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Abstract

This paper aims to construct a space of boundary values for minimal
symmetric singular impulsive-like Sturm-Liouville (SL) operator in limit-
circle case at singular end points a, b and regular inner point c. For this
purpose all maximal dissipative, accumulative and self-adjoint extensions
of the symmetric operator are described in terms of boundary conditions.
We construct a self-adjoint dilation of maximal dissipative operator, a func-
tional model and we determine its characteristic function in terms of the
scattering matrix of the dilation. The theorem verifying the completeness
of the eigenfunctions and the associated functions of the dissipative SL
operator is proved.
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1 Introduction

An important class of non-self-adjoint operators is the class of dissipative op-
erators. In recent years, a lot of papers have been published about dissipative
operators (for example, see [2-6, 8, 9, 24]). It is known that all eigenvalues of
a dissipative operators lie in the closed upper half-plane. One of the most im-
portant problems for non-self-adjoint dissipative operators is the completeness of
the system of all eigenfunctions and associated functions of these operators. So,
it is important to analyse the spectral properties of dissipative operators. There
are some methods to investigate the spectral theory of dissipative operators. One
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of the methods is the functional model which is associated with the equivalence
of Lax-Phillps scattering matrix [17] and Sz.-Nagy-Foiaş characteristic function
[18].

In 1967, Lax and Phillips defined the abstract scattering matrix, also called
the Lax-Phillips scattering matrix, which exactly coincides with the scattering
matrix [17]. This scattering matrix acts in the subspaces D− and D+ called the
incoming and outgoing subspaces, respectively, of the Hilbert spaceH. Further an
unitary group V (s) and the subspaces D− and D+ have the following properties:

(i) V (s)D− ⊂ D−, s ≤ 0;V (s)D+ ⊂ D+, s ≥ 0,
(ii) ∩

s≤0
V (s)D− = ∩

s≥0
V (s)D+ = {0},

(iii) ∪
s≥0

V (s)D+ = ∪
s≤0

V (s)D− = H,

(iv) D− ⊥ D+.

On the other hand, to investigate the spectral properties of contractive op-
erators, Sz.-Nagy and Foiaş studied the characteristic functions of contractions
[18]. Moreover they proved a theorem on completeness of eigenvectors and asso-
ciated vectors of contractions. It is fortunate that there is an equivalence between
Lax-Phillips scattering matrix and Sz.-Nagy-Foiaş characteristic function. This
fact may allow us to know that whether all eigenvectors and associated vectors
of a dissipative operator are complete or not in the Hilbert space. In the lit-
erature, there are some works containing the spectral theory of non-self-adjoint
(dissipative) operators. For example the spectral analysis of dissipative operators
defined on a single interval was investigated in detail in [1, 2, 4, 5, 20, 21]. Other
non-self-adjoint problems were investigated in [3, 6, 8, 9, 24].

In this paper, we consider the minimal symmetric singular impulsive-like
Sturm-Liouville (SL) operator acting in the Hilbert space L2

r(Ω), where Ω =
Ω1 ∪ Ω2, Ω1 = (a, c), Ω2 = (c, b) with deficiency indices (4, 4), i.e., limit-circle
case holds at singular end points a, b and inner point c is regular. We construct
a space of boundary values and describe all maximal dissipative accumulative
and self-adjoint extensions in terms of the boundary conditions. We construct a
self-adjoint dilation of maximal dissipative operator and its incoming and outgo-
ing spectral representations, which makes it possible to determine the scattering
matrix of dilation according to the scheme of Lax and Phillips [17]. We also
construct a functional model of dissipative operator and its characteristic func-
tion. Finally, on the basis of the results obtained regarding the theory of the
characteristic function, we prove a theorem on completeness of the system of
eigenfunctions and associated functions of dissipative SL operators.
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2 Space of the boundary values and extensions of the symmetric ope-
rator

In this paper we consider the following differential expression

τ(y) :=
1

r(t)
[−(p(t)y′)′ + q(t)y] , t ∈ (a, c) ∪ (c, b).

