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Abstract

We consider a problem of approximate factorization of regular and ir-
regular matrix polynomials. A theorem is proved on the minimum value
of the functional. A method and numerical algorithm is offered to solving
the considered problem using symbolic calculations that provides high ac-
curacy of the obtained solution. Results of the numerical experiments and
comparison with known results are given.
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1 Introduction

Recently with application of advanced computer technologies and development of
new applied software packages (including Symbolic Toolbox package MATLAB),
the accuracy of the solutions of some classes of problems is essentially increased.
For example, in [1], [10] using Symbolic Toolbox tools of MATLAB effective and
more precise algorithms for the solution of matrix algebraic Riccati (ARE) and
Lyapunov equations are given. It is known that solution of ARE plays the basic
role in factorization of the polynomials, that is a key procedure in the solution
of different synthesis problems. Thus a question arises: whether is it possible to
use Symbolic Toolbox package MATLAB for the solution of the optimal synthesis
problems for the systems of stabilization and to raise the accuracy of the obtained
solution.

When implementing operations on numeric values arise rounding errors, be-
cause the accuracy of the calculations is limited by the number of digits used in
each operation. Under repeated operations these errors are accumulated. Oper-
ations on symbolic variables can be implemented exactly, as in these cases the
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calculations are not made on numbers. As a result no rounding errors arise.
The system MATLAB performs calculations only in arithmetic with floating
point. These operations are limited to the bit, which also in turn leads to errors.
However, development and wide application of high technologies generates more
classes of problems requiring the implementation of computing without any er-
ror. To achieve this aim Symbolic Math Toolbox procedures included in package
MATLAB may be used.

In this paper, based on the symbolic computations, high-accuracy compu-
tational procedures are proposed for factorization of the matrix polynomials in
regular and irregular cases.

2 Description of the problem.

Suppose that the motion of the object is described by the following linear differ-
ential equation with constant coefficients

Px = Mu+ ψ, (2.1)

where x = [x1, ..., xn]′ is n-dimensional object coordinate; u = [u1, ..., um]′ is m-
dimensional control vector; ψ = [ψ1, ..., ψn]′ is n- dimensional vector of external
perturbation, the components of which are stationar random processes with zero
mathematical expectation and fraction-rational matrix of spectral densities Sψ;
P and M are n × n and n ×m dimensional matrices, elements of which pij(p)
and mij(p) are operator polynomials of p = d

dt .

The problem is: To synthesize a regulator

W0u = W̄ (x+ ϕ) (2.2)

that makes the closed-loop system (2.1), (2.2) asymptotically stable and gives
minimum to the functional

J =< x′Rx > + < u′Cu > . (2.3)

Here we suppose that the vector of the coordinate measurement errors ϕ =
[ϕ1(t), ϕ2(t), ..., ϕn(t)]′ is a vector of stationar random processes with zero ma-
thematical expectation and spectral density Sϕ.

Applying Laplace transformation to the equations (2.1)-(2.2) we get

P (s)x(s) = M(s)u(s) + ψ(s), (2.4)

u(s) = W (s)[x(s) + ϕ(s)], (2.5)

where W (s) is defined as

W (s) = W−10 (s)W̄ (s). (2.6)
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The functions x(s) and u(s) may be expressed by the relations

x(s) = Fψx ψ(s) + Fϕx ϕ(s)
u(s) = Fψu ψ(s) + Fϕu ϕ(s)

}
, (2.7)

where
Fψx = (P −MW )−1

Fψu = W (P −MW )−1

Fϕx = (P −MW )−1P − E
Fϕu = W (P −MW )−1P

 . (2.8)

Using Fourier transformation and taking s = iω [3] the functional (2.3) may
be written as follows

J = 1
i

∫ i∞
−i∞ Sp

[
(Fψx∗RF

ψ
x + Fψu∗CF

ψ
u )Sψ+

+ (Fϕx∗RF
ϕ
x + Fϕu∗CF

ϕ
u )Sϕ] ds,

(2.9)

where “*” stands for the operation of transposing and replacement s by −s. Thus,
the problem is reduced to the finding of the matrix W that, provides minimum to
the functional (2.9) and makes stable the closed-loop “object-regulator”system.
Using (2.8) we obtain

Fϕx = Fψx P − E
Fϕu = Fψx P

}
. (2.10)

If to consider (2.7) in (2.4) we obtain that the functions Fψx and Fψu satisfy the
condition

PFψx −MFψu = En. (2.11)

Introduce m× n matrix Φ

AFψx +BFϕu = Φ, (2.12)

where A and B are polynomial matrices of dimensions m×n and m×m, respec-
tively [9].

