Equivariant Chern classes in Hopf cyclic cohomology

by
Henri Moscovici *
Dedicated to Vasile Brînzănescu on the occasion of his 70 th birthday, with appreciation and friendship

Abstract

We present a geometric approach, in the spirit of the Chern-Weil theory, for constructing cocycles representing the classes of the Hopf cyclic cohomology of the Hopf algebra \mathcal{H}_{n} relative to GL_{n}. This provides an explicit description of the universal Hopf cyclic Chern classes, which complements our earlier geometric realization of the Hopf cyclic characteristic classes of foliations.

Key Words: Equivariant Chern classes, Hopf cyclic cohomology.
2010 Mathematics Subject Classification: Primary 46L87, 58B34, Secondary 57T05.

Introduction

The Hopf algebra \mathcal{H}_{n} originated in the investigation of the local index formula for transversely hypoelliptic operators on foliations [5], performing the role of a 'quantum structure group' for foliations of codimension n. Its Hopf cyclic cohomology relative to O_{n} was shown to deliver the Gelfand-Fuks cohomology classes as characteristic classes of 'spaces of leaves'. In [15] we presented a geometric method for explicitly constructing these universal Hopf cyclic cohomology classes by means of concrete cocycles, in the spirit of the Chern-Weil theory. We now supplement that construction by adapting the procedure to the case of the Hopf cyclic cohomology of \mathcal{H}_{n} relative to $\mathrm{GL}_{n}=\mathrm{GL}_{n}(\mathbb{R})$, which corresponds to the universal equivariant Chern classes. The essential modification needed to adjust the approach in [15] consists in the replacement of the 'differentiable' variants of the standard de Rham complexes for equivariant cohomology by a more restrictive version, to be called 'regular differentiable'.
As we often defer to [15] for additional details, in order to facilitate the reading of the present paper we keep the exposition closely parallel to the former. In $\S 1$ we introduce the regular differentiable de Rham cohomology complexes and use them to prove an analogue relative to

[^0]GL_{n} of the van Est-Haefliger isomorphism. The construction proper of a basis of representative cocycles for the Hopf cyclic cohomology of \mathcal{H}_{n} relative to GL_{n} is carried out in $\S 2$. This provides a complete description of the universal Hopf cyclic Chern classes, which complements the geometric realization of the Hopf cyclic characteristic classes of foliations [15]. Partial representations of these classes were obtained earlier by purely algebraic methods in [13, §3.4.1] (for Hochschild cohomology) and [14, §4.3].

Contents

1 Chern cocycles in regular differentiable cohomology

1.1 Regular differentiable de Rham complexes 318
1.2 Van Est-Haefliger isomorphism relative to GL_{n} 320
1.3 Equivariant Chern cocycles 322
2 Hopf cyclic universal Chern classes 324
2.1 Hopf algebra \mathcal{H}_{n} and its Hopf cyclic complex 324
2.2 From equivariant to Hopf cyclic cohomology 326

1 Chern cocycles in regular differentiable cohomology

1.1 Regular differentiable de Rham complexes

Given a manifold M we denote by \mathbf{G} is the group of diffeomorphisms $\operatorname{Diff}(M)$ equipped with the discrete topology, and by $\triangle_{\mathbf{G}} M$ the simplicial manifold $\left\{\triangle_{\mathbf{G}} M[p]:=\mathbf{G}^{p} \times M\right\}_{p \geq 0}$ with its usual face maps $\partial_{i}: \triangle_{\mathbf{G}} M[p] \rightarrow \triangle_{\mathbf{G}} M[p-1], \quad 1 \leq i \leq p$, and degeneracies $\sigma_{i}: \triangle_{\mathbf{G}} M[p] \rightarrow$ $\triangle_{\mathbf{G}} M[p+1], 0 \leq i \leq p$. The equivariant cohomology $H_{\mathbf{G}}(M, \mathbb{R})$ can be computed as the cohomology of the Bott bicomplex (cf. [1, 2]) $\left\{C^{\bullet}\left(\mathbf{G}, \Omega^{\bullet}(M)\right), \delta, d\right\}$, endowed with the de Rham differential d and with the group cohomology boundary δ

$$
\begin{aligned}
\delta c\left(\phi_{1}, \ldots, \phi_{p+1}\right)= & \sum_{i=0}^{p}(-1)^{i} c\left(\partial_{i}\left(\phi_{1}, \ldots, \phi_{p+1}\right)\right) \\
& +(-1)^{p+1} \phi_{p+1}^{*} c\left(\phi_{1}, \ldots, \phi_{p}\right) .
\end{aligned}
$$

For our purposes it will be convenient to work with the homogeneous version of this bicomplex, $\left\{\bar{C}^{\bullet}\left(\mathbf{G}, \Omega^{\bullet}(M)\right), \bar{\delta}, d\right\}$, whose (p, q)-cochains $\bar{c}\left(\rho_{0}, \ldots, \rho_{p}\right) \in \Omega^{q}(M), \rho_{0}, \ldots, \rho_{p} \in \mathbf{G}$ satisfy the covariance condition

$$
\begin{equation*}
\left(\rho^{-1}\right)^{*}\left(\bar{c}\left(\rho_{0} \rho, \ldots, \rho_{p} \rho\right)\right)=\bar{c}\left(\rho_{0}, \ldots, \rho_{p}\right), \quad \forall \rho, \rho_{i} \in \mathbf{G} ; \tag{1.1}
\end{equation*}
$$

the group cohomology boundary is given by

$$
\bar{\delta} \bar{c}\left(\rho_{0}, \ldots, \rho_{p}\right)=\sum_{i=0}^{p}(-1)^{i} \bar{c}\left(\rho_{0}, \ldots, \check{\rho}_{i}, \ldots, \rho_{p}\right)
$$

where the 'check' mark signifies omission of the element.

The two bicomplexes are isomorphic via the identifications

$$
\begin{align*}
c\left(\phi_{1}, \ldots, \phi_{p}\right) & =\bar{c}\left(\phi_{1} \cdots \phi_{p}, \phi_{2} \cdots \phi_{p}, \ldots, \phi_{p}, e\right) \\
\operatorname{resp.} \quad \bar{c}\left(\rho_{0}, \ldots, \rho_{p}\right) & =\rho_{p}^{*} c\left(\rho_{0} \rho_{1}^{-1}, \rho_{1} \rho_{2}^{-1}, \ldots, \rho_{p-1} \rho_{p}^{-1}\right) \tag{1.2}
\end{align*}
$$

Dupont's [8] de Rham complex of compatible forms $\left\{\Omega^{\bullet}\left(\left|\triangle_{\mathbf{G}} M\right|\right), d\right\}$ on the geometric realization $\left|\triangle_{\mathbf{G}} M\right|=\prod_{p=0}^{\infty} \Delta^{p} \times \triangle_{\mathbf{G}} M[p]$ provides an alternative way of computing $H_{\mathbf{G}}^{\bullet}(M, \mathbb{R})$. By definition, such a form consists of sequences $\omega=\left\{\omega_{p}\right\}_{p \geq 0}$, with $\omega_{p} \in \Omega^{\bullet}\left(\Delta^{p} \times \triangle_{\mathbf{G}} M[p]\right)$, such that for all morphisms $\mu \in \Delta(p, q)$ in the simplicial category,

$$
\begin{equation*}
\left(\mu_{\bullet} \times \mathrm{Id}\right)^{*} \omega_{q}=\left(\operatorname{Id} \times \mu^{\bullet}\right)^{*} \omega_{p} \in \Omega^{\bullet}\left(\Delta^{p} \times \triangle_{\mathbf{G}} M[q]\right) ; \tag{1.3}
\end{equation*}
$$

here $\Delta^{p}=\left\{\mathbf{t}=\left(t_{0}, \ldots, t_{p}\right) \in \mathbb{R}^{p+1} \mid t_{i} \geq 0, \quad t_{0}+\ldots+t_{p}=1\right\}, \mu_{\bullet}: \Delta^{p} \rightarrow \Delta^{q}$, resp. $\mu^{\bullet}: \triangle_{\mathbf{G}} M[q] \rightarrow \triangle_{\mathbf{G}} M[p]$, stands for the induced cosimplicial, resp. simplicial, map, and $\Omega^{k}\left(\Delta^{p} \times \triangle_{\mathbf{G}} M[q]\right.$ denotes the k-forms on $\Delta^{p} \times \triangle_{\mathbf{G}} M[q]$ which are extendable to smooth forms on $V^{p} \times \triangle_{\mathbf{G}} M[q]$, where $V^{p}=\left\{\mathbf{t}=\left(t_{0}, \ldots, t_{p}\right) \in \mathbb{R}^{p+1} \mid t_{0}+\ldots+t_{p}=1\right\}$. As in the case of the previous complex, there is a homogeneous description of the simplicial de Rham complex, $\left\{\Omega^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right), d\right\}$, consisting of the \mathbf{G}-invariant compatible forms on the geometric realization $\left|\bar{\triangle}_{\mathbf{G}} M\right|$. The simplicial manifold $\bar{\triangle}_{\mathbf{G}} M$ is defined as follows:

