1, . . . , dt}, with d1 < d2 < · · · < dt, then we associate to

(ki)i∈N the integers Rj = j +
∑j
i=1 ki, 1 ≤ j ≤ dt. We set Rj = 0, for j > dt.

Following [7, Characterization 2.1](see also [3, Definition 4.1]), we state the
following characterization.

Characterization 1. Assume that I ( E is an ideal generated in degrees d1 <
d2 < · · · < dt. Then I is a ULI of E if and only if

G(I)di =
{
eR1eR2 · · · eRdi−1

e` : Rdi−1 + 1 ≤ ` ≤ Rdi − 1
}
,

for 1 ≤ i ≤ t, where Rj = j +
∑j
i=1 |G(I)i|, for 1 ≤ j ≤ dt.

Remark 1. Assume that (ki)i∈N is a sequence of non negative integers such that

supp(ki)i∈N = {d1, . . . , dt}, d1 < d2 < · · · < dt.

Then there exists a ULI I ( E = K〈e1, . . . , en〉 generated in degrees d1 < · · · < dt
such that |G(I)di | = kdi , 1 ≤ i ≤ t, if and only if n ≥ dt +

∑dt
i=1 ki − 1, i.e,

|G(I)| ≤ n − dt + 1. In particular, if I is a lexsegment ideal of E generated in
degree d, then I is a ULI if and only if |G(I)| ≤ n− d+ 1. Hence, if I is a ULI
generated in degree d, one has:

G(I) = {e1e2 · · · ed−1ed, e1e2 · · · ed−1ed+1, . . . , e1e2 · · · ed−1ek}, (3.1)

with d ≤ k ≤ n.
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In closing this Section we give the formula for computing the graded Betti
numbers of a ULI in an exterior algebra.

Proposition 1. Let I ( E = K〈e1, . . . , en〉 be a ULI generated in degrees d1 <
· · · < dt. Set |G(I)di | = kdi , 1 ≤ i ≤ t. Then

βi,i+j(I) =

kj∑
`=1

(
j +

∑j−1
r=1 kr + `+ i− 2

i

)
, for all i ≥ 0.

Proof: Let u ∈ G(I) a monomial of degree j. From Characterization 1, it follows

that m(u) = j − 1 +
∑j−1
r=1 kr + `, for 1 ≤ ` ≤ kj . From the formula on the Betti

numbers for a stable ideal [2, Corollary 3.3], the assertion follows.

4 The Hilbert function of a ULI

In this Section, we describe the Hilbert function of a ULI in the exterior algebra
E = K 〈e1, . . . , en〉.

In order to accomplish this task we need to introduce some notations.
For a graded ideal I we denote by indeg(I) the initial degree of I, i.e., the

minimum s such that Is 6= 0.
Let u ∈ Mond(E), and define the following subset of Mond+1(E):

uem(u) = {uem(u)+1, . . . , uen}.

Note that uem(u) = ∅ if m(u) = n.

Example 3. Let u = e1e3e4 ∈ E = K〈e1, . . . , e6〉, then uem(u) = ue4 =
{e1e3e4e5, e1e3e4e6}.

For a subset N of monomials of degree d of E, we define the following subset
of monomials of degree d+ 1:

aShad(N ) =
⋃
u∈N

uem(u). (4.1)

We call the set aShad(N ) the almost shadow of N . We define the i-th almost
shadow recursively by aShadi(N ) = aShad(aShadi−1(N )).

Remark 2. If u ∈ Mond(E) and N = {w ∈ Mond(E) : w ≥lex u}, then
aShad(N ) = Shad(N ).

Example 4. Let N = {e1e5, e1e6, e2e3, e2e4}  Mon2(E), E = K〈e1, . . . , e6〉,
then aShad(N ) = {e1e5e6, e2e3e4, e2e3e5, e2e3e6, e2e4e5, e2e4e6}.

For a given graded ideal I ( E, we denote by I lex the unique lexsegment ideal
in E with the same Hilbert function as I.

The next definition, introduced in [8], was motivated by [2, Theorem 4.1].
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Definition 5. Let H : N→ N be a numerical function. We call H a 0∗-sequence
if H satisfies the properties (1.1).

0∗-sequence with H(p) = 0 for p ≥ q will be written as:

(1, H(1), H(2), . . . ,H(q − 1), 0).

Definition 6. Let H 6= (1, 0) be a 0∗-sequence, we set

indegH = min

{
d : H(d) 6=

(
H(1)

d

)}
,

and call it the initial degree of H.