We set Ω1 := (a, c), Ω2 := (c, b), −∞ ≤ a < c < b ≤ +∞ and Ω := Ω1 ∪ Ω2. We
assume that the points a and b are singular and c is regular for the differential
expression τ . r, p and q are real-valued, Lebesgue measurable functions on Ω and
r, 1
p , q ∈ L

1
loc(Ωk), k = 1, 2, r(t) > 0 for almost all t ∈ Ω and r(t) =

{
r1(t), t∈Ω1

r2(t), t∈Ω2
.

The point c is regular if r, 1
p , q ∈ L

1[c− ε, c+ ε] for some ε > 0.

Denote by D the linear set of all function y ∈ H such that y, py′ are lo-
cally absolutely continuous functions on Ω, one-sided limits y(c±), (py′)(c±) ex-
ist and are finite and τ(y) ∈ H, where H = H1 ⊕ H2, Hm := L2

r(Ωm), m = 1, 2,
denotes the Hilbert space containing all complex-valued functions y such that∫

Ω
r(t) |y(t)|2 dt < +∞ and equipped with the inner product (y, z) = (y, z)H1

+
(y, z)H2

and

(y, z)Hm =

∫
Ωm

rm(t)ym(t)zm(t)dt,m = 1, 2.

The operator T defined by Ty = τ(y) is called the maximal operator T on D.
Let us adopt the notation [y, z](t) := p(t)(y(t)z′(t) − y′(t)z(t)). Then the values
[y, z](a) := limt→a+ [y, z](t) and [y, z](b) := limt→b− [y, z](t) exist and are finite.
In fact one gets the Green’s formula: for arbitrary y, z ∈ D, Green’s formula is∫

Ω

r(t)τ(y)z(t)dt−
∫

Ω

r(t)y(t)τ(z)dt = [y, z](c−)− [y, z](a)+ [y, z](b)− [y, z](c+).

Let us consider the set D0 consisting all functions y from D satisfying the fol-
lowing conditions [y, z](a) = y(c−) = (py′)(c−) = y(c+) = (py′)(c+) = [y, z](b) =
0, where z ∈ D. The operator T0 which is the restriction of the operator T to D0

is called the minimal operator generated by τ and it is closed symmetric operator
with deficiency indices (s, s), s = 2, 3, 4. Moreover T ∗0 = T [10, 11, 19, 25, 26].
In this paper we assume that the deficiency indices of the minimal symmetric
operator T0 are (4, 4) [7, 10, 11, 14, 15, 19, 23, 25, 26].

Let us set u =
{
u1, t∈Ω1

u2, t∈Ω2
and v =

{
v1, t∈Ω1

v2, t∈Ω2
satisfying{

u1(c−) = 1, (pu′1)(c−) = 0,
v1(c−) = 0, (pv′1)(c−) = 1

,

{
u2(c+) = 1, (pu′2)(c+) = 0,
v2(c+) = 0, (pv′2)(c+) = 1.

Then {u, v} is the fundamental system of the equation τ(y) = 0 (t ∈ Ω).
Consider the following linear mappings from D into E := C4 defined by

G1y = (
(
G1
)

1
y,
(
G2
)

1
y)T and G2y = (

(
G1
)

2
y,
(
G2
)

2
y)T , where

(
G1
)
i

and(
G2
)
i

(i = 1, 2) are linear mappings of D |Ω1
and D |Ω2

, respectively, into
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C2 with
(
G1
)

1
y := (−[y, u](a), y(c−))

T
,
(
G2
)

1
y := (−y(c+), [y, u](b))

T
and(

G1
)

2
y := ([y, v](a), (py′)(c−))

T
,
(
G2
)

2
y := ((py′)(c+), [y, v](b))

T
, where su-

perscript T denotes the transpose of the vector.
The proof of the following Lemma can be obtained by using Naimark’s Patch-

ing Theorem [19].
Lemma 2.1. For any complex numbers αi, βi, θi, γi ∈ C (i = 0, 1), there is

a function y ∈ D satisfying

[y, u](a) = γ0, [y, v](a) = θ0, y(c−) = α0, (py′)(c−) = α1,
y(c+) = β0, (py′)(c+) = β1, [y, u](b) = γ1, [y, v](b) = θ1.