$$
\bar{\triangle}_{\mathbf{G}} M=\left\{\bar{\triangle}_{\mathbf{G}} M[p]:=\mathbf{G}^{p+1} \times M\right\}_{p \geq 0}
$$

with face maps $\bar{\partial}_{i}: \bar{\triangle}_{\mathbf{G}} M[p] \rightarrow \bar{\triangle}_{\mathbf{G}} M[p-1], \quad 1 \leq i \leq p, \quad$ given by

$$
\bar{\partial}_{i}\left(\rho_{0}, \ldots, \rho_{p}, x\right)=\left(\rho_{0}, \ldots, \check{\rho}_{i}, \ldots, \rho_{p}\right), \quad 0 \leq i \leq p
$$

and degeneracies

$$
\bar{\sigma}_{i}\left(\rho_{0}, \ldots, \rho_{p}, x\right)=\left(\rho_{0}, \ldots, \rho_{i}, \rho_{i}, \ldots, \rho_{p}, x\right), \quad 0 \leq i \leq p
$$

The compatible forms $\omega=\left\{\omega_{p}\right\}_{p \geq 0} \in \Omega^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right.$ satisfy the invariance condition

$$
\begin{equation*}
\left(\rho^{-1}\right)^{*} \omega\left(\rho_{0} \rho, \ldots, \rho_{p} \rho\right)=\omega\left(\rho_{0}, \ldots, \rho_{p}\right), \quad \forall \rho, \rho_{i} \in \mathbf{G} \tag{1.4}
\end{equation*}
$$

By [8, Thm 2.3], the operation of integration along the fibers

$$
\begin{equation*}
\oint_{\Delta^{p}}: \Omega^{\bullet}\left(\Delta^{p} \times \triangle_{\mathbf{G}} M[p]\right) \rightarrow \Omega^{\bullet-p}\left(\triangle_{\mathbf{G}} M[p]\right) \tag{1.5}
\end{equation*}
$$

establishes a quasi-isomorphism between the complexes $\left\{\Omega^{\bullet}\left(\left|\triangle_{\mathbf{G}} M\right|\right), d\right\}$ and $\left\{C^{\text {tot }}\left(\mathbf{G}, \Omega^{*}(M)\right)\right.$, $\delta \pm d\}$.
Instead of the differentiable variants of the above complexes utilized in [15], we shall employ here their regular versions, defined as follows.
A cochain $\omega \in \bar{C}^{p}\left(\mathbf{G}, \Omega^{q}(M)\right)$ will be called regular differentiable if for any local chart $U \subset M$ with coordinates $\left(x^{1}, \ldots, x^{n}\right)$,

$$
\begin{equation*}
\omega\left(\rho_{0}, \ldots, \rho_{p}, x\right)=\sum P_{I}\left(x, j_{x}^{k}\left(\rho_{0}\right), \ldots, j_{x}^{k}\left(\rho_{p}\right)\right) d x^{I} \tag{1.6}
\end{equation*}
$$

with the functions P_{I} depending polynomially of a finite number of jet components of ρ_{a}, $1 \leq a \leq p$ and of $\left(\operatorname{det} \rho_{a}^{\prime}(x)\right)^{-1}$, where $\rho_{a}^{\prime}(x)$ denotes the Jacobian matrix $\left(\partial_{i} \rho_{a}^{j}(x)\right)$. As usual, $d x^{I}=d x^{i_{1}} \wedge \ldots \wedge d x^{i_{q}}$, with $I=\left(i_{1}<\ldots<i_{q}\right)$ running through the set of strictly increasing q-indices. The cohomology of the total complex $\left\{\bar{C}_{\mathrm{rd}}^{\mathrm{tot}}\left(\mathbf{G}, \Omega^{*}(M)\right), \delta+d\right\}$ thus obtained will be denoted $H_{\mathrm{rd}, \mathbf{G}}^{\bullet}(M, \mathbb{R})$.
Similarly, the regular differentiable simplicial de Rham complex is defined as the subcomplex $\left\{\Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right), d\right\}$ of $\left\{\Omega^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right), d\right\}$ consisting of the \mathbf{G}-invariant compatible forms $\left\{\omega_{p}\right\}_{p \geq 0}$ whose components satisfy the analogous condition:

$$
\begin{equation*}
\omega_{p}\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p}, x\right)=\sum P_{I, J}\left(\mathbf{t} ; x, j_{x}^{k}\left(\rho_{0}\right), \ldots, j_{x}^{k}\left(\rho_{p}\right)\right) d t^{I} \wedge d x^{J} \tag{1.7}
\end{equation*}
$$

with $P_{I, J}$ of the same form as in (1.6). We denote by $H_{\mathrm{rd}}^{\bullet}\left(\left|\triangle_{\mathbf{G}} M\right|, \mathbb{R}\right)$ the cohomology of the complex $\left\{\Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right), d\right\}$.
Theorem 1.1. The chain map $\oint_{\Delta \bullet}: \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right) \rightarrow \bar{C}_{\mathrm{rd}}^{\bullet}\left(\mathbf{G}, \Omega^{*}(M)\right)$ induces an isomorphism $H_{\mathrm{rd}}^{\bullet}\left(\left|\triangle_{\mathbf{G}} M\right|, \mathbb{R}\right) \cong H_{\mathrm{rd}, \mathbf{G}}^{\bullet}(M, \mathbb{R})$.

Proof: The operation of integration along the fibers obviously maps $\Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right)$ to $\bar{C}_{\mathrm{rd}}^{\bullet}\left(\mathbf{G}, \Omega^{*}(M)\right)$. The justification of the parallel result in [8, Theorem 2.3] applies here too, since the natural chain maps in both directions and the chain homotopies relating them preserve the regular differentiable subcomplexes.

1.2 Van Est-Haefliger isomorphism relative to GL_{n}

For $k \in \mathbb{N} \cup\{\infty\}$ we let $F^{k} M$ denote the frame bundle of order k, formed of k-jets $j_{0}^{k}(\phi)$ at 0 of local diffeomorphisms ϕ from a neighborhood of $0 \in \mathbb{R}^{n}$ to a neighborhood of $\phi(0) \in M$. In particular $F^{1} M=F M$ is the usual principal frame bundle over M with structure group $\mathcal{G}^{1}=\mathrm{GL}_{n}$. Each $F^{k} M$ is a principal bundle over M with structure group \mathcal{G}^{k} formed of k-jets at 0 of local diffeomorphisms of \mathbb{R}^{n} preserving 0 . The group $\mathbf{G}=\operatorname{Diff}(M)$ operates naturally on the left on $F^{k} M$ by left translations.
Let \mathfrak{a}_{n} be the Lie algebra of formal vector fields on \mathbb{R}^{n} and denote by $C^{*}\left(\mathfrak{a}_{n}\right)$ its Gelfand-Fuks cohomology complex [9]. Each $\omega \in C^{m}\left(\mathfrak{a}_{n}\right)$ gives rise to a G-invariant form $\tilde{\omega} \in \Omega^{m}\left(F^{\infty} M\right)$, and the assignment $\omega \in C^{\bullet}\left(\mathfrak{a}_{n}\right) \mapsto \tilde{\omega} \in \Omega^{\bullet}\left(F^{\infty} M\right)^{\mathbf{G}}$ is a DGA-isomorphism, by means of which we shall identify the two DG-algebras.
After fixing a torsion-free affine connection ∇ on M, we define a cross-section $\sigma_{\nabla}: F M \rightarrow F^{\infty} M$ of the natural projection $\pi_{1}: F^{\infty} M \rightarrow F M$ by the formula

$$
\begin{equation*}
\sigma_{\nabla}(u)=j_{0}^{\infty}\left(\exp _{x}^{\nabla} \circ u\right), \quad u \in F_{x} M \tag{1.8}
\end{equation*}
$$

Clearly, σ_{∇} is GL_{n}-equivariant and Diff-equivariant:

$$
\begin{equation*}
\sigma_{\nabla^{\phi}}=\phi^{-1} \circ \sigma_{\nabla} \circ \phi, \quad \forall \phi \in \mathbf{G} ; \tag{1.9}
\end{equation*}
$$

here $\nabla^{\phi}=\phi_{*}^{-1} \circ \nabla \circ \phi_{*}$, with connection form $\phi^{*} \omega$.

