Algebraic invariants of graded ideals with a given Hilbert function in an exterior algebra

by
Marilena Crupi

Abstract

Let $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be the exterior algebra over an n-dimensional vector space V with basis e_{1}, \ldots, e_{n} over some field K. We introduce the universal lexsegment ideals in E and we devote our attention to their Hilbert function. Hence, we analyze the depth and the graded Betti numbers of a graded ideal with a given Hilbert function in E, via such a class of monomial ideals.

Key Words: Exterior algebra, monomial ideals, lexicographic ideals, minimal resolutions, standard invariants.
2010 Mathematics Subject Classification: Primary 13A02, Secondary 15A75, 18G10.

1 Introduction

Let K be a field. We denote by $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ the exterior algebra over an n-dimensional K-vector space V with basis e_{1}, \ldots, e_{n}. A monomial ideal $I \subsetneq E$ is called a lexsegment ideal if for all monomials $u \in I$ and all monomials $v \in E$ with $\operatorname{deg} u=\operatorname{deg} v$ and $v>_{\text {lex }} u$, then $v \in I$, where $>_{\text {lex }}$ is the lexicographic order on the set $\operatorname{Mon}_{d}(E)$ of all monomials of degree $d \geq 1$ in E. Set $E_{[m]}=K\left\langle e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+m}\right\rangle$, where m is a positive integer. A universal lexsegment ideal (ULI) of E is a lexsegment ideal I of E which still remains a lexsegment ideal when we regard I as an ideal of the exterior algebra $E_{[m]}$ for all $m \geq 1$.

Let $I \subsetneq E$ be a graded ideal and $H_{E / I}$ the Hilbert function of the quotient algebra E / I. Thus, $H_{E / I}(q)=\operatorname{dim}_{K}(E / I)_{q}(q \geq 1)$ is the dimension of the K-subspace of E / I spanned by the homogeneous elements of E / I of degree q. A result due to Kruskal-Katona [2, 11] guarantees that, given a numerical function $H: \mathbb{N} \rightarrow \mathbb{N}$, where \mathbb{N} is the set of non negative integers, there exists a graded
ideal $I \subsetneq E$ such that H is the Hilbert function of the quotient algebra E / I if and only if

$$
\begin{equation*}
H(0)=1, \quad H(1) \leq n, \quad H(q+1) \leq H(q)^{(q)}, \quad \text { for } q \geq 1 \tag{1.1}
\end{equation*}
$$

where the integer $H(q)^{(q)}$ is defined in [2].
Aramova, Herzog and Hibi [2, Theorem 4.1] proved that if $I \subsetneq E$ is a graded ideal, then there exists always a unique lexsegment ideal $I^{\text {lex }} \subsetneq E$ such that $H_{E / I}=H_{E / I^{\text {lex }}}$. This property justifies the next definitions. A numerical function H satisfying the properties (1.1) is said critical if the lexsegment ideal I of E with $H_{E / I}=H$ is a ULI, and a graded ideal $I \subsetneq E$ is said critical if the Hilbert function of the graded algebra E / I is critical.

In this paper, we first introduce the class of universal lexsegment ideals in E, and then we deeply study their Hilbert function. Using combinatorial arguments, we give a precise description of the Hilbert function of a ULI. Such a description allows us to obtain some relevant results on the depth and on the graded Betti numbers of a graded ideal $I \subsetneq E$ with a given Hilbert function.

The plan of the paper is as follows. In Section 2, some notions that will be used throughout the paper are recalled. In Section 3, the universal lexsegment ideals in the exterior algebra $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ are examined, and a characterization of such graded ideals given. In Section 4, the Hilbert function of a ULI in E is analyzed; the main result is a criterion stating when a numerical function satisfying some conditions is a critical Hilbert function. This criterion allows us to obtain the main result of Section 5. In fact, we prove that for a critical graded ideal I in E, one has $\operatorname{depth}_{E} E / I=\operatorname{depth}_{E} E / I^{\text {lex }}$. Furthermore, we show that a critical ideal $I \subsetneq E$ and the corresponding lexsegment ideal $I^{\text {lex }}$ have the same graded Betti numbers.

2 Preliminaries and notations

Let K be a field. We denote by $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ the exterior algebra over an n dimensional K-vector space V with basis e_{1}, \ldots, e_{n}. For a subset $\sigma=\left\{i_{1}, \ldots, i_{d}\right\}$ of $[n]=\{1, \ldots, n\}$ with $i_{1}<i_{2}<\cdots<i_{d}$, we write $e_{\sigma}=e_{i_{1}} \wedge \ldots \wedge e_{i_{d}}$, and call e_{σ} a monomial of degree d. We set $e_{\sigma}=1$, if $\sigma=\emptyset$.

In order to simplify the notation, we write $f g$ instead of $f \wedge g$ for any two elements f and g in E. An element $f \in E$ is called homogeneous of degree j if $f \in E_{j}$, where $E_{j}=\bigwedge^{j} V$.