(2.1)

Using Lemma 2.1 and the theory of space of boundary values (see [13]) we
have the following theorem.

Theorem 2.2. The triplet (E , G1, G2) is a space of boundary values of the
operator T0.

Proof: Let y and z be two functions from D. Then one can get the equality

(T ∗0 y, z)− (y, T ∗0 z) = [y, z](c−)− [y, z](a) + [y, z](b)− [y, z](c+).

On the other side, the equality (T ∗0 y, z)− (y, T ∗0 z) = (G1y,G2z)E − (G2y,G1z)E
holds. So the theorem is proved.

Using Theorem 2.2, [13, Theorem 1.6, p.156] and linear mappings G1 and G2

we can state the following theorem.
Theorem 2.3. For any contraction K in E, i.e., ‖K‖E ≤ 1, the restriction of

the operator T to the set of functions f ∈ D satisfying the boundary condition

(K− I)G1f + i (K + I)G2f = 0 (2.2)

or
(K− I)G1f − i (K + I)G2f = 0 (2.3)

is respectively, a maximal dissipative or a maximal accumulative extension of
the operator T0. Conversely, every maximal dissipative (maximal accumulative)
extension of T0 is the restriction of T to the set of vectors f ∈ D satisfying (2.2)
((2.3)), and the contraction K is uniquely determined by the extensions. These
conditions give self-adjoint extension if K is unitary.

In this paper, we consider the maximal dissipative operator AK, where K is a
strict contraction in E , i.e., ‖K‖E < 1, generated by the differential expression τ
and the boundary condition (2.2). The boundary condition (2.2) is equivalent to
the condition

G2f + TG1f = 0, f ∈ D, (2.4)

where T = −i (K + I)
−1

(K − I), =T > 0, and −K is the Cayley transform of
the dissipative operator T. We denote by LT (= AK) the maximal dissipative
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operator generated by the expression τ and the boundary condition (2.4). Let
T be an 4 × 4 matrix as T = diag (h1, h2, h3, h4) . Then the boundary condition
(2.4) coincides with the separated boundary conditions.

The proof of the following lemma follows from the fact that τ is in limit-circle
case at a and b and =T > 0.

Lemma 2.4. The operator LT is completely non-self-adjoint (simple).

3 Self-adjoint dilation, scattering matrix of dilation and spectral anal-
ysis of the dissipative operator

To analyse the operator LT, we shall construct the scattering matrix. For this
purpose, we form the main Hilbert space of the dilation H = L2(R−; E) ⊕ H ⊕
L2(R+; E), where R− := (−∞, 0] and R+ := [0,∞). Consider the mappings
P : H → H and P1 : H → H the mappings with the rules P : 〈σ−, y, σ+〉 → y
and P1 : y → 〈0, y, 0〉.

Construct the operator LT in H generated by

L 〈σ−, y, σ+〉 =

〈
i
dσ−
dξ

, τ(y), i
dσ+

dζ

〉
, (3.1)

on the set of vectors D(LT) satisfying the conditions: σ− ∈ W 1
2 (R−; E), σ+ ∈

W 1
2 (R+; E), y ∈ D,

G2y + TG1y = Cσ−(0), G2y + T∗G1y = Cσ+(0). (3.2)

Here C2 := 2=T, C > 0 and W 1
2 denotes the Sobolev space.

Theorem 3.1. The operator LT is self-adjoint in H.

Proof: Let Y = 〈σ−, y, σ+〉 , Z = 〈ω−, z, ω+〉 ∈ D(LT). Then we have

(LTY, Z)H − (Y,LTZ)H = [y, z](c−)− [y, z](a) + [y, z](b)− [y, z](c+)
+i (σ−(0), ω−(0))E − i (σ+(0), ω+(0))E .

(3.3)
Using the boundary conditions (3.2) in (3.3) we obtain that LT is symmetric in
H.