For each $p \in \mathbb{N}$, we define $\sigma_{p}: \Delta^{p} \times \bar{\triangle}_{\mathbf{G}} F M[p] \rightarrow F^{\infty} M$ by

$$
\begin{align*}
\sigma_{p}\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p}, u\right) & =\sigma_{\nabla\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p}\right)}(u) \\
\text { where } \quad \nabla\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p}\right) & =\sum_{0}^{p} t_{i} \nabla^{\rho_{i}}, \quad \mathbf{t} \in \Delta^{p} \tag{1.10}
\end{align*}
$$

The collection $\hat{\sigma}=\left\{\sigma_{p}\right\}_{p \geq 0}$ descends to the geometric realization of $\bar{\triangle}_{\mathbf{G}} F M$, giving a map $\hat{\sigma}:\left|\bar{\triangle}_{\mathbf{G}} F M\right| \rightarrow F^{\infty} M$. By construction, $\hat{\sigma}$ is GL_{n}-equivariant and therefore it also induces a $\operatorname{map} \hat{\sigma}^{\mathrm{GL}_{n}}:\left|\bar{\triangle}_{\mathbf{G}} M\right| \rightarrow F^{\infty} M / \mathrm{GL}_{n}$.

Lemma 1.2. If $\omega \in C^{\bullet}\left(\mathfrak{a}_{n}\right)$ then $\hat{\sigma}^{*}(\tilde{\omega}) \in \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F M\right|\right.$.
Proof: First we note that, because $\tilde{\omega}$ is \mathbf{G}-invariant, $\hat{\sigma}^{*}(\tilde{\omega})$ is easily seen to be a compatible form. It remains to check that for any $\phi \in \mathbf{G}$ and any local chart U, with the notation as in (1.6), one has

$$
\sigma_{\nabla \phi}^{*}(\tilde{\omega})(x)=\sum P_{I}\left(x, j_{x}^{k}(\phi)\right) d x^{I}, \quad x \in U
$$

Using normal coordinates with respect to ∇, this follows from the explicit expression for $\sigma_{\nabla^{\phi}}$ in the proof of Lemma 3.5 in [15].

In view of the above lemma, it makes sense to define $\mathcal{C}_{\nabla}: C^{\bullet}\left(\mathfrak{a}_{n}\right) \rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F M\right|\right)$ by

$$
\begin{equation*}
\mathcal{C}_{\nabla}(\omega)=\hat{\sigma}^{*}(\tilde{\omega}) \in \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F M\right|\right) \tag{1.11}
\end{equation*}
$$

The map \mathcal{C}_{∇} is a homomorphism of DG-algebras. which in turn induces a DGA-homomorphism at the level of GL_{n}-basic forms,

$$
\begin{equation*}
\mathcal{C}_{\nabla}^{\mathrm{GL}_{n}}: C^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right) \rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right) \tag{1.12}
\end{equation*}
$$

Theorem 1.3. The map $\mathcal{C}_{\nabla}^{\mathrm{GL}_{n}}$ is a quasi-isomorphism of $D G$-algebras.
Proof: The proof follows along the same lines as that of [15, Theorem 1.2]. For any connection $\tilde{\nabla}$, one has

$$
\left(\pi_{1} \circ \sigma_{\tilde{\nabla}}\right)(u)=j_{0}^{1}\left(\exp _{x}^{\tilde{\nabla}} \circ u\right)=u, \quad u \in F_{x} M
$$

After upgrading π_{1} and $\hat{\sigma}$ to simplicial maps Id $\times \pi_{1}:\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M\right| \rightarrow\left|\bar{\triangle}_{\mathbf{G}} F M\right|$ and Id $\times \hat{\sigma}$: $\left|\bar{\triangle}_{\mathbf{G}} F M\right| \rightarrow\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M\right|$, one obtains

$$
\left(\operatorname{Id} \times \pi_{1}\right) \circ(\operatorname{Id} \times \hat{\sigma})=\mathrm{Id}
$$

Hence $(\operatorname{Id} \times \hat{\sigma}) *: \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M\right|\right) \rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F M\right|\right)$ is a left inverse for $\left(\operatorname{Id} \times \pi_{1}\right)^{*}: \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F M\right|\right)$ $\rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M\right|\right)$. Both maps are GL_{n}-equivariant and thus descend to maps

$$
\begin{aligned}
& (\operatorname{Id} \times \hat{\sigma})_{\mathrm{GL}_{n}}^{*}: \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M / \mathrm{GL}_{n}\right|\right) \rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right), \\
\text { resp. } & \left(\mathrm{Id} \times \pi_{1}\right)_{\mathrm{GL}_{n}}^{*}: \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right) \rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M / \mathrm{GL}_{n}\right|\right) .
\end{aligned}
$$

The typical fiber $\mathcal{G}^{k} / \mathrm{GL}_{n}$ of $F^{\infty} M / \mathrm{GL}_{n} \rightarrow M$ can be canonically identified to the pronilpotent group \mathcal{G}_{1}^{k} of ∞-jets at 0 of local diffeomorphisms of \mathbb{R}^{n} preserving 0 to order 1 . As such, it is algebraically contractible, hence $\left(\operatorname{Id} \times \pi_{1}\right)_{\mathrm{GL}_{n}}^{*}$ induces an isomorphism in regular differentiable cohomology. Therefore so does its inverse $(\operatorname{Id} \times \hat{\sigma})_{\mathrm{GL}_{n}}^{*}$.
On the other hand, identifying the GL_{n}-basic forms on $F^{\infty} M$ with forms on $P^{\infty} M=F^{\infty} M / \mathrm{GL}_{n}$, one defines a horizontal homotopy as in [12, Lemma 2.3], by the formula

$$
\begin{aligned}
& (H \alpha)_{p-1}\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p-1}, j_{0}^{\infty}(\rho) \mathrm{GL}_{n}\right)= \\
& \quad \pi_{\mathrm{GL}_{n}}\left[k \in \mathrm{GL}_{n} \mapsto \alpha_{p}\left(\mathbf{t} ;(\rho k)^{-1}, \rho_{0}, \ldots, \rho_{p-1}, j_{0}^{\infty}(\rho) \mathrm{GL}_{n}\right)\right]
\end{aligned}
$$

where $\pi_{\mathrm{GL}_{n}}$ stands for the projection on the GL_{n}-invariant (constant) part with respect to the decomposition into isotypical components of the right regular representation of GL_{n} on its ring of regular functions tensored by the fiber.
Therefore the natural inclusion of $C^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right) \equiv \Omega^{\bullet}\left(F^{\infty} M / \mathrm{GL}_{n}\right){ }^{\mathbf{G}}$ into $\Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F^{\infty} M / \mathrm{GL}_{n}\right|\right)$ is also quasi-isomorphism. To complete the proof it remains to observe that when restricted to GL_{n}-basic forms the map $(\operatorname{Id} \times \Delta \sigma)^{*}$ coincides with $\mathcal{C}_{\nabla}^{\mathrm{GL}_{n}}$.

Combining the Theorems 1.1 and 1.3 one obtains the 'relative to GL_{n} ' version of the van Est-Haefliger isomorphism [11, §IV.4].

Theorem 1.4. The map

$$
\mathcal{D}_{\nabla}^{\mathrm{GL} L_{n}}=\oint_{\Delta \bullet} \mathcal{C}_{\nabla}^{\mathrm{GL}_{n}}: C^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right) \rightarrow \bar{C}_{\mathrm{rd}}^{\mathrm{tot}} \bullet\left(\mathbf{G}, \Omega^{*}(M)\right)
$$

is a quasi-isomorphism of complexes.