Let \mathcal{M} be the category of finitely generated \mathbb{Z}-graded left and right E-modules M satisfying $a m=(-1)^{\operatorname{deg} a \operatorname{deg} m} m a$ for all homogeneous elements $a \in E, m \in$ M. Let $M \in \mathcal{M}$. The supremum of the length of a maximal M-regular sequence is called the depth of M over E and denoted by $\operatorname{depth}_{E} M$ [1].

An important invariant related to free resolutions of M is the CastelnuovoMumford regularity $\operatorname{reg}_{E} M=\max \left\{j \in \mathbb{Z}: \beta_{i, i+j}(M) \neq 0\right.$ for some $\left.i \geq 0\right\}$ of a non-zero module M, where $\beta_{i, j}(M)$ are the graded Betti numbers of M. We set $\operatorname{reg}_{E} 0=-\infty$. Recall that a minimal graded free resolution of an E-module
$M \in \mathcal{M}$ has always infinite length unless the module is free. Therefore, the projective dimension is not significant. For this reason one measures the growth rate of the Betti numbers by the complexity [1] which is defined as follows:

$$
\operatorname{cx}_{E} M=\inf \left\{c \in \mathbb{Z}: \beta_{i}(M) \leq \alpha i^{c-1} \text { for some } \alpha \in \mathbb{R} \text { and for all } i \geq 1\right\}
$$

where $\beta_{i}(M)=\sum_{j} \beta_{i, j}(M)$ is the (total) Betti number of M.
We close this Section recalling some notions on monomial ideals that will be useful in the sequel.

For any subset S of E, we denote by $\operatorname{Mon}(S)$ the set of all monomials in S, by $\operatorname{Mon}_{d}(S)$ the set of all monomials of degree $d \geq 1$ in S and by $|S|$ its cardinality.

Let u be a monomial in E. We define

$$
\operatorname{supp}(u)=\left\{i \in[n]: e_{i} \text { divides } u\right\}
$$

and we write

$$
\mathrm{m}(u)=\max \{i \in[n]: i \in \operatorname{supp}(u)\}
$$

We quote the next definition from [6].
Definition 1. Let \mathcal{N} be a subset of monomials of degree $d<n$ in E. The set of monomials of degree $d+1$

$$
\operatorname{Shad}(\mathcal{N})=\left\{(-1)^{\alpha(\sigma, j)} e_{j} e_{\sigma}: e_{\sigma} \in \mathcal{N}, j \notin \operatorname{supp}\left(e_{\sigma}\right), \quad j=1, \ldots, n\right\}
$$

$\alpha(\sigma, j)=|\{r \in \sigma: r<j\}|$, is called the shadow of \mathcal{N}.
We define the i-th shadow recursively by $\operatorname{Shad}^{i}(\mathcal{N})=\operatorname{Shad}\left(\operatorname{Shad}^{i-1}(\mathcal{N})\right)$.
In order to simplify the notations, if $I=\oplus_{d \geq 0} I_{d}$ is a graded ideal in E, we set $\operatorname{Shad}\left(I_{d}\right)=\operatorname{Shad}\left(\operatorname{Mon}_{d}(I)\right)$.

Definition 2. Let $I \varsubsetneqq E$ be a monomial ideal. I is called stable if for each monomial $e_{\sigma} \in I$ and each $j<\mathrm{m}\left(e_{\sigma}\right)$ one has $e_{j} e_{\sigma \backslash\left\{\mathrm{m}\left(e_{\sigma}\right)\right\}} \in I$. I is called strongly stable if for each monomial $e_{\sigma} \in I$ and each $j \in \sigma$ one has $e_{i} e_{\sigma \backslash\{j\}} \in I$, for all $i<j$.

Finally, if $I \varsubsetneqq E$ is a monomial ideal, we denote by $G(I)$ the unique minimal set of monomial generators of I and by $G(I)_{d}$ the set of all monomials of degree $d \geq 1$ of $G(I)$.

3 Universal lexsegment ideals

In this Section, we introduce the universal lexsegment ideals in the exterior algebra $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

Denote by $>_{\text {lex }}$ the lexicographic order (lex order, in short) on $\operatorname{Mon}_{d}(E)$, i.e., if $e_{\sigma}=e_{i_{1}} e_{i_{2}} \cdots e_{i_{d}}$ and $e_{\tau}=e_{j_{1}} e_{j_{2}} \cdots e_{j_{d}}$ are monomials belonging to $\operatorname{Mon}_{d}(E)$ with $1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n$ and $1 \leq j_{1}<j_{2}<\cdots<j_{d} \leq n$, then $e_{\sigma}>_{\operatorname{lex}} e_{\tau}$ if $\quad i_{1}=j_{1}, \ldots, i_{s-1}=j_{s-1}$ and $i_{s}<j_{s}$ for some $1 \leq s \leq d$.

Definition 3. A monomial ideal $I \subsetneq E$ is called a lexsegment ideal if for all monomials $u \in I$ and all monomials $v \in E$ with $\operatorname{deg} u=\operatorname{deg} v$ and $v>_{\text {lex }} u$, then $v \in I$.