Then the matrix Wof the transition functions of the regulator may be found
as

W = (B + ΦM)−1(ΦP −A). (2.13)

If to denote
∆p(s) = detP,
N = ∆p(s)P

−1M,
Q = ∆p(s)B +AN

 (2.14)

and factorize the functions

D̄ = Sψ + PSϕP∗
Ḡ = N∗RN + ∆∗p(s)C∆p(s)

}
(2.15)
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as
D̄ = DD∗
Ḡ = G∗G

}
, (2.16)

then the functional (2.9) takes the form [3]

J = 1
i

∫ i∞
−i∞ Sp

{
Φ∗Q

−1
∗ G∗Q

−1ΦDD∗ + Φ∗
[
Q−1∗ (NR−G∗GQ−1A)P−1DD∗−

−Q−1∗ N∗RSϕP∗
]

+
[
DD∗P

−1
∗ (RN −A∗Q−1∗ G∗G)Q−1 − PSϕRNQ−1

]
Φ+

+P−1∗ (R−A∗Q−1∗ N∗R−RNQ−1A)P−1Sψ+

+P−1∗ A∗Q
−1
∗ G∗GQ

−1AP−1DD∗
}
ds .

(2.17)
Denote

Z =

[
P −M
A B

]
. (2.18)

Then the equations (2.11), (2.12) may be written as follows

Z ·
[
Fψx
Fψu

]
=

[
En
Φ

]
. (2.19)

From the last we obtain the solution[
Fψx
Fψu

]
= Z−1

[
En
Φ

]
. (2.20)

In order to the closed-loop system be stable, the matrices Z and Z−1 should be
analytic in the right half plane.

Now let’s find the matrix Φ that minimizes the functional (2.17). For this
purpose we factorize the functions

D̄ = Sψ + PSϕP∗
H̄ = Q−1∗ G∗GQ

−1

}
(2.21)

as follows
D̄ = DD∗,
H̄ = H∗H.

(2.22)

Then we get
K̄ = H−1∗ (Q−1∗ N∗R−H∗HA)P−1D (2.23)

and
L̄ = −H−1∗ Q−1∗ N∗RSϕP∗D

−1. (2.24)

If to separate the functions K̄ and L̄ we have

K̄ = K0 +K+ +K− , (2.25)
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L̄ = L0 + L+ + L−. (2.26)

Here K0 and L0 are integer parts of the fractional expressions K̄ and L̄, corre-
spondingly. K+ and L− are proper fractions with poles only in the left half plane,
K− and L− -with poles in the right half plane. Then the matrix Φ making zero
the first variation of the functional (2.17) and having poles only in the left half
plane will be defined by the formula

Φ = −H−1(K0 +K+ + L0 + L+)D−1. (2.27)

If to consider this in (2.17), then the validity of the following theorem is proved.

Theorem 1. For the minimum of the functional (2.3) subject to (2.1) and (2.2)
the following formula holds true

Jmin = 1
i

∫ i∞
−i∞ {Sp [(K− + L−)(K− + L−)∗] +

+Sp
[
P−1SψP

−1
∗ (R−RNG−1G−1∗ N∗R)+

+SϕRNG
−1G−1∗ N∗R(En − SϕP∗D−1∗ D−1P )]

}
ds.

(2.28)

Thus as we see from these considerations, factorization is the key procedure
in the solution of the above stated problem and accuracy of solution of the last
one mainly depends on the accuracy of the factorization procedure. Note that
these problems have been considered by various authors in different formulations
[3, 6, 7, 12]. But development of the high technologies and their applications
in different fields makes necessary to obtain more presice solutions. Considering
this we offer below high accuracy calculation algorithms for the factorization of
the regular and irregular matrix polynomials.