1.3 Equivariant Chern cocycles

Let $W\left(\mathfrak{g l}_{n}\right)=\wedge \bullet \mathfrak{g l} l_{n}^{*} \otimes S\left(\mathfrak{g l}_{n}\right)$ be the Weil algebra of $\mathfrak{g l}_{n}$ with its usual grading, and let $\hat{W}\left(\mathfrak{g l}_{n}\right)=$ $W\left(\mathfrak{g l}_{n}\right) / \mathcal{I}_{2 n}$ be its truncation by the ideal generated by the elements of $S\left(\mathfrak{g l}_{n}\right)$ of degree $>2 n$. The universal connection and curvature forms $\vartheta=\left(\vartheta_{j}^{i}\right)$ and $R=\left(R_{j}^{i}\right)$, defined as in $[1, \S 2]$, generate a DG-subalgebra $C W^{\bullet}\left(\mathfrak{a}_{n}\right)$ of $C^{\bullet}\left(\mathfrak{a}_{n}\right)$, which can be identified with $\hat{W}\left(\mathfrak{g l}_{n}\right)$. Let $C W^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right)$, resp. $\hat{W}\left(\mathfrak{g l}_{n}, \mathrm{GL}_{n}\right)$, denote their subalgebras consisting of GL_{n}-basic elements, also identified as above. It follows from Gelfand-Fuks [9] (cf. also [10]) that the inclusion of the latter into $C^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right)$ is a quasi-isomorphism. Thus, by Theorems 1.3 and 1.4,

$$
\begin{equation*}
\mathcal{D}_{\nabla}^{\mathrm{GL}_{n}}: \hat{W}\left(\mathfrak{g l}_{n}, \mathrm{GL}_{n}\right) \equiv C W^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right) \rightarrow \Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|\right) \tag{1.13}
\end{equation*}
$$

is a DGA quasi-isomorphism and

$$
\begin{equation*}
\mathcal{D}_{\nabla}^{\mathrm{GL}_{n}}: \hat{W}\left(\mathfrak{g l}_{n}, \mathrm{GL}_{n}\right) \equiv C W^{\bullet}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right) \rightarrow \bar{C}_{\mathrm{rd}}^{\mathrm{tot}} \bullet\left(\mathbf{G}, \Omega^{*}(M)\right) \tag{1.14}
\end{equation*}
$$

is a quasi-isomorphism of complexes.

The cohomology of $\hat{W}\left(\mathfrak{g l}_{n}, \mathrm{GL}_{n}\right)$ is well-known to be isomorphic to the truncated polynomial ring generated by the universal Chern classes $P_{2 n}\left[c_{1}, \ldots, c_{n}\right]$, with c_{1}, \ldots, c_{n} given by the invariant polynomials

$$
\begin{equation*}
c_{q}(A)=\sum_{1 \leq i_{1}<\ldots<i_{q} \leq n} \sum_{\mu \in S_{q}}(-1)^{\mu} A_{\mu\left(i_{1}\right)}^{i_{1}} \cdots A_{\mu\left(i_{q}\right)}^{i_{q}}, \quad A \in \mathfrak{g l}_{n} \tag{1.15}
\end{equation*}
$$

The above quasi-isomorphisms allow to transport the standard basis of $P_{2 n}\left[c_{1}, \ldots, c_{n}\right]$ to a basis of $H_{\mathrm{rd}}^{\bullet}\left(\mathbf{G}, \Omega^{*}(M)\right)$, as follows.
Let $\omega_{\nabla}=\left(\omega_{j}^{i}\right)$, resp. $\Omega_{\nabla}=\left(\Omega_{j}^{i}\right)$, denote the matrix-valued connection form, resp. curvature form, corresponding to ∇. One has the naturality relation (cf. [7, Lemma 18]),

$$
\begin{equation*}
\sigma_{\nabla}^{*}\left(\widetilde{\vartheta}_{j}^{i}\right)=\omega_{j}^{i} \quad \text { hence } \quad \sigma_{\nabla}^{*}\left(\widetilde{R}_{j}^{i}\right)=\Omega_{j}^{i} . \tag{1.16}
\end{equation*}
$$

In homogeneous group coordinates (cf. (1.2)), the simplicial connection form-valued matrix $\hat{\omega}_{\nabla}=\left\{\hat{\omega}_{p}\right\}_{p \in \mathbb{N}}$ associated to ∇ has components

$$
\begin{equation*}
\hat{\omega}_{p}\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p}\right):=\sum_{i=0}^{p} t_{i} \rho_{i}^{*}\left(\omega_{\nabla}\right) \tag{1.17}
\end{equation*}
$$

and the simplicial curvature form-valued matrix $\hat{\Omega}_{\nabla}:=d \hat{\omega}_{\nabla}+\hat{\omega}_{\nabla} \wedge \hat{\omega}_{\nabla}$ has components $\hat{\Omega}_{p}=\hat{\Omega}_{p}^{(1,1)}+\hat{\Omega}_{p}^{(0,2)}$, given by

$$
\begin{align*}
& \hat{\Omega}_{p}\left(\mathbf{t} ; \rho_{0}, \ldots, \rho_{p}\right)=\sum_{i=0}^{p} d t_{i} \wedge \rho_{i}^{*}\left(\omega_{\nabla}\right)+ \tag{1.18}\\
& \sum_{i=0}^{p} t_{i}\left(\rho_{i}^{*}\left(\Omega_{\nabla}\right)-\rho_{i}^{*}\left(\omega_{\nabla}\right) \wedge \rho_{i}^{*}\left(\omega_{\nabla}\right)\right)+\sum_{i, j=0}^{p} t_{i} t_{j} \rho_{i}^{*}\left(\omega_{\nabla}\right) \wedge \rho_{j}^{*}\left(\omega_{\nabla}\right)
\end{align*}
$$

The forms $\hat{\omega}_{j}^{i}$ and $\hat{\Omega}_{j}^{i}$ clearly belong to the regular differentiable de Rham complex $\Omega_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} F M\right|\right)$. In addition, the Chern forms $c_{k}\left(\hat{\Omega}_{\nabla}\right)$ are GL_{n}-basic and therefore descend to $\Omega_{\mathrm{rd}}^{2 k}\left(\left|\triangle_{\mathbf{G}} M\right|\right)$, and we denote by the same symbols the corresponding cohomology classes. In view of the DGA quasi-isomorphism (1.13) the cohomology ring $H_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|, \mathbb{C}\right)$ is isomorphic to $P_{2 n}\left[c_{1}, \ldots, c_{n}\right]$. Therefore the collection of forms

$$
\begin{equation*}
c_{J}\left(\hat{\Omega}_{\nabla}\right)=c_{j_{1}}\left(\hat{\Omega}_{\nabla}\right) \wedge \ldots \wedge c_{j_{q}}\left(\hat{\Omega}_{\nabla}\right) \in \Omega_{\mathrm{rd}}^{2|J|}\left(\left|\triangle_{\mathbf{G}} M\right|\right. \tag{1.19}
\end{equation*}
$$

with $J=\left(j_{1} \leq \ldots \leq j_{q}\right)$ and $|J|:=j_{1}+\ldots+j_{q} \leq n$, represents a linear basis of $H_{\mathrm{rd}}^{\bullet}\left(\left|\bar{\triangle}_{\mathbf{G}} M\right|, \mathbb{C}\right)$. Applying now the quasi-isomorphism (1.14) (which is linear, but not multiplicative) one obtains representative cocycles for a linear basis of $H_{\mathrm{rd}, \mathbf{G}}^{\bullet}(M, \mathbb{C})$, namely

$$
\begin{equation*}
\left.C_{J}\left(\hat{\Omega}_{\nabla}\right):=\oint_{\Delta} c_{J}\left(\hat{\Omega}_{\nabla}\right), \quad J=\left(j_{1} \leq \ldots \leq j_{q}\right),|J| \leq n\right\} \tag{1.20}
\end{equation*}
$$