Every lexsegment ideal of E is obviously a stable ideal.
Set $E_{[m]}=K\left\langle e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+m}\right\rangle$, where m is a positive integer. Following [3], we give the following definition.

Definition 4. A lexsegment ideal I of E is called a universal lexsegment ideal (ULI), if for any integer $m \geq 1$, the monomial ideal $I E_{[m]}$ of the exterior algebra $E_{[m]}$ is a lexsegment ideal.

Example 1. The lexsegment ideal $I=\left(e_{1} e_{2}, e_{1} e_{3} e_{4}\right)$ of $E=K\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$ is a ULI. Indeed, I is a lexsegment ideal of the exterior algebra $E_{[m]}$ for all $m \geq 1$.
Example 2. The lexsegment ideal $I=\left(e_{1} e_{2}, e_{1} e_{3} e_{4}, e_{2} e_{3} e_{4}\right)$ of the exterior algebra $E=K\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$ is not a ULI. Indeed, I is not a lexsegment ideal of the exterior algebra $E_{[1]}=K\left\langle e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\rangle$. In fact $e_{1} e_{3} e_{5}>_{\operatorname{lex}} e_{2} e_{3} e_{4}$ and $e_{1} e_{3} e_{5} \notin I E_{[1]}$.

Now we discuss the combinatorics of universal lexsegment ideals.
For a sequence of non negative integers $\left(k_{i}\right)_{i \in \mathbb{N}}$, we define the following set:

$$
\operatorname{supp}\left(k_{i}\right)_{i \in \mathbb{N}}=\left\{i \in \mathbb{N}: k_{i} \neq 0\right\}
$$

If $\operatorname{supp}\left(k_{i}\right)_{i \in \mathbb{N}}=\left\{d_{1}, \ldots, d_{t}\right\}$, with $d_{1}<d_{2}<\cdots<d_{t}$, then we associate to $\left(k_{i}\right)_{i \in \mathbb{N}}$ the integers $R_{j}=j+\sum_{i=1}^{j} k_{i}, 1 \leq j \leq d_{t}$. We set $R_{j}=0$, for $j>d_{t}$.

Following [7, Characterization 2.1](see also [3, Definition 4.1]), we state the following characterization.

Characterization 1. Assume that $I \subsetneq E$ is an ideal generated in degrees $d_{1}<$ $d_{2}<\cdots<d_{t}$. Then I is a ULI of E if and only if

$$
G(I)_{d_{i}}=\left\{e_{R_{1}} e_{R_{2}} \cdots e_{R_{d_{i}-1}} e_{\ell}: R_{d_{i}-1}+1 \leq \ell \leq R_{d_{i}}-1\right\}
$$

for $1 \leq i \leq t$, where $R_{j}=j+\sum_{i=1}^{j}\left|G(I)_{i}\right|$, for $1 \leq j \leq d_{t}$.
Remark 1. Assume that $\left(k_{i}\right)_{i \in \mathbb{N}}$ is a sequence of non negative integers such that

$$
\operatorname{supp}\left(k_{i}\right)_{i \in \mathbb{N}}=\left\{d_{1}, \ldots, d_{t}\right\}, \quad d_{1}<d_{2}<\cdots<d_{t}
$$

Then there exists a ULII $\subsetneq E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ generated in degrees $d_{1}<\cdots<d_{t}$ such that $\left|G(I)_{d_{i}}\right|=k_{d_{i}}, 1 \leq i \leq t$, if and only if $n \geq d_{t}+\sum_{i=1}^{d_{t}} k_{i}-1$, i.e, $|G(I)| \leq n-d_{t}+1$. In particular, if I is a lexsegment ideal of E generated in degree d, then I is a ULI if and only if $|G(I)| \leq n-d+1$. Hence, if I is a ULI generated in degree d, one has:

$$
\begin{equation*}
G(I)=\left\{e_{1} e_{2} \cdots e_{d-1} e_{d}, e_{1} e_{2} \cdots e_{d-1} e_{d+1}, \ldots, e_{1} e_{2} \cdots e_{d-1} e_{k}\right\} \tag{3.1}
\end{equation*}
$$

with $d \leq k \leq n$.

In closing this Section we give the formula for computing the graded Betti numbers of a ULI in an exterior algebra.

Proposition 1. Let $I \subsetneq E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be a ULI generated in degrees $d_{1}<$ $\cdots<d_{t}$. Set $\left|G(I)_{d_{i}}\right|=k_{d_{i}}, 1 \leq i \leq t$. Then

$$
\beta_{i, i+j}(I)=\sum_{\ell=1}^{k_{j}}\binom{j+\sum_{r=1}^{j-1} k_{r}+\ell+i-2}{i}, \quad \text { for all } i \geq 0
$$

Proof: Let $u \in G(I)$ a monomial of degree j. From Characterization 1, it follows that $\mathrm{m}(u)=j-1+\sum_{r=1}^{j-1} k_{r}+\ell$, for $1 \leq \ell \leq k_{j}$. From the formula on the Betti numbers for a stable ideal [2, Corollary 3.3], the assertion follows.