Consider the function Y = 〈σ−, 0, σ+〉 , σ∓ ∈ W 1
2 (R∓; E), σ∓(0) = 0. Then

for Z = 〈ω−, z, ω+〉 ∈ D(L∗T), we obtain

(LTY,Z)H = (〈σ−, 0, σ+〉 , 〈idω−/dξ, z∗, idω+/dζ〉)H,

and therefore L∗TZ =
〈
idω−
dξ , z

∗, idω+

dζ

〉
, where ω∓ ∈W 1

2 (R∓), z∗ ∈ H.

Now, let Y = 〈0, y, 0〉 ∈ D(LT) and put Y in the Eq. (3.3). Then we arrive
at L∗TZ = 〈idω−/dξ, τ(z), idω+/dζ〉 , z ∈ D. Consequently, we obtain

[y, z](c−)−[y, z](a)+[y, z](b)−[y, z](c+)+i (σ−(0), ω−(0))E−i (σ+(0), ω+(0))E = 0.
(3.4)
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Further, solving the boundary conditions (3.2), we find that

G1y = −iC−1 (σ−(0)− σ+(0)) , G2y = Cσ−(0) + iTC−1 (σ−(0)− σ+(0)) . (3.5)

Using the equalities (3.4) and (3.5) we obtain

i (σ−(0), ω−(0))E − i (σ+(0), ω+(0))E = (G1y,G2z)E − (G2y,G1z)E

= −i
(
C−1 (σ−(0)− σ+(0)) , G2z

)
E − (Cσ−(0), G1z)E

−i
(
TC−1 (σ−(0)− σ+(0)) , G1z

)
E .

Comparing the coefficients of σ∓(0), on the left and right of the last equality,
it is proved that the vector Z = 〈ω−, z, ω+〉 satisfies the boundary conditions
G2z+TG1z = Cσ−(0) and G2z+T∗G1z = Cσ+(0). Therefore, D(L∗T) ⊆ D(LT),
and this completes the proof.

Let us consider the unitary group V (s) = exp(iLTs) (s ∈ R := (−∞,∞))
on H, strongly continuous semi-group of completely non-unitary contractions
Z(s) := PV (s)P1 (s ≥ 0) on H and the generator By = lims→+0

1
is (Z(s)y − y)

of Z(s) [16,18]. Note that B is a maximal dissipative operator and the operator
LT is called the self-adjoint dilation of B.

Theorem 3.2. The operator LT is a self-adjoint dilation of the operator LT.

Proof: Construct the equality (LT−λI)−1P1y = g = 〈ω−, z, ω+〉 . Hence τ(z)−
λz = y, ω−(ξ) = ω−(0)e−iλξ and ω+(ζ) = ω+(0)e−iλζ . Since g ∈ D(LT), we
have ω−(0) = 0. This implies that z satisfies the boundary condition G2z +
TG1z = 0 and z ∈ D(LT). Moreover for =λ < 0 one can consider that z =

(LT − λI)
−1
y. Hence, for y ∈ H and =λ < 0 we have (LT − λI)−1P1y =

〈0, (LT−λI)−1y,C−1 (G2y + T∗G1y) e−iλζ〉. Applying the mapping P to the last
equality, we have P (LT − λI)−1P1y = (LT − λI)−1y, where y ∈ H and =λ < 0.
Therefore we obtain for =λ < 0 that (LT−λI)−1 = P (LT−λI)−1P1 = (B−λI)−1

and from which we have LT = B.

We setH− = ∪
s≥0

V (s)D− andH+ = ∪
s≤0

V (s)D+, whereD− = 〈L2(R−; E), 0, 0〉

and D− = 〈0, 0, L2(R+; E)〉. Using Lemma 2.4 we get that H− +H+ = H.

Let us consider the functions ϕ(t, λ) =
{ϕ1(t,λ), t∈Ω1

ϕ2(t,λ), t∈Ω2
, ψ(t, λ) =

{ψ1(t,λ), t∈Ω1

ψ2(t,λ), t∈Ω2

satisfying the initial conditions{
[ϕ1, v](a) = 0, [ϕ1, u](a) = −1,
[ψ1, v](a) = 1, [ψ1, u](a) = 0,

{
ϕ1(c+, λ) = 0, (pϕ′)(c+, λ) = −1,
ψ1(c+, λ) = 1, (pψ′)(c+, λ) = 0.