2 Hopf cyclic universal Chern classes

2.1 Hopf algebra \mathcal{H}_{n} and its Hopf cyclic complex

The Hopf algebra \mathcal{H}_{n} arises quite naturally as the symmetry structure of the convolution algebra $C_{c}^{\infty}\left(\bar{\Gamma}_{n}\right)$ of the étale groupoid $\bar{\Gamma}_{n}$ of germs of local diffeomorphisms of \mathbb{R}^{n} acting by prolongation on the frame bundle $F \mathbb{R}^{n}$, identified with the affine group $G=\mathbb{R}^{n} \ltimes \mathrm{GL}_{n}$. Equivalently, it acts naturally on the crossed product algebras $\mathcal{A}_{\Gamma}=C_{c}^{\infty}\left(F \mathbb{R}^{n}\right) \rtimes \Gamma$, with Γ a discrete subgroup of $\mathbf{G}=\operatorname{Diff} \mathbb{R}^{n}$. We briefly review below its operational construction, and refer the reader to [15] for a more detailed account.
The primary generators of \mathcal{H}_{n} are the (horizontal, resp. vertical) left-invariant vector fields $\left\{X_{k}, Y_{i}^{j} \mid i, j, k=1, \ldots, n\right\}$, that form the standard basis of the Lie algebra $\mathfrak{g}=\mathbb{R}^{n} \ltimes \mathfrak{g l}_{n}$ of G. The vector fields $Z \in \mathfrak{g}$ are made to act on the algebra $\mathcal{A}:=C_{c}^{\infty}\left(F \mathbb{R}^{n}\right) \rtimes \mathbf{G}$ by

$$
Z\left(f U_{\varphi}\right)=Z(f) U_{\varphi}, \quad f U_{\varphi}^{*} \in \mathcal{A}
$$

the resulting linear operators on \mathcal{A} satisfy generalized Leibnitz rules, which in the Sweedler notation take the form

$$
Z(a b)=Z_{(1)}(a) Z_{(2)}(b), \quad a, b \in \mathcal{A} .
$$

In particular,

$$
X_{k}(a b)=X_{k}(a) b+a X_{k}(b)+\delta_{j k}^{i}(a) Y_{i}^{j}(b)
$$

where

$$
\begin{align*}
\delta_{j k}^{i}\left(f U_{\varphi^{-1}}\right) & =\gamma_{j k}^{i}(\phi) f U_{\varphi^{-1}}, \quad \text { with } \\
\gamma_{j k}^{i}(\phi)(x, \mathbf{y}) & =\left(\mathbf{y}^{-1} \cdot \phi^{\prime}(x)^{-1} \cdot \partial_{\mu} \phi^{\prime}(x) \cdot \mathbf{y}\right)_{j}^{i} \mathbf{y}_{k}^{\mu} \tag{2.1}
\end{align*}
$$

The operators $\delta_{j k}^{i}$ are derivations, but their successors $\delta_{j k \ell_{1} \ldots \ell_{r}}^{i}=\left[X_{\ell_{r}}, \ldots\left[X_{\ell_{1}}, \delta_{j k}^{i}\right] \ldots\right]$,

$$
\begin{align*}
& \delta_{j k \ell_{1} \ldots \ell_{r}}^{i}\left(f U_{\varphi^{-1}}\right)=\gamma_{j k \ell_{1} \ldots \ell_{r}}^{i}(\phi) f U_{\varphi^{-1}} \quad \text { where } \\
& \gamma_{j k \ell_{1} \ldots \ell_{r}}^{i}(\phi)=X_{\ell_{r}} \cdots X_{\ell_{1}}\left(\gamma_{j k}^{i}(\phi)\right), \quad \phi \in \mathbf{G}, \tag{2.2}
\end{align*}
$$

obey progressively more elaborated Leibnitz rules. The subspace \mathfrak{h}_{n} of linear operators on \mathcal{A} generated by the operators X_{k}, Y_{j}^{i}, and $\delta_{j k \ell_{1} \ldots \ell_{r}}^{i}$ forms a Lie algebra \mathfrak{h}_{n}.
By definition, \mathcal{H}_{n} is the algebra of linear operators on \mathcal{A} generated by \mathfrak{h}_{n} and the scalars. For $n>1$ the operators $\delta_{j k \ell_{1} \ldots \ell_{r}}^{i}$ are not all distinct. They satisfy the "structure identities"

$$
\delta_{j \ell k}^{i}-\delta_{j k \ell}^{i}=\delta_{j k}^{s} \delta_{s \ell}^{i}-\delta_{j \ell}^{s} \delta_{s k}^{i},
$$

reflecting the flatness of the standard connection. The algebra \mathcal{H}_{n} is isomorphic to the quotient $\mathfrak{A}\left(\mathfrak{h}_{n}\right) / \mathcal{I}$ of the universal enveloping algebra $\mathfrak{A}\left(\mathfrak{h}_{n}\right)$ by the ideal \mathcal{I} generated by the above identities. It has a distinguished character $\delta: \mathcal{H}_{n} \rightarrow \mathbb{C}$, which extends the modular character of $\mathfrak{g l}_{n}(\mathbb{R})$, and is induced from the character of \mathfrak{h}_{n} defined by

$$
\delta\left(Y_{i}^{j}\right)=\delta_{i}^{j}, \quad \delta\left(X_{k}\right)=0, \quad \delta\left(\delta_{j k \ell_{1} \ldots \ell_{r}}^{i}\right)=0
$$

The coproduct of \mathcal{H}_{n} stems from the interaction of \mathcal{H}_{n} with the product of \mathcal{A}. More precisely, any $h \in \mathcal{H}_{n}$ satisfy an identity of the form

$$
h(a b)=\sum_{(h)} h_{(1)}(a) h_{(2)}(b), \quad h_{(1)}, h_{(2)} \in \mathcal{H}_{n}, \quad a, b \in \mathcal{A},
$$

and this uniquely determines a coproduct $\Delta: \mathcal{H} \rightarrow \mathcal{H}_{n} \otimes \mathcal{H}_{n}$, by setting (using Sweedler's notation)

$$
\Delta(h)=\sum_{(h)} h_{(1)} \otimes h_{(2)}
$$

The counit is $\varepsilon(h)=h(1)$, while the antipode S is uniquely determined by its very definition

$$
\sum_{(h)} S\left(h_{(1)}\right) h_{(2)}=\varepsilon(h) \cdot 1=\sum_{(h)} h_{(1)} S\left(h_{(2)}\right)
$$

Although the antipode S fails to be involutive, its twisted version

$$
S_{\delta}(h)=\sum_{(h)} \delta\left(h_{(1)}\right) S\left(h_{(2)}\right)
$$

does satisfy the property

$$
\begin{equation*}
S_{\delta}^{2}=\mathrm{Id} \tag{2.3}
\end{equation*}
$$

The algebra \mathcal{A} has a canonical trace, namely

$$
\tau\left(f U_{\varphi}\right)=\left\{\begin{array}{cc}
\int_{F \mathbb{R}^{n}} f \varpi, & \text { if } \varphi=\mathrm{Id} \tag{2.4}\\
0, & \text { otherwise }
\end{array}\right.
$$

here ϖ is the volume form determined by the dual to the canonical basis of \mathfrak{g}. This trace satisfies

$$
\begin{equation*}
\tau(h(a))=\delta(h) \tau(a), \quad h \in \mathcal{H}_{n}, a \in \mathcal{A} \tag{2.5}
\end{equation*}
$$

The standard Hopf cyclic model for \mathcal{H}_{n} is imported from the standard cyclic model of the algebra \mathcal{A}, by means of the characteristic map

$$
\begin{align*}
& h^{1} \otimes \ldots \otimes h^{q} \in \mathcal{H}_{n}^{\otimes^{q}} \longmapsto \chi_{\tau}\left(h^{1} \otimes \ldots \otimes h^{q}\right) \in C^{q}(\mathcal{A}), \\
& \chi_{\tau}\left(h^{1} \otimes \ldots \otimes h^{q}\right)\left(a^{0}, \ldots, a^{q}\right)=\tau\left(a^{0} h^{1}\left(a^{1}\right) \ldots h^{q}\left(a^{q}\right)\right), \quad a^{j} \in \mathcal{A} \tag{2.6}
\end{align*}
$$

It gives rise to a cyclic structure [3] on $\left\{C^{q}\left(\mathcal{H}_{n} ; \delta\right):=\mathcal{H}_{n}^{\otimes^{q}}\right\}_{q \geq 0}$, with faces, degeneracies and cyclic operator given by

$$
\begin{aligned}
\delta_{0}\left(h^{1} \otimes \ldots \otimes h^{q-1}\right) & =1 \otimes h^{1} \otimes \ldots \otimes h^{q-1} \\
\delta_{j}\left(h^{1} \otimes \ldots \otimes h^{q-1}\right) & =h^{1} \otimes \ldots \otimes \Delta h^{j} \otimes \ldots \otimes h^{q-1}, \quad 1 \leq j \leq q-1 \\
\delta_{n}\left(h^{1} \otimes \ldots \otimes h^{q-1}\right) & =h^{1} \otimes \ldots \otimes h^{q-1} \otimes 1 \\
\sigma_{i}\left(h^{1} \otimes \ldots \otimes h^{q+1}\right) & =h^{1} \otimes \ldots \otimes \varepsilon\left(h^{i+1}\right) \otimes \ldots \otimes h^{q+1}, \quad 0 \leq i \leq q \\
\tau_{q}\left(h^{1} \otimes \ldots \otimes h^{q}\right) & =S_{\delta}\left(h^{1}\right) \cdot\left(h^{2} \otimes \ldots \otimes h^{q} \otimes 1\right)
\end{aligned}
$$