4 The Hilbert function of a ULI

In this Section, we describe the Hilbert function of a ULI in the exterior algebra $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

In order to accomplish this task we need to introduce some notations.
For a graded ideal I we denote by $\operatorname{indeg}(I)$ the initial degree of I, i.e., the minimum s such that $I_{s} \neq 0$.

Let $u \in \operatorname{Mon}_{d}(E)$, and define the following subset of $\operatorname{Mon}_{d+1}(E)$:

$$
u \mathbf{e}_{\mathrm{m}(u)}=\left\{u e_{\mathrm{m}(u)+1}, \ldots, u e_{n}\right\}
$$

Note that $u \mathbf{e}_{\mathrm{m}(u)}=\emptyset$ if $\mathrm{m}(u)=n$.
Example 3. Let $u=e_{1} e_{3} e_{4} \in E=K\left\langle e_{1}, \ldots, e_{6}\right\rangle$, then $u \mathbf{e}_{\mathrm{m}(u)}=u \mathbf{e}_{4}=$ $\left\{e_{1} e_{3} e_{4} e_{5}, e_{1} e_{3} e_{4} e_{6}\right\}$.

For a subset \mathcal{N} of monomials of degree d of E, we define the following subset of monomials of degree $d+1$:

$$
\begin{equation*}
\operatorname{aShad}(\mathcal{N})=\bigcup_{u \in \mathcal{N}} u \mathbf{e}_{\mathrm{m}(u)} \tag{4.1}
\end{equation*}
$$

We call the set $\operatorname{aShad}(\mathcal{N})$ the almost shadow of \mathcal{N}. We define the i-th almost shadow recursively by $\operatorname{aShad}^{i}(\mathcal{N})=\operatorname{aShad}\left(\operatorname{aShad}^{i-1}(\mathcal{N})\right)$.
Remark 2. If $u \in \operatorname{Mon}_{d}(E)$ and $\mathcal{N}=\left\{w \in \operatorname{Mon}_{d}(E): w \geq\right.$ lex $\left.u\right\}$, then $\operatorname{aShad}(\mathcal{N})=\operatorname{Shad}(\mathcal{N})$.
Example 4. Let $\mathcal{N}=\left\{e_{1} e_{5}, e_{1} e_{6}, e_{2} e_{3}, e_{2} e_{4}\right\} \varsubsetneqq \operatorname{Mon}_{2}(E), E=K\left\langle e_{1}, \ldots, e_{6}\right\rangle$, then $\operatorname{aShad}(\mathcal{N})=\left\{e_{1} e_{5} e_{6}, e_{2} e_{3} e_{4}, e_{2} e_{3} e_{5}, e_{2} e_{3} e_{6}, e_{2} e_{4} e_{5}, e_{2} e_{4} e_{6}\right\}$.

For a given graded ideal $I \subsetneq E$, we denote by $I^{\text {lex }}$ the unique lexsegment ideal in E with the same Hilbert function as I.

The next definition, introduced in [8], was motivated by [2, Theorem 4.1].

Definition 5. Let $H: \mathbb{N} \rightarrow \mathbb{N}$ be a numerical function. We call H a 0^{*}-sequence if H satisfies the properties (1.1).
0^{*}-sequence with $H(p)=0$ for $p \geq q$ will be written as:

$$
(1, H(1), H(2), \ldots, H(q-1), 0) .
$$

Definition 6. Let $H \neq(1,0)$ be a 0^{*}-sequence, we set

$$
\operatorname{indeg} H=\min \left\{d: H(d) \neq\binom{ H(1)}{d}\right\}
$$

and call it the initial degree of H.
Following [13], we give the following definition.
Definition 7. Let H be a 0^{*}-sequence. H is critical if the lexsegment ideal I of E with $H_{E / I}=H$ is a ULI.
Example 5. The 0^{*}-sequence $H=(1,4,5,1,0)$ is critical. Indeed, there exists the ULI $I=\left(e_{1} e_{2}, e_{1} e_{3} e_{4}\right)$ of $E=K\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right)$ such that $H_{E / I}=H$.
Example 6. The 0^{*}-sequence $H=(1,4,5,0)$ is not critical. Indeed, the lexsegment ideal $I=\left(e_{1} e_{2}, e_{1} e_{3} e_{4}, e_{2} e_{3} e_{4}\right)$ of $E=K\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right)$ such that $H_{E / I}=H$ is not a ULI (Example 2).

The next lemmas will be crucial in the sequel.
For a subset \mathcal{N} of $\operatorname{Mon}_{d}(E)$, we denote by $\max (\mathcal{N})$ the greatest monomial in \mathcal{N} with respect to the lex order. Moreover, for a subset \mathcal{N} of monomials in E, we define

$$
\operatorname{supp}(\mathcal{N})=\{i \in[n]: i \in \operatorname{supp}(u), \forall u \in \mathcal{N}\} .
$$

Lemma 1. Let $I \varsubsetneqq E$ be a ULI generated in degree d. Then

$$
\operatorname{dim}_{K} I_{d+i}=\sum_{q=0}^{|G(I)|-1-c_{d}}\binom{n-d-q}{i},
$$

where $c_{d}=0$, for $i=0$ and for $1 \leq i \leq n-d$ if $|G(I)|<n-d+1$, whereas $c_{d}=1$ for $1 \leq i \leq n-d$ if $|G(I)|=n-d+1$.