3 Factorization of the matrix polynomials with respect to the imagi-
nary axis.

Let’s consider the regular matrix polynomial

A(s) = (−1)nEs2n + (−1)n−1A1s
2n−2 + ...+A2n, (3.1)

where Ai > 0, i = 1, 2n. Here Ai = A′i for even, and Ai = −A′i for odd indexes,
Ai− constant m×m dimensional matrices, the sign ” ′ ” means the operation of
transpose, E is unit matrix.
The problem is: Find a matrix polynomial H(s), satisfying the relation

A(s) = H ′(−s)H(s) (3.2)

under the condition that the zeros of H(s) lie on the left half-plane and H ′(−s)-
in the right half-plane and H−1(s) has no poles in the right half plane.

The solution of the problem (3.2) we present as
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H(s) = Esn + (L′ +G′X)N, (3.3)

where X is a positively defined solution of ARE

XF + F ′X −XGG′X +R = 0, (3.4)

with

G =


0
.
.
.
Em

 , N =


Em
Ems
...
...
Ems

n−1

 ,

F =


0 Em 0 ... 0
0 0 Em ... 0
. . . ... .
0 0 0 ... Em
0 0 0 ... 0

 , L =


0
.
.
0

(−1)n−1

2 A1

 ,

R =



A2n
1
2A2n−1 0 . . . 0

1
2A
′
2n−1 −A2n−2 − 1

2A2n−3 · · · 0

0
...

... (−1)n−2

2 A3

0 · · · (−1)n−2

2 A′3 (−1)n−1A2

 .

(3.5)

To provide absence of the poles of H−1(s) in the right half-plane we choose the
solution of (3.4) by which F−G(L′+G′X) is a Hurwitz matrix, i.e. its eigenvalues
lie in the left half plane.

There exist various methods to solving (3.4). We can note Shur’s method,
method of infinite numbers, matrix signum-function method etc. [2, 4, 5]. Con-
sidering that the last method may be realized on Symbolic calculations, we’ll use
that one.

Algorithm for the computation of the matrix sign-function is as follows [8].

Algorithm 1.
Input: Matrix B of dimension n× n;
Output: Sign-function of the matrix B;
Step 1. Take B0 = B;
Step 2. Calculate

α = |detBi|
1
n ,

Bi+1 = 1
2

(
Bi + α2B−1i

)
;

for i = 0, 1, ...
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Step 3. Check up the criteria

‖Bi+1 −Bi‖ < ε,

where ε is needed accuracy, ‖B‖ is matrix norm defined by its maximal element.
Realization of this algorithm may be found in Symbolic Toolbox package

MATLAB (procedure signm.m).
Now we can use this algorithm for solving ARE (3.4).

Algorithm 2.
Input: Matrices: F of dimension n × n, G of dimension n ×m, R of dimension
n× n, ε- needed accuracy;
Output: Matrix X = X ′ > 0;
Step 1. Calculate S = GG′;
Step 2. Form the auxiliary matrix

A =

[
F S
−R − F ′

]
.

Step 3. Calculate signA by Algorithm 1;
Step 4. Determine required X by the relation

(signA+ E) ·X = 0.

The software for the realization of this algorithm on Symbolic Toolbox is devel-
oped.

Therefore the algorithm of factorization of polynomial (3.1) is as follows.
Algorithm 3.
Input: A0, A1, ..., A2n - coefficients of the given polynomial;
Output: H0, H1,...,Hn- coefficients of the seeking polynomial;
Step 1. Form the matrices F,G,R according to (3.5);
Step 2. Solve ARE (3.4) by Algorithm 2;
Step 3. Calculate the coefficients H0, H1, ...,Hn of the polynomial H(s) according
to (3.3);
Step 4. Define Ā(s) = H(s) ·H∗(s);
Step 5. Check up the condition

∥∥A(s)− Ā(s)
∥∥ < ε. If it is satisfied, then the

calculation stops.
Otherwise take the coefficients of the polynomial Ā(s) as initial data and go to
Step 1.

4 Factorization of the irregular matrix polynomial.

Let the matrix polynomial be given

B(s) = (−1)nB0s
2n +B1s

2n−1 + ...+B2n, (4.1)

where B0 has no inverse, i.e. B(s) is an irregular matrix polynomial. Here
Bi = B′i for even and Bi = −B′i for odd indexes.
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Our aim is to find such matrix-polynomial D(s), that

B(s) = D′(−s)D(s).