The identity $\tau_{q}^{q+1}=\mathrm{Id}$ is satisfied precisely because of the involutive property (2.3), to which is actually equivalent.
The periodic Hopf cyclic cohomology $H P^{\bullet}\left(\mathcal{H}_{n} ; \mathbb{C}_{\delta}\right)$ of \mathcal{H}_{n} with coefficients in the modular pair $(\delta, 1)$ is, by definition (cf. $[5,6]$), the \mathbb{Z}_{2}-graded cohomology of the total complex $C C^{\text {tot }}\left(\mathcal{H}_{n} ; \mathbb{C}_{\delta}\right)$ associated to the bicomplex $\left\{C C^{*, *}\left(\mathcal{H}_{n} ; \mathbb{C}_{\delta}\right), b, B\right\}$, where

$$
b=\sum_{k=0}^{q+1}(-1)^{k} \delta_{k}, \quad B=\left(\sum_{k=0}^{q}(-1)^{q k} \tau_{q}^{k}\right) \sigma_{q-1} \tau_{q} .
$$

The periodic Hopf cyclic cohomology of \mathcal{H}_{n} relative to GL_{n}, denoted $H P^{\bullet}\left(\mathcal{H}_{n}, \mathrm{GL}_{n} ; \mathbb{C}_{\delta}\right)$, is the cohomology of the cyclic complex defined as follows. One considers the quotient $\mathcal{Q}_{n}:=$ $\mathcal{H}_{n} \otimes \mathcal{U}\left(\mathfrak{g l}_{n}\right) \mathbb{C} \equiv \mathcal{H}_{n} / \mathcal{H}_{n} \mathcal{U}^{+}\left(\mathfrak{g l}_{n}\right)$, which is an \mathcal{H}_{n}-module coalgebra with respect to the coproduct and counit inherited from \mathcal{H}_{n}. One then forms the cochain complex

$$
C^{q}\left(\mathcal{H}_{n}, \mathrm{GL}_{n} ; \mathbb{C}_{\delta}\right):=\mathbb{C}_{\delta} \otimes_{\mathcal{U}\left(\mathfrak{g r}_{n}\right)} \mathcal{Q}_{n}^{\otimes q} \equiv\left(\mathcal{Q}_{n}^{\otimes q}\right)^{\mathrm{GL}_{n}}, \quad q \geq 0
$$

endowed with the cyclic structure given by restricting to GL_{n}-invariants the operators

$$
\begin{aligned}
\delta_{0}\left(c^{1} \otimes \ldots \otimes c^{q-1}\right) & =\dot{1} \otimes c^{1} \otimes \ldots \otimes \ldots \otimes c^{q-1} \\
\delta_{i}\left(c^{1} \otimes \ldots \otimes c^{q-1}\right) & =c^{1} \otimes \ldots \otimes \Delta c^{i} \otimes \ldots \otimes c^{q-1}, \quad 1 \leq i \leq q-1 \\
\delta_{n}\left(c^{1} \otimes \ldots \otimes c^{q-1}\right) & =c^{1} \otimes \ldots \otimes c^{q-1} \otimes \dot{1} ; \\
\sigma_{i}\left(c^{1} \otimes \ldots \otimes c^{q+1}\right) & =c^{1} \otimes \ldots \otimes \varepsilon\left(c^{i+1}\right) \otimes \ldots \otimes c^{q+1}, \quad 0 \leq i \leq q \\
\tau_{q}\left(\dot{h}^{1} \otimes c^{2} \otimes \ldots \otimes c^{q}\right) & =S_{\delta}\left(h^{1}\right) \cdot\left(c^{2} \otimes \ldots \otimes c^{q} \otimes \dot{1}\right)
\end{aligned}
$$

The corresponding characteristic map lands in the cyclic cohomology of the crossed product algebra $\mathcal{A}_{\text {base }}=C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rtimes \mathbf{G}$, where \mathbb{R}^{n} is identified with $G / \mathrm{GL}_{n}(\mathbb{R})$. It is given at the chain level by the map $c \in\left(\mathcal{Q}_{n}^{\otimes q}\right)^{\mathrm{GL}_{n}} \mapsto \chi_{\text {base }}(c) \in C^{q}\left(\mathcal{A}_{\text {base }}\right)$ defined as follows:

$$
\begin{equation*}
\chi_{\text {base }}\left(\dot{h}^{1} \otimes \ldots \otimes \dot{h}^{q}\right)\left(a^{0}, \ldots, a^{q}\right)=\tau_{\text {base }}\left(\left.\tilde{a}^{0} h^{1}\left(\tilde{a}^{1}\right) \ldots h^{q}\left(\tilde{a}^{q}\right)\right|_{\mathbf{y}=\mathbf{1}}\right) \tag{2.7}
\end{equation*}
$$

where $\tau_{\text {base }}$ is the trace on $\mathcal{A}_{\text {base }}$ associated to the relatively invariant measure on $G / \mathrm{GL}_{n}(\mathbb{R})$ (which coincides with the Lebesgue measure on \mathbb{R}^{n}), \dot{h} stands for the class in \mathcal{Q}_{n} of $h \in \mathcal{H}_{n}$, and for a monomial $a=f U_{\phi} \in \mathcal{A}_{\text {base }}$ we let $\tilde{a}:=\tilde{f} U_{\tilde{\phi}} \in \mathcal{A}$, with $\tilde{f} \in C^{\infty}\left(F \mathbb{R}^{n}\right)$ and $\tilde{\phi}$ denoting the natural lifts of $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\phi \in \mathbf{G}$ to the frame bundle $F \mathbb{R}^{n}$. The definition makes sense, as it can be checked that the element $\tilde{a}^{0} h^{1}\left(\tilde{a}^{1}\right) \ldots h^{q}\left(\tilde{a}^{q}\right) \in \mathcal{A}$ is independent of the representatives h^{i} of the classes \dot{h}^{i}, and descends to $\mathcal{A}_{\text {base }}$ by evaluation at $\mathbf{y}=\mathbf{1}$. Moreover, the chain map $\chi_{\text {base }}$ thus obtained is injective.

2.2 From equivariant to Hopf cyclic cohomology

We recall the definition of the map Φ of Connes [4, III.2. δ], specialized to the present context. Consider the DG-algebra, $\mathcal{B}_{\mathbf{G}}(G)=\Omega_{c}^{*}(G) \otimes \wedge \mathbb{C}\left[\mathbf{G}^{\prime}\right]$, where $\mathbf{G}^{\prime}=\mathbf{G} \backslash\{e\}$, with the differential $d \otimes \mathrm{Id}$. One labels the generators of $\mathbb{C}\left[\mathbf{G}^{\prime}\right]$ as $\gamma_{\phi}, \phi \in \mathbf{G}$, with $\gamma_{e}=0$, and one forms the crossed product $\mathcal{C}_{\mathbf{G}}(G)=\mathcal{B}_{\mathbf{G}}(G) \rtimes \mathbf{G}$, with the commutation rules

$$
\begin{array}{ll}
U_{\phi}^{*} \omega U_{\phi}=\phi^{*} \omega, & \omega \in \Omega_{c}^{*}(G) \\
U_{\phi_{1}}^{*} \gamma_{\phi_{2}} U_{\phi_{1}}=\gamma_{\phi_{2} \circ \phi_{1}}-\gamma_{\phi_{1}}, & \phi_{1}, \phi_{2} \in \mathbf{G}
\end{array}
$$

$\mathcal{C}_{\mathbf{G}}(G)$ is also a DG-algebra, equipped with the differential

$$
\begin{equation*}
\mathbf{d}\left(b U_{\phi}^{*}\right)=d b U_{\phi}^{*}-(-1)^{\partial b} b \gamma_{\phi} U_{\phi}^{*}, \quad b \in \mathcal{B}_{\mathbf{G}}(G), \quad \phi \in \mathbf{G} \tag{2.8}
\end{equation*}
$$

A cochain $\lambda \in \bar{C}^{q}\left(\mathbf{G}, \Omega^{p}(G)\right)$ determines a linear form $\tilde{\lambda}$ on $\mathcal{C}_{\mathbf{G}}(G)$ as follows:

$$
\begin{align*}
& \widetilde{\lambda}\left(b U_{\phi}^{*}\right)=0 \quad \text { for } \quad \phi \neq \mathbf{1} \\
& \text { if } \phi=\mathbf{1} \quad \text { and } \quad b=\omega \otimes \gamma_{\rho_{1}} \ldots \gamma_{\rho_{q}} \quad \text { then } \tag{2.9}\\
& \widetilde{\lambda}\left(\omega \otimes \gamma_{\rho_{1}} \ldots \gamma_{\rho_{q}}\right)=\int_{G} \lambda\left(1, \rho_{1}, \ldots, \rho_{q}\right) \wedge \omega
\end{align*}
$$