Proof: Set $k_{d}=|G(I)|$, and $s::=\max \left\{\mathrm{m}(u): u \in G(I)_{d}\right\}$. From (3.1), it is $d \leq s \leq n$. For $i=0, \operatorname{dim}_{K} I_{d}=|G(I)|$. For $i \geq 1$, we have

$$
\begin{equation*}
\operatorname{dim}_{K} I_{d+i}=\left|\operatorname{Shad}^{i}\left(I_{d}\right)\right|=\sum_{q=0}^{k_{d}-1-c_{d}}\binom{n-d-q}{i} \tag{4.2}
\end{equation*}
$$

where $c_{d}=0$, if $s<n$ and $c_{d}=1$, if $s=n$.

Lemma 2. Let $I \varsubsetneqq E$ be a ULI generated in degrees $d_{1}<d_{2}<\cdots<d_{t}, t>1$. Set

$$
r_{p}=d_{p}-d_{p-1}, 2 \leq p \leq t, \text { and } r_{t+1}=1
$$

Then
(1) for $1 \leq p \leq t, 0 \leq i \leq r_{p+1}-1$,

$$
\operatorname{dim}_{K} I_{d_{p}+i}=\sum_{q=0}^{k_{d_{1}}-1}\binom{n-d_{1}-q}{\sum_{\ell=2}^{p} r_{\ell}+i}+\sum_{j=2}^{p}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-\tilde{s}_{d_{j-1}}-s_{d_{j}}-q}{\sum_{\ell=j+1}^{p} r_{\ell}+i}\right]
$$

(2) for $p=t, 1 \leq i \leq n-d_{t}$,

$$
\begin{aligned}
\operatorname{dim}_{K} I_{d_{t}+i} & =\sum_{q=0}^{k_{d_{1}}-1}\binom{n-d_{1}-q}{\sum_{\ell=2}^{t} r_{\ell}+i}+\sum_{j=2}^{t-1}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-\tilde{s}_{d_{j-1}}-s_{d_{j}}-q}{\sum_{\ell=j+1}^{t} r_{\ell}+i}\right] \\
& +\sum_{q=0}^{k_{d_{t}}-1-c_{d_{t}}}\binom{n-\tilde{s}_{d_{t-1}}-s_{d_{t}}-q}{i}
\end{aligned}
$$

where $k_{d_{p}}=\left|G(I)_{d_{p}}\right|, 1 \leq p \leq t ; \tilde{s}_{d_{\ell-1}}=\left|\left\{i \in[n]: i \in \operatorname{supp}\left(\bigcup_{r=1}^{\ell} G(I)_{d_{r}}\right)\right\}\right|$, $s_{d_{\ell}}=\mid\left\{i \in[n]: i \in \operatorname{supp}\left(\max \left(G(I)_{d_{\ell}}\right), i \notin \operatorname{supp}\left(G(I)_{d_{\ell-1}}\right)\right\} \mid\right.$, for $2 \leq \ell \leq t$; and $c_{d_{t}}$ is 0 (1, respectively) if $\max \left\{\mathrm{m}(u): u \in G(I)_{d_{t}}\right\}<n(\max \{\mathrm{~m}(u): u \in$ $\left.G(I)_{d_{t}}\right\}=n$, respectively).

Proof: First of all, observe that since $n \geq d_{t}+|G(I)|-1$, then $\max \{\mathrm{m}(u): u \in$ $\left.G(I)_{d_{i}}\right\}<n, 1 \leq i \leq t-1$.
(1). For $p=1$, the assert follows from Lemma 1. By hypothesis, $d_{p}=d_{p-1}+r_{p}$ $(2 \leq p \leq t)$, with $r_{p} \geq 1$. Hence, $d_{p}=d_{1}+\sum_{\ell=2}^{p} r_{\ell}$, and consequentaly

$$
\begin{aligned}
\operatorname{dim}_{K} I_{d_{p}+i} & =\left|\operatorname{Shad}^{\sum_{\ell=2}^{p} r_{\ell}+i}\left(I_{d_{1}}\right)\right|+\sum_{j=2}^{p}\left|\operatorname{aShad}^{\sum_{\ell=j+1}^{p} r_{\ell}+i}\left(G(I)_{d_{j}}\right)\right|= \\
& =\sum_{q=0}^{k_{d_{1}}-1}\binom{n-d_{1}-q}{\sum_{\ell=2}^{p} r_{\ell}+i}+\sum_{j=2}^{p}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-\tilde{s}_{d_{j-1}}-s_{d_{j}}-q}{\sum_{\ell=j+1}^{p} r_{\ell}+i}\right]
\end{aligned}
$$