Usually, the computational procedure for solving this problem consists in elim-
inating the roots of detB(s), by successive multiplication the polynomial B(s)
on the left and right by the corresponding matrices until one obtains a constant
matrix whose factorization is trivial.
Thus the factorization in this case includes the following steps.

1. Choose special matrix polynomial T (s) that transfers B(s) into regular
matrix, i.e. T∗(s)B(s)T (s) = A(s), where A(s) is regular.

2. Use Algorithm 3 to factorize A(s)

A(s) = H∗(s) ·H(s). (4.2)

3. Find the sought matrix D(s) from D(s) = H(s)T−1(s).

Let us illustrate the scheme of realization of the first step.
For the realization of this step the standard procedure svd (singular vector

decomposition) from the MATLAB Symbolic Toolbox is used [U,D, V ] = svd(A)
where A = U DV ′.
Multiplying B(s) by V, we get the polynomial

V ′B(s)V = [Bij(s)], ij = 1, ...,m.

Then the matrix T1(s) is defined in the form

T1(s) = diag{1, ..., 1, (s+ α1)δ1 , 1, ..., 1},

where δm is the maximal order of the out off diagonal polynomial. After finite
time of cycles we arrive to the regular polynomial

B̄(s) = T0∗(s)B(s)T0(s) = (−1)nB̄01s
2n + ...+ B̄02n. (4.3)

Here the matrix B̄01 is positively defined, i.e. it may be presented in the form
B̄01 = Q′Q, where Q is upper triangle matrix. To get this representation the pro-
cedure chol(A) (Cholesky decomposition) from the Symbolic Toolbox of Matlab
is used. Multiplying B̄(s) from the left by (Q′)−1 and from the right by Q−1 one
obtains the matrix polynomial with the unit matrix as a coefficient at the high
order

B̄(s) = (−1)nEs2n +A1s
2n−1 + ...+A2n, (4.4)

where Aj = (Q′)−1B̄0jQ
−1, j = 1, 2, ..., 2n.

In the second step of the algorithm the matrix H(s), factorizing the poly-
nomial (4.4) is defined. In this step matrix algebraic Riccati equation is solved
using the matrix signum function method described above.
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In the third step the seeking matrix D(s) is defined as

D(s) = H(s)QT−1j (s)V ′ν · · · T−11 (s)V ′1 .

Here the operation of multiplication the matrix from the right by the T−1j (s) in
fact consists of the division of the polynomials of the corresponding columns of
this matrix by the polynomial (s+ αj)

δj standing for the diagonal of the matrix
Tj(s). For the sake of simplicity of calculations let us take αj = 1.

The package MATLAB includes the standard procedures of division and mul-
tiplication of polynomials. The arguments of these operations are numerical
variables. Those procedures do not provide the results with the necessary accu-
racy, and do not support the Symbolic Toolbox of MATLAB. Considering this we
developed software for multiplication and division of polynomials that supports
Symbolic Toolbox of MATLAB.

Let’s illustrate the realization of this algorithm for the irregular matrix poly-
nomial on the example below.

Example 1. It needs to factorize the following matrix polynomial

B(s) =

[
3− s2 s4

s4 2 + s8

]
.

For this case in (4.1) we have

B1 = B2 = B3 = B5 = B7 = 0,

B0 =

[
0 0
0 1

]
, B4 =

[
0 1
1 0

]
, B6 =

[
−1 0
0 0

]
, B8 =

[
3 0
0 2

]
.

The matrix U =

[
0 1
−1 0

]
transforms B0 into a diagonal form. Multiplying the

polynomial B(s) from the left and right by U we obtain

U ′B(s)U =

[
2 + s8 −s4
−s4 3− s2

]
.

The matrix T (s) is defined in the form T (s) = diag{1, (s+ 1)3}. Calculating the
matrix polynomial

T∗(s)U
′B(s)UT (s) =

[
2 + s8 −s4(1 + s)3

−s4(1− s)3 (3− s2)(1− s2)3

]
,

we came to the following regular matrix polynomial

A(s) = A1s
8 +A2s

7 +A3s
6 +A4s

5 +A5s
4 +A6s

3 +A7s
2 +A8s+A9 ,

where

A1 =

[
1 0
0 1

]
, A2 =

[
0 1
−1 0

]
, A3 =

[
0 3
3 −6

]
,
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A4 =

[
0 3
−3 0

]
, A5 =

[
0 1
1 12

]
, A6 =

[
0 0
0 0

]
,

A7 =

[
0 0
0 −10

]
, A8 =

[
0 0
0 0

]
, A9 =

[
2 0
0 3

]
.