We denote by M(λ) as the form

M(λ) =

(
M1(λ) 0
0 M2(λ)

)
,



On dilation, scattering and spectral theory 389

where M1(λ) and M2(λ) the matrix-valued functions satisfying the conditions:
M1(λ)

(
G1
)

1
ϕ1 =

(
G1
)

2
ϕ1, M1(λ)

(
G1
)

1
ψ1 =

(
G1
)

2
ψ1 and M2(λ)

(
G2
)

1
ϕ2 =(

G2
)

2
ϕ2, M1(λ)

(
G2
)

1
ψ2 =

(
G2
)

2
ψ2. Then we have M(λ)G1ϕ = G2ϕ and

M(λ)G1ψ = G2ψ. Note that M(λ) is meromorphic in C with all its poles on real
axis R, and it has the following properties

i) =M(λ) ≤ 0 if =λ > 0 and =M(λ) ≥ 0 if =λ < 0;
ii) M∗(λ) = M(λ) for all λ ∈ R, except for the poles of M(λ).

We denote by χj(t) =
{(χj)1

(t), t∈Ω1

(χj)2
(t), t∈Ω2

and θj(t) =
{(θj)1(t), t∈Ω1

(θj)2(t), t∈Ω2
being the

solutions of the equations τ(y) = λy, t ∈ Ω, which satisfy the conditions G1χj =

(M(λ) + T)
−1

Cφj and G1θj = (M(λ) + T∗)
−1

Cφj (j = 1, ...4), where φj are the
orthonormal basis for E .

Let us define the vector Ψ−λj , j = 1, ..., 4,

Ψ−λj(t, ξ, ζ) =
〈
e−iλξφj , χj(t),C

−1 (M(λ) + T∗) (M(λ) + T)
−1

Ce−iλζφj

〉
.

With the help of the vector Ψ−λj(t, ξ, ζ), we define the transformation F− : f →

f̃−(λ) by (F−f)(λ) := f̃−(λ) :=
4∑
j=1

f−j (λ)φj , where f−j (λ) = 1√
2π

(f ,Ψ−λj), j =

1, ..., 4, on the vectors f = 〈σ−, f, σ+〉 in which σ−, σ+ and f are smooth, com-
pactly supported functions.

The transformation F− isometrically maps H− onto L2(R; E). For all vectors
f ,g ∈ H− the Parseval equality and the inverse formula hold

(f ,g)H = (f̃−, g̃−)L2 =
∞∫
−∞

4∑
j=1

f−j (λ)g−j (λ)dλ, f = 1√
2π

∞∫
−∞

4∑
j=1

Ψ−λjf
−
j (λ)dλ.

We set Ψ+
λj(t, ξ, ζ) =

〈
Θ(λ)e−iλξφj , θj(t), e

−iλζφj
〉
, j = 1, ..., 4, where

Θ(λ) = C−1 (M(λ) + T) (M(λ) + T∗)
−1

C. (3.6)

With the help of the vector Ψ+
λj(t, ξ, ζ), we define the transformation F+ : f →

f̃+(λ) by (F+f)(λ) := f̃+(λ) :=
4∑
j=1

f+
j (λ)φj , where f+

j (λ) = 1√
2π

(f ,Ψ+
λj)H, j =

1, ..., 4, on the vectors f = 〈σ−, f, σ+〉 in which σ−, σ+ and f are smooth, com-
pactly supported functions.

The transformation F+ isometrically maps H+ onto L2(R; E). For all vectors
f ,g ∈ H+ the Parseval equality and the inverse formula hold

(f ,g)H = (f̃+, g̃+)L2 =
∞∫
−∞

4∑
j=1

f+
j (λ)g+

j (λ)dλ, f = 1√
2π

∞∫
−∞

4∑
j=1

Ψ+
λjf

+
j (λ)dλ.