for $0 \leq i \leq r_{p+1}-1$; where $\tilde{s}_{d_{\ell-1}}=\left|\left\{i \in[n]: i \in \operatorname{supp}\left(\bigcup_{r=1}^{\ell} G(I)_{d_{r}}\right)\right\}\right|, s_{d_{\ell}}=$ $\mid\left\{i \in[n]: i \in \operatorname{supp}\left(\max \left(G(I)_{d_{\ell}}\right), i \notin \operatorname{supp}\left(G(I)_{d_{\ell-1}}\right)\right\} \mid, 2 \leq \ell \leq t\right.$.
(2). Let $p=t, 1 \leq i \leq n-d_{t}$. With the same notations as in statement (1), one has

$$
\begin{aligned}
\operatorname{dim}_{K} I_{d_{t}+i} & =\sum_{q=0}^{k_{d_{1}}-1}\binom{n-d_{1}-q}{\sum_{\ell=2}^{t} r_{\ell}+i}+\sum_{j=2}^{t-1}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-\tilde{s}_{d_{j-1}}-s_{d_{j}}-q}{\sum_{\ell=j+1}^{t} r_{\ell}+i}\right] \\
& +\sum_{q=0}^{k_{d_{t}}-1-c_{d_{t}}}\binom{n-\tilde{s}_{d_{t-1}}-s_{d_{t}}-q}{i}
\end{aligned}
$$

where $c_{d_{t}}$ is equal to 0 if $\max \left\{\mathrm{m}(u): u \in G(I)_{d_{t}}\right\}<n$, and equals 1 if $\max \{\mathrm{m}(u)$: $\left.u \in G(I)_{d_{t}}\right\}=n$.

Theorem 1. Let $I \varsubsetneqq E$ be a ULI generated in degrees $d_{1}<d_{2}<\cdots<d_{t}$. Set $k_{d_{p}}=\left|G(I)_{d_{p}}\right|, 1 \leq p \leq t$. Then
(1) for $1 \leq p \leq t, 0 \leq i \leq d_{p+1}-d_{p}-1$,

$$
\operatorname{dim}_{K} I_{d_{p}+i}=\sum_{j=1}^{p}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-d_{j}-q-\sum_{\ell=1}^{d_{j-1}} k_{\ell}}{d_{p}-d_{j}+i}\right]
$$

(2) for $p=t, 1 \leq i \leq n-d_{t}$,

$$
\begin{aligned}
\operatorname{dim}_{K} I_{d_{t}+i} & =\sum_{j=1}^{t-1}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-d_{j}-q-\sum_{\ell=1}^{d_{j-1}} k_{\ell}}{d_{t}-d_{j}+i}\right] \\
& +\sum_{q=0}^{k_{d_{t}}-1-c_{d_{t}}}\binom{n-d_{t}-q-\sum_{\ell=1}^{d_{t-1}} k_{\ell}}{i}
\end{aligned}
$$

where $c_{d_{t}}$ is the integer defined in Lemma 2.
Proof: Since I is a ULI generated in degrees $d_{1}<d_{2}<\cdots<d_{t}$, then with the same notations as in Characterization 1 and in Lemma 2, one has

$$
\tilde{s}_{d_{j-1}}=R_{d_{j-1}}-1=d_{j-1}+\sum_{\ell=1}^{d_{j-1}} k_{\ell}-1, \quad s_{d_{j}}=d_{j}-\left(d_{j-1}-1\right), 2 \leq j \leq t
$$

Hence $\tilde{s}_{d_{j-1}}+s_{d_{j}}=\sum_{\ell=1}^{d_{j-1}} k_{\ell}+d_{j}$, for $2 \leq j \leq t$. Moreover, it is easily verified that $r_{j}+r_{j+1}=d_{j+1}-d_{j-1}$, for $2 \leq j \leq t$, and $r_{i}+r_{i+1}+\cdots+r_{j}=d_{j}-d_{i-1}$, for $2 \leq i<j \leq t$.

Theorem 1 gives a systematic description of the Hilbert function of a ULI and yields the following result.

Theorem 2. Let n be a positive integer. A 0^{*}-sequence $H=(1, H(1), H(2), \ldots$, $H(n-1), 0)$ is critical of initial degree d if and only if there exists an integer $1 \leq t \leq n-1$ together with a sequence of non negative integers $\left(k_{i}\right)_{i \in \mathbb{N}}$ with $\operatorname{supp}\left(k_{i}\right)_{i \in \mathbb{N}}=\left\{d=d_{1}<d_{2}<\cdots<d_{t}\right\}$ such that

$$
\text { (1) } n \geq d_{t}+\sum_{i=1}^{t} k_{d_{i}}-1
$$

(2) for $1 \leq p \leq t, 0 \leq i \leq d_{p+1}-d_{p}-1$,

$$
H_{E / I}\left(d_{p}+i\right)=\binom{n}{d_{p}+i}-\sum_{j=1}^{p}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-d_{j}-q-\sum_{\ell=1}^{d_{j-1}} k_{\ell}}{d_{p}-d_{j}+i}\right]
$$

(3) for $1 \leq i \leq n-d_{t}$,

$$
\begin{aligned}
H_{E / I}\left(d_{t}+i\right) & =\binom{n}{d_{t}+i}-\left[\sum_{j=1}^{t-1}\left[\sum_{q=0}^{k_{d_{j}}-1}\binom{n-d_{j}-q-\sum_{\ell=1}^{d_{j-1}} k_{\ell}}{d_{t}-d_{j}+i}\right]+\right. \\
& \left.+\sum_{q=0}^{k_{d_{t}}-1-c_{d_{t}}}\binom{n-d_{t}-q-\sum_{\ell=1}^{d_{t-1}} k_{\ell}}{i}\right], c_{d_{t}} \in\{0,1\} .
\end{aligned}
$$

Moreover, $\sum_{i=1}^{d_{t}} k_{i}$ is equal to the number of minimal monomial generators of the ULI I of $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ with $H_{E / I}=H$.