Factorization A(s) = H ′(−s)H(s) gives

H0 =

[
1 0
0 1

]
,

H1 =
[

2.6702467521558406665425481245717 −0.21388401189504250760922278296807
0.78611598810495749239077721703342 4.7187942370905486937889886190026

]
,

H2 =
[

3.8740980320765246205111837077708 −0.64165203568512752282766834890364
0.78004854193874481711880311069832 8.1563827112716460813669658570098

]
,

H3 =
[

3.2990762000942031797723236099326 −0.64165203568512752282766834890411
0.51213530895998361311306354355974 6.1563827112716460813669658570090

]
,

H4 =
[

1.4033896179027123174615514817531 −0.21388401189504250760922278296781
0.17463556442740729223783760919692 1.7187942370905486937889886190027

]
.

The accuracy of these calculations is 3.224839186938058e− 029.
Thus the seeking matrix has a form

D1 =

[
0 1
0 0

]
, D2 =

[
0 2.6702467521558406665425481245717
0 0.78611598810495749239077721703342

]
,

D3 =

[
0 3.8740980320765246205111837077708
0 0.78004854193874481711880311069832

]
,

D4 =

[
0 3.2990762000942031797723236099326
1 0.51213530895998361311306354355974

]
,

D5 =

[
d11 d12
d21 d22

]
,

where
d11 = 0.21388401189504250760922278296807,
d12 = 1.4033896179027123174615514817531,
d21 = −1.7187942370905486937889886190026,
d22 = 0.17463556442740729223783760919692.

The coefficients of the irregular matrix polynomial obtained in result of mul-
tiplication B̄(s) = D∗(s)D(s) differ from the initial ones in the 29th digit. Thus
the considered problem is solved with accuracy of 1.577822734559815e-029.

Now let’s consider the comparable investigation of one dimensional synthesis
problem on the following example.

Example 2. Consider the example given in [11, page 81], where one dimen-
sional synthesis problem is studied. In our denotations the data of that example
indeed are:

P = s2 − 1, M = 1, R =
r1
r2

=
9

9− s2
, C =

c1
c2

=
10−4

1
,
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Sψ =
S1ψ

S2ψ
=

4

4− s2
, Sϕ =

S1ϕ

S2ϕ
=

10−8

1
.

For this problem in [11] the following values are obtained

WT
0 = [1 68.2926 2324.43 10863.32 13432.718],

WT
1 = [35032.913 418783.21 22839.57 6013724.93]

with coefficients

q1 = [10−4 5.43610−3 0.14746 1.9999],
g1 = [10−2 0.1393 0.9153 3.0002].

Calculating the optimality condition we get nevv = 7.910523150899287e + 001.
As one can see from this the obtained regulators are far from the optimality ones.

Now we apply above given procedures with symbolic calculations and get the
following values for the coefficients

q1 = [1.000000000000000e− 004 5.436203300704970e− 003
1.474615316329790e− 001 2.000000010000019e+ 000],

g = [1.000000000000000e− 002 1.393054311171015e− 001
9.153001569360758e− 001 3.000149996250183e+ 000],

W0 = [9.999999999999998e− 001 6.829257611875983e+ 001
2.324437976468313e+ 003 1.086533336817375e+ 004
1.343630050975466e+ 004],

W1 = [ 3.502092427916212e+ 004 4.187799894518985e+ 005
2.283872369969072e+ 006 6.013736323011676e+ 006 ].

The optimality condition nevv = 0.1398e− 035 is satisfied.
Comparing the coefficients of the corresponding regulator we get∥∥WT

0 −W0

∥∥ = 4.1095,
∥∥WT

1 −W1

∥∥ = 12.7862.

5 Conclusion.

In the work the algorithms are proposed for the factorization of the regular and
irregular matrix polynomials. Use of symbolic calculations provides high accuracy
of the obtained solutions. The examples are given that demonstrate the efficiency
of the proposed methods and comparison with known results is provided.
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