It is clear that the matrix-valued function Θ(λ) is meromorphic in C and all
poles are in the lower half-plane. It is easy to obtain that ‖Θ(λ)‖ ≤ 1 for =λ > 0
and Θ(λ) is the unitary matrix for all λ ∈ R.
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Since Θ(λ) is the unitary matrix for λ ∈ R, then, it follows from the definitions
of the vectors Ψ+

λj and Ψ−λj that

Ψ+
λj =

4∑
k=1

Θjk(λ)Ψ−λj , j = 1, ..., 4, (3.7)

where Θjk(λ), j, k = 1, ..., 4, are entries of the matrix Θ(λ).
F− is the incoming spectral representation for the group {V (s)} . Similarly,

F+ is the outgoing spectral representation for {V (s)} . It follows from (3.7) that

ΘT(λ) : f̃− = Θ(λ)f̃+. According to [17], we have the following theorem.
Theorem 3.4. The matrix Θ−1(λ) is the scattering matrix of the group

{V (s)} (of the self-adjoint operator LT).
It follows from the explicit form of the unitary transformation F− that under

the mapping F−,

H→ L2(R), f → f̃−(λ), D− → H2
−, D+ → ΘH2

+,

〈0,H, 0〉 → H2
+ 	ΘH2

+, V (s)f → (F−V (s)F−1
− f̃−)(λ) = eiλsf̃−(λ),

(3.8)

where H2
+ denotes Hardy class in L2(R; E) consisting of the vector valued func-

tions analytically extendible to the upper half-plane.
Theorem 3.5. The characteristic function of the maximal dissipative opera-

tor LT coincides with the matrix-valued function ΘT(λ) defined by (3.6).

Proof: The formulas (3.8) show that our operator LT is a unitary equivalent
to the model dissipative operator with the characteristic function Θ(λ) [16, 18].
Since the characteristic functions of unitary equivalent dissipative operators co-
incide with each other the proof is completed.

Let us introduce the inner product 〈T, S〉 = trS∗T for T, S ∈ [E ] (trS∗T is
the trace of the operator S∗T ). Hence, we may introduce the Γ-capacity of a set
of [E ] (see [12, 22]).

It is known [12] that the inner matrix-valued function ΘK (λ) is a Blaschke-
Potapov product if and only if det ΘK (λ) is a Blaschke product. We can infer
that the characteristic function ΘK (λ) is a Blaschke-Potapov product if and only
if the matrix-valued function

YK (ξ) = (I − K1K
∗
1)
−1/2

(θ (ξ)− K1) (I − K∗1θ (ξ))
−1

(I − K∗1K1)
1/2

is a Blaschke-Potapov product in a unit disk. Therefore using the result of [12,
16, 18] and all the obtained results for the maximal dissipative operator AK (LT) ,
we have proved the following theorem.

Theorem 3.6. For Γ-quasi-every strictly contractive K ∈ [E ] (i.e., for all
strictly contractive K ∈ [E ] with the possible exception of a set of Γ-capacity
zero), the characteristic function ΘK (λ) of the maximal dissipative operator AK
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is a Blaschke-Potapov product, and the spectrum of AK is purely discrete and be-
longs to the open upper half-plane. For Γ-quasi-every strictly contractive K ∈ [E ] ,
the operator AK has a countable number of isolated eigenvalues with finite multi-
plicity and limit point at infinity, and the system of eigenfunctions and associated
functions of this operator is complete in the space H.
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[19] M. A. Naimark, Linear Differential Operators, 2nd edn, Nauka, Moscow, 1969;
English transl. of 1st edn, Parts 1, 2, Ungar, New York, 1967, 1968.

[20] B. S. Pavlov, Self-adjoint dilatation of a dissipative Schrödinger operator and its
resolution in terms of eigenfunctions, Math USSR Sbornik, 314(4) (1977), 57–478.

[21] B. S. Pavlov, Irreversibility, Lax-Phillips approach to resonance scattering and
spectral analysis of non-self-adjoint operators in Hilbert space, Int. J. Theor. Phys.,
38 (1999), 21-45.

[22] L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables,
Nauka, Moscow, 1971; English transl. Amer. Math. Soc., Providence, RI, 1974.

[23] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Dif-
ferential Equations, Part 1, Oxford University Press, 2nd edn, 1962.
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