Proof: If H is critical of initial degree d, then there exists a ULI $I \subsetneq E=$ $K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ of initial degree d such that $H=H_{E / I}$. Let I be an ideal generated in degrees $d=d_{1}<d_{2}<\ldots<d_{t}$. Set $k_{d_{p}}=\left|G(I)_{d_{p}}\right|, 1 \leq p \leq t$. Therefore, condition (1) follows from Remark 1, whereas, as a consequence of Theorem 1, it follows that H is of the type described in (2) and (3).

Conversely, suppose there exists a sequence of non negative integers $\left(k_{i}\right)_{i \in \mathbb{N}}$ with $\operatorname{supp}\left(k_{i}\right)_{i \in \mathbb{N}}=\left\{d=d_{1}<d_{2}<\cdots<d_{t}\right\}$ and such that $n \geq d_{t}+\sum_{i=1}^{t} k_{d_{i}}-1$. Let H be a numerical function satisfying conditions (2) and (3). From Remark 1, there exists a ULI $I \subsetneq E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ with $k_{d_{i}}=\left|G(I)_{d_{i}}\right|, 1 \leq i \leq t$. More precisely, for $t=1, I$ is a ULI generated in one degree $d=d_{1}$ with $|G(I)|=$ $n-d+1$ if $c_{d}=1$, and $|G(I)|<n-d+1$, if $c_{d}=0$. For $t>1, I$ is a ULI generated in several degrees $d_{1}<d_{2}<\cdots<d_{t}$, with $\left|G(I)_{d_{t}}\right|=n-d_{t}-\sum_{i=1}^{t} k_{d_{i}}+1$ if $c_{d_{t}}=1$, and $\left|G(I)_{d_{t}}\right|<n-d_{t}-\sum_{i=1}^{t} k_{d_{i}}+1$ if $c_{d_{t}}=0$. From Theorem 1, $H_{E / I}=H$, and so H, is critical.

5 The depth of a graded ideal with a given Hilbert function

In this Section, we analyze the depth of a graded ideal with a given Hilbert function in $E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

We give the following definition.
Definition 8. Let $I \subsetneq E$ be a graded ideal. I is said critical if the Hilbert function of the graded algebra E / I is critical.

In other words, a graded ideal $I \subsetneq E$ is critical if the lexsegment ideal $I^{\text {lex }}$ is a ULI.

Example 7. Let $I=\left(e_{1} e_{2}, e_{2} e_{3} e_{4}, e_{2} e_{3} e_{5}\right)$ be a stable ideal in $E=K\left\langle e_{1}, \ldots, e_{5}\right\rangle$. The Hilbert function of E / I is $H_{E / I}=(1,5,9,5,1,0)$. I is critical. In fact, there exists the ULI $I^{\mathrm{lex}}=\left(e_{1} e_{2}, e_{1} e_{3} e_{4}, e_{1} e_{3} e_{5}\right)$ of E such that $H_{E / I}=H_{E / I^{\mathrm{lex}}}$.

Theorem 3. Let $I \subsetneq E$ be a critical graded ideal with $|K|=\infty$. Then $\operatorname{depth}_{E} E / I$ $=\operatorname{depth}_{E} E / I^{\text {lex }}$.

Proof: Since the depth and also the complexity are preserved by the passage to the generic initial ideal $[1,10]$, we may assume that I is a strongly stable ideal in E. Therefore, from [1, Theorem 3.2], depth $E E / I=n-\mathrm{cx}_{E} E / I$ and $\operatorname{depth}_{E} E / I^{\text {lex }}=n-\mathrm{cx}_{E} E / I^{\text {lex }}$. On the other hand, Theorem 2 guarantees that the ideal I is generated in the same degrees $d_{1}<d_{2}<\cdots<d_{t}$ as those of $I^{\text {lex }}$ and that $\left|G(I)_{d_{i}}\right|=\left|G\left(I^{\text {lex }}\right)_{d_{i}}\right|, 1 \leq i \leq t$. In particular, $\nu(I)=\nu\left(I^{\text {lex }}\right)$. Moreover, for $1 \leq i \leq t, \max \left\{\mathrm{~m}(u): u \in G(I)_{d_{i}}\right\}=\max \left\{\mathrm{m}(u): u \in G\left(I^{\text {lex }}\right)_{d_{i}}\right\}$. Hence, from [12, Lemma 3.14], $\mathrm{cx}_{E} E / I=\mathrm{cx}_{E} E / I^{\mathrm{lex}}$, and the assert follows.