Following [13], we give the following definition.

Definition 7. Let H be a 0∗-sequence. H is critical if the lexsegment ideal I of
E with HE/I = H is a ULI.

Example 5. The 0∗-sequence H = (1, 4, 5, 1, 0) is critical. Indeed, there exists
the ULI I = (e1e2, e1e3e4) of E = K〈e1, e2, e3, e4) such that HE/I = H.

Example 6. The 0∗-sequence H = (1, 4, 5, 0) is not critical. Indeed, the lexseg-
ment ideal I = (e1e2, e1e3e4, e2e3e4) of E = K〈e1, e2, e3, e4) such that HE/I = H
is not a ULI (Example 2).

The next lemmas will be crucial in the sequel.
For a subset N of Mond(E), we denote by max(N ) the greatest monomial in

N with respect to the lex order. Moreover, for a subset N of monomials in E,
we define

supp(N ) = {i ∈ [n] : i ∈ supp(u),∀u ∈ N}.

Lemma 1. Let I  E be a ULI generated in degree d. Then

dimK Id+i =

|G(I)|−1−cd∑
q=0

(
n− d− q

i

)
,

where cd = 0, for i=0 and for 1 ≤ i ≤ n− d if |G(I)| < n− d+ 1, whereas cd = 1
for 1 ≤ i ≤ n− d if |G(I)| = n− d+ 1.

Proof: Set kd = |G(I)|, and s ::= max{m(u) : u ∈ G(I)d}. From (3.1), it is
d ≤ s ≤ n. For i = 0, dimK Id = |G(I)|. For i ≥ 1, we have

dimK Id+i = |Shadi(Id)| =
kd−1−cd∑
q=0

(
n− d− q

i

)
(4.2)

where cd = 0, if s < n and cd = 1, if s = n.
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Lemma 2. Let I  E be a ULI generated in degrees d1 < d2 < · · · < dt, t > 1.
Set

rp = dp − dp−1, 2 ≤ p ≤ t, and rt+1 = 1.

Then

(1) for 1 ≤ p ≤ t, 0 ≤ i ≤ rp+1 − 1,

dimK Idp+i =

kd1−1∑
q=0

(
n− d1 − q∑p
`=2 r` + i

)
+

p∑
j=2

kdj−1∑
q=0

(
n− s̃dj−1

− sdj − q∑p
`=j+1 r` + i

) ;

(2) for p = t, 1 ≤ i ≤ n− dt,

dimK Idt+i =

kd1−1∑
q=0

(
n− d1 − q∑t
`=2 r` + i

)
+

t−1∑
j=2

kdj−1∑
q=0

(
n− s̃dj−1

− sdj − q∑t
`=j+1 r` + i

)
+

kdt−1−cdt∑
q=0

(
n− s̃dt−1

− sdt − q
i

)
,

where kdp = |G(I)dp |, 1 ≤ p ≤ t; s̃d`−1
= |{i ∈ [n] : i ∈ supp(

⋃`
r=1G(I)dr )}|,

sd` = |{i ∈ [n] : i ∈ supp(max(G(I)d`), i /∈ supp(G(I)d`−1
)}|, for 2 ≤ ` ≤ t;

and cdt is 0 (1, respectively) if max{m(u) : u ∈ G(I)dt} < n (max{m(u) : u ∈
G(I)dt} = n, respectively).

Proof: First of all, observe that since n ≥ dt + |G(I)| − 1, then max{m(u) : u ∈
G(I)di} < n, 1 ≤ i ≤ t− 1.
(1). For p = 1, the assert follows from Lemma 1. By hypothesis, dp = dp−1 + rp
(2 ≤ p ≤ t), with rp ≥ 1. Hence, dp = d1 +

∑p
`=2 r`, and consequentaly

dimK Idp+i = |Shad
∑p
`=2 r`+i(Id1)|+

p∑
j=2

|aShad
∑p
`=j+1 r`+i(G(I)dj )| =

=

kd1−1∑
q=0

(
n− d1 − q∑p
`=2 r` + i

)
+

p∑
j=2

kdj−1∑
q=0

(
n− s̃dj−1

− sdj − q∑p
`=j+1 r` + i

) ,
for 0 ≤ i ≤ rp+1 − 1; where s̃d`−1

= |{i ∈ [n] : i ∈ supp(
⋃`
r=1G(I)dr )}|, sd` =

|{i ∈ [n] : i ∈ supp(max(G(I)d`), i /∈ supp(G(I)d`−1
)}|, 2 ≤ ` ≤ t.