The map Φ from $\bar{C}^{\bullet}\left(\mathbf{G}, \Omega^{\bullet}(G)\right)$ to the (b, B)-complex of the algebra $\mathcal{A}=C_{c}^{\infty}(G) \rtimes \mathbf{G}$ is now defined for $\lambda \in \bar{C}^{q}\left(\mathbf{G}, \Omega^{p}(G)\right)$ by

$$
\begin{align*}
\Phi(\lambda)\left(a^{0}, \ldots, a^{m}\right) & =\frac{p!}{(m+1)!} \sum_{j=0}^{m}(-1)^{j(m-j)} \tilde{\lambda}\left(\mathbf{d} a^{j+1} \cdots \mathbf{d} a^{m} a^{0} \mathbf{d} a^{1} \cdots \mathbf{d} a^{j}\right) \tag{2.10}\\
\text { where } \quad m & =\operatorname{dim} G-p+q, \quad a^{0}, \ldots, a^{m} \in \mathcal{A}
\end{align*}
$$

By [4, III.2. δ, Thm. 14], Φ is a chain map to the total (b, B)-complex of the algebra \mathcal{A}.
The relative version $\Phi^{\mathrm{GL}_{n}}$ of the map Φ is obtained by first replacing $\Omega_{c}^{*}(G)$ with the GL_{n}-basic forms $\Omega_{c, \text { basic }}^{*}(G)$ which are compact modulo GL_{n}, and so can be identified to $\Omega_{c}^{*}\left(\mathbb{R}^{n}\right)$, and then replacing in the definition (2.9) the integration over $G=\mathbb{R}^{n} \ltimes \mathrm{GL}_{n}$ by integration over the base \mathbb{R}^{n}. One obtains this way the induced chain map

$$
\begin{equation*}
\Phi^{\mathrm{GL}_{n}}: \bar{C}^{\bullet}\left(\mathbf{G}, \Omega^{\bullet}\left(\mathbb{R}^{n}\right)\right) \rightarrow C^{\bullet}\left(\mathcal{A}_{\text {base }}\right) \tag{2.11}
\end{equation*}
$$

Assume now that $\lambda \in \bar{C}^{q}\left(\mathbf{G}, \Omega^{p}\left(\mathbb{R}^{n}\right)\right)$ is of the form $\lambda=\mathcal{D}_{\nabla}(\omega)$ with $\omega \in C\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right)$, where ∇ stands for the standard flat connection. Using [15, Lemma 3.5] which identifies the map \mathcal{D}_{∇} with the map \mathcal{D} employed in [5], one shows as in [5, pp. 233-234]) that $\Phi^{\mathrm{GL}_{n}}(\lambda)$ has the expression

$$
\begin{equation*}
\Phi^{\mathrm{GL}_{n}}(\lambda)\left(a^{0}, \ldots, a^{q}\right)=\sum_{\alpha} \tau_{\text {base }}\left(\tilde{a}^{0} h_{\alpha}^{1}\left(\tilde{a}^{1}\right) \ldots h_{\alpha}^{q}\left(\tilde{a}^{q}\right)\right) \tag{2.12}
\end{equation*}
$$

with $\sum_{\alpha} \dot{h}_{\alpha}^{1} \otimes \ldots \otimes \dot{h}_{\alpha}^{q} \in\left(\mathcal{Q}_{n}^{\otimes q}\right)^{\mathrm{GL}_{n}}$ uniquely determined by λ. This means that $\Phi^{\mathrm{GL}_{n}}(\lambda)$ lands in the (b, B)-complex which defines the Hopf cyclic cohomology of \mathcal{H}_{n} relative to GL_{n}. Thus, by restricting $\Phi^{\mathrm{GL}_{n}}$ to the subcomplex

$$
\begin{equation*}
\bar{C}_{\mathcal{D}}^{\mathrm{tot}}\left(\mathbf{G}, \Omega^{*}\left(\mathbb{R}^{n}\right)\right):=\mathcal{D}_{\nabla}\left(C\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right)\right) \subset \bar{C}_{\mathrm{rd}}^{\mathrm{tot}}\left(\mathbf{G}, \Omega^{*}\left(\mathbb{R}^{n}\right)\right) \tag{2.13}
\end{equation*}
$$

one obtains a chain map

$$
\begin{equation*}
\Phi_{\mathrm{rd}}^{\mathrm{GL}_{n}}: \bar{C}_{\mathcal{D}}^{\mathrm{tot}}\left(\mathbf{G}, \Omega^{*}\left(\mathbb{R}^{n}\right)\right) \rightarrow C C^{\mathrm{tot}}\left(\mathcal{H}_{n}, \mathrm{GL}_{n} ; \mathbb{C}_{\delta}\right) \tag{2.14}
\end{equation*}
$$

By [5, Theorem 11], or more precisely its relative to GL_{n} version, the composition $\Phi_{\mathrm{rd}}^{\mathrm{GL}} \circ \mathcal{D}_{\nabla}^{\mathrm{GL}}{ }_{n}$ is a quasi-isomorphism. Since, by construction (cf. $\S 1.3)$ the cocycles $C_{J}\left(\hat{\Omega}_{\nabla}\right)$ are images via the map $\mathcal{D}_{\nabla}^{\mathrm{GL}_{n}}$ of representatives for a basis of $H^{*}\left(\mathfrak{a}_{n}, \mathrm{GL}_{n}\right)$, we can finally conclude that:

Theorem 2.1. The collection of cocycles

$$
\left\{\Phi_{\mathrm{rd}}^{\mathrm{GL} \mathrm{GL}_{n}}\left(C_{J}\left(\hat{\Omega}_{\nabla}\right)\right) ; \quad J=\left(j_{1} \leq \ldots \leq j_{q}\right), \quad|J| \leq n\right\}
$$

represent a basis of $\operatorname{HP}^{\bullet}\left(\mathcal{H}_{n}, \mathrm{GL}_{n} ; \mathbb{C}_{\delta}\right)$.
To get more insight into the makeup of these cocycles, we recall that ∇ is the flat connection on $G \equiv F \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, so its connection form is $\omega_{\nabla}=\left(\omega_{j}^{i}\right)$ with $\omega_{j}^{i}:=\left(\mathbf{y}^{-1}\right)_{\mu}^{i} d \mathbf{y}_{j}^{\mu}=\left(\mathbf{y}^{-1} d \mathbf{y}\right)_{j}^{i}$, $i, j=1, \ldots, n$. With the usual summation convention, for any $\phi \in \mathbf{G}$,

$$
\phi^{*}\left(\omega_{j}^{i}\right)=\omega_{j}^{i}+\gamma_{j k}^{i}(\phi) \theta^{k}=\omega_{j}^{i}+\left(\mathbf{y}^{-1} \cdot \phi^{\prime}(x)^{-1} \cdot \partial_{\mu} \phi^{\prime}(x) \cdot \mathbf{y}\right)_{j}^{i} d x^{\mu},
$$

since

$$
\gamma_{j k}^{i}(\phi)(x, \mathbf{y})=\left(\mathbf{y}^{-1} \cdot \phi^{\prime}(x)^{-1} \cdot \partial_{\mu} \phi^{\prime}(x) \cdot \mathbf{y}\right)_{j}^{i} \mathbf{y}_{k}^{\mu} \quad \text { and } \quad \theta^{k}=\left(\mathbf{y}^{-1}\right)_{\ell}^{k} d x^{\ell}
$$

Thus, denoting

$$
\begin{equation*}
\tilde{\Gamma}_{\mu}(\phi)(x, \mathbf{y})=\mathbf{y}^{-1} \cdot \phi^{\prime}(x)^{-1} \cdot \partial_{\mu} \phi^{\prime}(x) \cdot \mathbf{y}, \tag{2.15}
\end{equation*}
$$

one has $\phi^{*}\left(\omega_{\nabla}\right)=\omega_{\nabla}+\tilde{\Gamma}_{\mu}(\phi) d x^{\mu}$. Therefore, the simplicial connection is

$$
\hat{\omega}_{\nabla}\left(\mathbf{t} ; \phi_{0}, \ldots, \phi_{p}\right)=\sum_{r=0}^{p} t_{r} \phi_{r}^{*}\left(\omega_{\nabla}\right)=\omega_{\nabla}+\sum_{r=0}^{p} t_{r} \tilde{\Gamma}_{k}\left(\phi_{r}\right) d x^{k} .
$$