In general, if $I \subsetneq E$ is a graded ideal and $I^{\text {lex }}$ is the unique lexsegment ideal of E such that $H_{E / I}=H_{E / I^{\text {lex }}}$, the equality in Theorem 3 does not hold, as the following example clearly shows.

Example 8. Let $I=\left(e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3} e_{4}, e_{2} e_{3} e_{5}\right)$ be a stable ideal of the exterior algebra $E=K\left\langle e_{1}, \ldots, e_{6}\right\rangle$. The Hilbert function of E / I is $H=(1,6,13,11,3,0)$. We have $I^{\mathrm{lex}}=\left(e_{1} e_{2}, e_{1} e_{3}, e_{1} e_{4} e_{5}, e_{1} e_{4} e_{6}, e_{2} e_{3} e_{4} e_{5}, e_{2} e_{3} e_{4} e_{6}\right)$. It follows that $\operatorname{cx}_{E} E / I=5<\operatorname{cx}_{E} E / I^{\text {lex }}=6$. Hence, $\operatorname{depth}_{E} E / I=1>\operatorname{depth}_{E} E / I^{\mathrm{lex}}=0$. Note that I is not a stable critical ideal since $I^{\text {lex }}$ is not a ULI.

As a consequence of Theorem 3 and Proposition 1, we obtain the following corollary.
Corollary 1. Let $|K|=\infty$ and $I \subsetneq E$ be a critical stable ideal. Then I and $I^{\text {lex }}$ have the same graded Betti numbers.

We close this Section with some formulas that show the relation between the depth, the Castelnuovo-Mumford regularity and the minimal system of monomial generators of a ULI.

Our first result is the following.
Proposition 2. Let $|K|=\infty$ and $0 \neq I \subsetneq E$ be a ULI generated in degrees $d_{1}<d_{2}<\cdots<d_{t}$. Then $\operatorname{depth}_{E} E / I+|G(I)|=n+1-d_{t}$.

Proof: From [1, Theorem 3.2], $\operatorname{depth}_{E} E / I=n-\operatorname{cx}_{E} E / I$. Hence, under the same notations of Characterization 1, set $R_{t}=d_{t}+\sum_{i=1}^{t}\left|G(I)_{d_{i}}\right|$, from [12, Lemma 3.14], one has depth ${ }_{E} E / I=n-\operatorname{cx}_{E} E / I=n-R_{t}+1=n-d_{t}-|G(I)|+1$. \square

Therefore, we finally get the following corollary.

Corollary 2. Let $|K|=\infty$ and $0 \neq I \subsetneq E=K\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be a ULI. Then $\operatorname{depth}_{E} E / I+\operatorname{reg}_{E}(E / I)+|G(I)|=n$.

Acknowledgement. The author thanks the anonymous referee for his/her useful comments that improved the quality of the paper.

References

[1] A. Aramova, L.L. Avramov, J. Herzog, Resolutions of monomial ideals and cohomology over exterior algebras, Trans. Am. Math. Soc. 352(2) (2000), 579-594.
[2] A. Aramova, J. Herzog, T. Hibi, Gotzmann theorems for exterior algebras and combinatorics, J. Algebra 191 (1997), 174-211.
[3] E. Babson, I. Novik, R. Thomas, Reverse lexicographic shifting, J. Algebraic Combin. 23 (2006), 107-123.
[4] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Press, 1996.
[5] CoCoA team: A system for doing computations in commutative algebra. Available at http:://cocoa.dima.unige.it.
[6] M. Crupi, C. Ferrò, Bounding Betti numbers of monomial ideals in the exterior algebra, Pure Appl. Math. Q. to appear.
[7] M. Crupi, M. La Barbiera, Algebraic properties of universal squarefree lexsegment ideals, Algebra Colloq. to appear.
[8] M. Crupi, R. Utano, Upper bounds for the Betti numbers of graded ideals of a given length in the exterior algebra, Comm. Algebra 27(9) (1999), 4607-4631.
[9] M. Crupi, R. Utano, Classes of graded ideals with given data in the exterior algebra, Comm. Algebra 35 (2007), 2386-2408.
[10] J. Herzog, N. Terai, Stable properties of algebraic shifting, Results Math. 35 (1999), 260-265.
[11] G. Kalai, Algebraic shifting, in Computational Commutative Algebra and Combinatorics, 2001.
[12] G. KÄMPF, Module theory over exterior algebra with applications to combinatorics, Dissertation zur Erlangung des Doktorgrades, Fachbereich Mathematik/Informatic, Universität Osnabrüch, 2010.
[13] S. Murai, T.Hibi, The depth of an ideal with a given Hilbert function, Proc. Am. Math. Soc. 136 (2008), 1533-1538.

Received: 27.07.2014
Revised: 28.10.2014
Accepted: 14.11.2014
Department of Mathematics and Computer Science, University of Messina Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy, E-mail: mcrupi@unime.it