(2). Let p = t, 1 ≤ i ≤ n− dt. With the same notations as in statement (1), one
has

dimK Idt+i =

kd1−1∑
q=0

(
n− d1 − q∑t
`=2 r` + i

)
+

t−1∑
j=2

kdj−1∑
q=0

(
n− s̃dj−1 − sdj − q∑t

`=j+1 r` + i

)
+

kdt−1−cdt∑
q=0

(
n− s̃dt−1

− sdt − q
i

)
,
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where cdt is equal to 0 if max{m(u) : u ∈ G(I)dt} < n, and equals 1 if max{m(u) :
u ∈ G(I)dt} = n.

Theorem 1. Let I  E be a ULI generated in degrees d1 < d2 < · · · < dt. Set
kdp = |G(I)dp |, 1 ≤ p ≤ t. Then

(1) for 1 ≤ p ≤ t, 0 ≤ i ≤ dp+1 − dp − 1,

dimK Idp+i =

p∑
j=1

kdj−1∑
q=0

(
n− dj − q −

∑dj−1

`=1 k`
dp − dj + i

) ;

(2) for p = t, 1 ≤ i ≤ n− dt,

dimK Idt+i =

t−1∑
j=1

kdj−1∑
q=0

(
n− dj − q −

∑dj−1

`=1 k`
dt − dj + i

)
+

kdt−1−cdt∑
q=0

(
n− dt − q −

∑dt−1

`=1 k`
i

)
,

where cdt is the integer defined in Lemma 2.

Proof: Since I is a ULI generated in degrees d1 < d2 < · · · < dt, then with the
same notations as in Characterization 1 and in Lemma 2, one has

s̃dj−1
= Rdj−1

− 1 = dj−1 +

dj−1∑
`=1

k` − 1, sdj = dj − (dj−1 − 1), 2 ≤ j ≤ t.

Hence s̃dj−1
+ sdj =

∑dj−1

`=1 k` + dj , for 2 ≤ j ≤ t. Moreover, it is easily verified
that rj + rj+1 = dj+1 − dj−1, for 2 ≤ j ≤ t, and ri + ri+1 + · · ·+ rj = dj − di−1,
for 2 ≤ i < j ≤ t.

Theorem 1 gives a systematic description of the Hilbert function of a ULI and
yields the following result.

Theorem 2. Let n be a positive integer. A 0∗-sequence H = (1, H(1), H(2), . . . ,
H(n − 1), 0) is critical of initial degree d if and only if there exists an integer
1 ≤ t ≤ n − 1 together with a sequence of non negative integers (ki)i∈N with
supp(ki)i∈N = {d = d1 < d2 < · · · < dt} such that

(1) n ≥ dt +
∑t
i=1 kdi − 1;
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(2) for 1 ≤ p ≤ t, 0 ≤ i ≤ dp+1 − dp − 1,

HE/I(dp + i) =

(
n

dp + i

)
−

p∑
j=1

kdj−1∑
q=0

(
n− dj − q −

∑dj−1

`=1 k`
dp − dj + i

) ;

(3) for 1 ≤ i ≤ n− dt,

HE/I(dt + i) =

(
n

dt + i

)
−

t−1∑
j=1

kdj−1∑
q=0

(
n− dj − q −

∑dj−1

`=1 k`
dt − dj + i

)+

+

kdt−1−cdt∑
q=0

(
n− dt − q −

∑dt−1

`=1 k`
i

) , cdt ∈ {0, 1}.
Moreover,

∑dt
i=1 ki is equal to the number of minimal monomial generators of the

ULI I of E = K〈e1, . . . , en〉 with HE/I = H.

Proof: If H is critical of initial degree d, then there exists a ULI I ( E =
K〈e1, . . . , en〉 of initial degree d such that H = HE/I . Let I be an ideal generated
in degrees d = d1 < d2 < . . . < dt. Set kdp = |G(I)dp |, 1 ≤ p ≤ t. Therefore,
condition (1) follows from Remark 1, whereas, as a consequence of Theorem 1, it
follows that H is of the type described in (2) and (3).

Conversely, suppose there exists a sequence of non negative integers (ki)i∈N
with supp(ki)i∈N = {d = d1 < d2 < · · · < dt} and such that n ≥ dt+

∑t
i=1 kdi−1.