Since $\phi^{*}\left(\Omega_{\nabla}\right)=0$, the simplicial curvature (1.18) takes the form

$$
\begin{aligned}
\hat{\Omega}_{\nabla}\left(\mathbf{t} ; \phi_{0}, \ldots, \phi_{p}\right) & =\sum_{r=0}^{p} d t_{r} \wedge \phi_{r}^{*}\left(\omega_{\nabla}\right)-\sum_{r=0}^{p} t_{r} \phi_{r}^{*}\left(\omega_{\nabla}\right) \wedge \phi_{r}^{*}\left(\omega_{\nabla}\right) \\
& +\sum_{r, s=0}^{p} t_{r} t_{s} \phi_{r}^{*}\left(\omega_{\nabla}\right) \wedge \phi_{s}^{*}\left(\omega_{\nabla}\right) .
\end{aligned}
$$

Furthermore, being given by invariant polynomials, the Chern cocycles (1.19) are built out of the pull-back of the curvature form by the cross-section $x \in \mathbb{R}^{n} \mapsto(x, \mathbf{1}) \in \mathbb{R}^{n} \times \mathrm{GL}_{n}$. The latter is given by the matrix-valued form

$$
\begin{aligned}
& \hat{R}\left(\mathbf{t} ; \phi_{0}, \ldots, \phi_{p}\right)=\sum_{r=0}^{p} d t_{r} \wedge \Gamma\left(\phi_{r}\right)-\sum_{r=0}^{p} t_{r} \Gamma\left(\phi_{r}\right) \wedge \Gamma\left(\phi_{r}\right) \\
& +\sum_{r, s=0}^{p} t_{r} t_{s} \Gamma\left(\phi_{r}\right) \wedge \Gamma\left(\phi_{s}\right), \quad \text { where } \quad \Gamma(\phi):=\left(\phi^{\prime}\right)^{-1} \cdot d \phi^{\prime},
\end{aligned}
$$

with $\phi^{\prime}=\left(\partial_{j} \phi^{i}\right)$ denoting the Jacobian matrix of $\phi \in \mathbf{G}$. This ensures that the diffeomorphisms $\phi \in \mathbf{G}$ appear in all the basic cocycles (1.20) solely through the matrix-valued 1-forms $\Gamma(\phi) \in$ $\Omega^{1}\left(\mathbb{R}^{n}\right) \otimes \mathfrak{g l}_{n}$. For example, the Chern cocycle $C_{q}\left(\hat{\Omega}_{\nabla}\right)$ has components

$$
\begin{aligned}
& C_{q}^{(p)}\left(\hat{\Omega}_{\nabla}\right)\left(\phi_{0}, \ldots, \phi_{p}\right)= \\
& =(-1)^{p} \sum_{1 \leq i_{1}<\ldots<i_{q} \leq n} \sum_{\mu \in S_{q}}(-1)^{\mu} \int_{\Delta^{p}} R_{\mu\left(i_{1}\right)}^{i_{1}} \wedge \cdots \wedge R_{\mu\left(i_{q}\right)}^{i_{q}}\left(\mathbf{t} ; \phi_{0}, \ldots, \phi_{p}\right) .
\end{aligned}
$$

In particular, up to a constant factor $C_{q}^{(q)}\left(\hat{\Omega}_{\nabla}\right)\left(\phi_{0}, \ldots, \phi_{q}\right)$ equals

$$
\sum_{\sigma \in S_{q+1}}(-1)^{\sigma} \operatorname{Tr}\left(\Gamma\left(\phi_{\sigma(1)}\right) \wedge \cdots \wedge \Gamma\left(\phi_{\sigma(q)}\right)\right)
$$

where σ runs through the permutations of $\{0,1, \ldots, q\}$.
It is thus seen that all cohomology classes in $H P^{\bullet}\left(\mathcal{H}_{n}, \mathrm{GL}_{n} ; \mathbb{C}_{\delta}\right)$ can be represented by cocycles $c \in \sum_{q \geq 0}\left(\mathcal{Q}_{n}^{\otimes^{q}}\right)^{\mathrm{GL}_{n}}$ whose characteristic image $\chi_{\text {base }}(c) \in \sum_{q \geq 0} C^{q}\left(C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rtimes \mathbf{G}\right)$ involves only 2 -jets.
The above property can be stated more intrinsically, in terms of the standard Hopf cyclic complex. Let \mathcal{F}_{n}^{δ} denote the subalgebra of \mathcal{H}_{n} generated by the multiplication operators $\delta_{j k}^{i}$ of (2.1) and set

$$
\mathcal{X}_{n}:=\mathcal{F}_{n}^{\delta}+\sum_{k=1}^{n} \mathcal{F}_{n}^{\delta} \cdot X_{k}
$$

it is a GL_{n}-invariant subspace of \mathcal{H}_{n}, and we let $\dot{\mathcal{X}}_{n}$ be its image in \mathcal{Q}_{n}.
Corollary 2.2. Every cohomology class in $H P^{\bullet}\left(\mathcal{H}_{n}, \mathrm{GL}_{n} ; \mathbb{C}_{\delta}\right)$ can be represented by cocycles formed of elements in $\sum_{q \geq 0}\left(\dot{\mathcal{X}}_{n}^{\otimes^{q}}\right)^{\mathrm{GL}_{n}}$.

Proof: The horizontal operators appear because of the first summand in the definition (2.8) of the differential \mathbf{d}, which contributes to the formula (2.12) as follows: when applied to monomials $a=f U_{\phi}^{*} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, it brings in the forms $d f=\sum_{k=1}^{n} X_{k}(f) d x^{k}$.

Explicit representatives for the Hopf cyclic Chern classes can also be given in the cohomological models of Chevalley-Eilenberg type constructed in [13, 14], by transporting the equivariant Chern classes from the Bott complex as in $[15, \S 3]$, via the partial inverse of the map Θ therein defined, only this time restricted to GL_{n}-basic forms.

References

[1] Bott, R., On characteristic classes in the framework of Gelfand-Fuks cohomology. In Colloque "Analyse et Topologie" en l'Honneur de Henri Cartan, Astérisque 32-33 (1976), p. 113-139. Soc. Math. France (Paris).
[2] Bott, R., Shulman, H. and Stasheff, J., On the de Rham theory of certain classifying spaces, Adv. Math. 20 (1976), 43-56.
[3] Connes, A., Cohomologie cyclique et foncteur Ext ${ }^{n}$, C.R. Acad. Sci. Paris, Ser. I Math., 296 (1983), 953-958.
[4] Connes, A., Noncommutative geometry, Academic Press, 1994.
[5] Connes, A. and Moscovici, H., Hopf algebras, cyclic cohomology and the transverse index theorem, Commun. Math. Phys. 198 (1998), 199-246.
[6] Connes, A. and Moscovici, H., Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48 (1999), no. 1, 97-108.
[7] Connes, A. and Moscovici, H., Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry, In Essays on Geometry and Related Topics, pp. 217-256, Monographie No. 38 de L'Enseignement Mathématique, Genève, 2001.
[8] Dupont, J. L., Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15 (1976), 233-245.
[9] Gelfand, I. M. and Fuks, D. B., Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR 34 (1970), 322-337.
[10] Godbillon, C., Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire N. Bourbaki, 1972-1973, exp. 421, 69-87.
[11] Haefliger, A., Differentiable cohomology, In Differential Topology - Varenna, 1976, pp. 19-70, Liguori, Naples, 1979.
[12] Kumar, S. and Neeb, K-H., Extension of algebraic groups, Studies in Lie theory, p. 365-376, Progr. Math. 243, Birkhäuser Boston, Boston, MA.
[13] Moscovici, H., Rangipour, B., Hopf algebras of primitive Lie pseudogroups and Hopf cyclic cohomology. Adv. Math. 220 (2009), 706-790.
[14] Moscovici, H., Rangipour, B., Hopf cyclic cohomology and transverse characteristic classes. Adv. Math. 227 (2011), 654-729.
[15] Moscovici, H., Geometric construction of Hopf cyclic characteristic classes. Adv. Math. 274 (2015), 651-680.

Received: 1.09.2014
Accepted: 26.11.2014
Department of mathematics, The Ohio State University, Columbus, OH 43210, USA.
E-mail: henri@math.osu.edu

[^0]: *Supported in part by the United States National Science Foundation award no. DMS-1300548, and by a grant from the Romanian National Authority for Scientific Research, project no. PN-II-ID-PCE-2012-4-0201