Let H be a numerical function satisfying conditions (2) and (3). From Remark
1, there exists a ULI I ( E = K〈e1, . . . , en〉 with kdi = |G(I)di |, 1 ≤ i ≤ t.
More precisely, for t = 1, I is a ULI generated in one degree d = d1 with |G(I)| =
n−d+1 if cd = 1, and |G(I)| < n−d+1, if cd = 0. For t > 1, I is a ULI generated
in several degrees d1 < d2 < · · · < dt, with |G(I)dt | = n − dt −

∑t
i=1 kdi + 1 if

cdt = 1, and |G(I)dt | < n − dt −
∑t
i=1 kdi + 1 if cdt = 0. From Theorem 1,

HE/I = H, and so H, is critical.

5 The depth of a graded ideal with a given Hilbert function

In this Section, we analyze the depth of a graded ideal with a given Hilbert
function in E = K〈e1, . . . , en〉.

We give the following definition.

Definition 8. Let I ( E be a graded ideal. I is said critical if the Hilbert
function of the graded algebra E/I is critical.

In other words, a graded ideal I ( E is critical if the lexsegment ideal I lex is
a ULI.
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Example 7. Let I = (e1e2, e2e3e4, e2e3e5) be a stable ideal in E = K〈e1, . . . , e5〉.
The Hilbert function of E/I is HE/I = (1, 5, 9, 5, 1, 0). I is critical. In fact, there

exists the ULI I lex = (e1e2, e1e3e4, e1e3e5) of E such that HE/I = HE/Ilex .

Theorem 3. Let I ( E be a critical graded ideal with |K| =∞. Then depthEE/I
= depthEE/I

lex.

Proof: Since the depth and also the complexity are preserved by the passage
to the generic initial ideal [1, 10], we may assume that I is a strongly stable
ideal in E. Therefore, from [1, Theorem 3.2], depthEE/I = n − cxEE/I and
depthEE/I

lex = n− cxEE/I
lex. On the other hand, Theorem 2 guarantees that

the ideal I is generated in the same degrees d1 < d2 < · · · < dt as those of I lex and
that |G(I)di | = |G(I lex)di |, 1 ≤ i ≤ t. In particular, ν(I) = ν(I lex). Moreover,
for 1 ≤ i ≤ t, max{m(u) : u ∈ G(I)di} = max{m(u) : u ∈ G(I lex)di}. Hence,
from [12, Lemma 3.14], cxEE/I = cxEE/I

lex, and the assert follows.

In general, if I ( E is a graded ideal and I lex is the unique lexsegment ideal
of E such that HE/I = HE/Ilex , the equality in Theorem 3 does not hold, as the
following example clearly shows.

Example 8. Let I = (e1e2, e1e3, e2e3e4, e2e3e5) be a stable ideal of the exterior
algebra E = K〈e1, . . . , e6〉. The Hilbert function of E/I is H = (1, 6, 13, 11, 3, 0).
We have I lex = (e1e2, e1e3, e1e4e5, e1e4e6, e2e3e4e5, e2e3e4e6). It follows that
cxEE/I = 5 < cxEE/I

lex = 6. Hence, depthEE/I = 1 > depthEE/I
lex = 0.

Note that I is not a stable critical ideal since I lex is not a ULI.

As a consequence of Theorem 3 and Proposition 1, we obtain the following
corollary.

Corollary 1. Let |K| =∞ and I ( E be a critical stable ideal. Then I and I lex

have the same graded Betti numbers.

We close this Section with some formulas that show the relation between the
depth, the Castelnuovo-Mumford regularity and the minimal system of monomial
generators of a ULI.

Our first result is the following.

Proposition 2. Let |K| = ∞ and 0 6= I ( E be a ULI generated in degrees
d1 < d2 < · · · < dt. Then depthEE/I + |G(I)| = n+ 1− dt.

Proof: From [1, Theorem 3.2], depthEE/I = n−cxEE/I. Hence, under the same
notations of Characterization 1, set Rt = dt +

∑t
i=1 |G(I)di |, from [12, Lemma

3.14], one has depthEE/I = n − cxEE/I = n − Rt + 1 = n − dt − |G(I)| + 1.

Therefore, we finally get the following corollary.



Algebraic invariants 403

Corollary 2. Let |K| = ∞ and 0 6= I ( E = K〈e1, . . . , en〉 be a ULI. Then
depthEE/I + regE(E/I) + |G(I)| = n.
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