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Abstract

Let A be a character sheaf on a connected reductive group G over an algebraically closed
field. Assuming that the characteristic is not bad we show that for certain conjugacy
classes D in G, the restriction of A to D is a local system up to shift. We also give
a parametrization of unipotent cuspidal character sheaves of G in terms of restriction to
conjugacy classes. Without restriction on characteristic we define canonical bijections from
the set of unipotent representations of the corresponding split group over a finite field to
a set combinatorially defined in terms of the Weyl group.
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Introduction

0.1

Let k be an algebraically closed field of characteristic p ≥ 0. Let G be a connected reductive
group over k. Let Ĝ be the set of (isomorphism classes of) character sheaves on G. (Recall
that the character sheaves of G are certain simple perverse sheaves on G (see [11]) which are
equivariant under G-conjugation.) In this paper we are interested in studying the restriction
of a character sheaf of G to a conjugacy class of G. For g ∈ G let g = gsgu = gugs be
the Jordan decomposition of g (gs is semisimple, gu is unipotent). For a subset R of G let
Rs = {gs; g ∈ X}, Ru = {gu; g ∈ X}. The set Ĝ can be naturally partitioned into equivalence
classes called families as in [12], 10.6 and (assuming that p is not a bad prime for G) to each
family F one can attach a unipotent class C = CF of G as in [12], 10.5 so that the following
property holds (see [12], 10.7).

(a) If D is a conjugacy class of G such that dimDu ≥ dimC and Du 6= C then A|D = 0 for
any A ∈ F. There exists a conjugacy class D of G and A ∈ F such that Du = C and A|D 6= 0.

∗Supported in part by National Science Foundation grant DMS-1303060 and by a Simons Fellowship



298 G. Lusztig

Note that (a) characterizes C uniquely. (Actually, in [12], p is assumed to be sufficiently large
or 0 but from this the case where p is only assumed to be not a bad prime can be deduced by
standard methods.) If A ∈ Ĝ belongs to a family F, the unipotent class CF is said to be the
unipotent support of A.

We now state the following refinement of (a).

Theorem 0.2 Assume that p is not a bad prime for G. Let F, C = CF be as above. Let D
be a conjugacy class of G such that Du = C. Then for any A ∈ F we have A|D = L[dim(D)+c]
where L is a local system on D and c ∈ N depends only on A, not on D.

The proof is given in §1.

0.3

Recall that in [7], 3.1 we have defined a partition of G into finitely many locally closed smooth
irreducible subvarieties of G invariant by conjugation (called strata). From the definitions we
see that if Y is a stratum of G then Yu is a single unipotent conjugacy class of G. We have the
following result.

Corollary 0.4 Assume that p is not a bad prime for G. Let A be a character sheaf on G
and let Y be a stratum of G. Let F be the family in Ĝ that contains A and let C = CF.

(a) If dimYu ≥ dimC and Yu 6= C then A|Y = 0.

(b) If Yu = C then A|Y is a local system (up to shift).

(a) follows immediately from the definition of C. We prove (b). Since all conjugacy classes
contained in Y have the same dimension, we see from Theorem 0.2 that there exists i ∈ Z such
that HjA|Y = 0 for j 6= i. It remains to show that HiA|Y is a local system. This follows from
[10], 14.2(a).

0.5

Notation. Let B be the variety of Borel subgroups of G. We write B × B = tw∈WOw where
Ow(w ∈ W) are the orbits of G acting on B × B by simultaneous conjugation and W is the
Weyl group (it is naturally a finite Coxeter group with set of simple reflections S). Let B∗

be a fixed Borel subgroup of G and let T ∗ be a fixed maximal torus of B∗. The parabolic
subgroups of G containing B∗ are in natural bijection J ↔ PJ with the subsets J ⊂ S; thus
P∅ = B∗, PS = G. For J ⊂ S let LJ be the unique Levi subgroup of PJ such that T ∗ ⊂ LJ .

If P is a parabolic subgroup of G we denote by UP the unipotent radical of P and by
πP : P → P̄ := P/UP the canonical homomorphism. For an affine algebraic group H let H0

be the identity component of H; let ZH be the centre of H. We denote by l a prime number
invertible in k. All sheaves (in particular local systems) are assumed to be Q̄l-sheaves. For a
group ∆ and g ∈ ∆ let Z∆(g) be the centralizer of g in ∆. If ∆ is finite we denote by Irr∆ a
set of representatives for the isomorphism classes of irreducible representations of ∆ over Q̄l.

If k is an algebraic closure of the finite field Fp with with p elements and q is a power of p
we denote by Fq the subfield of k with q elements.
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0.6

In §2 we describe a parametrization of the unipotent character sheaves of G (suggested by
Theorem 0.2) in terms of restrictions to various conjugacy classes assuming, that p is not a bad
prime. This description fails in bad characteristic.

In §3 we establish a canonical bijection between the set of unipotent character sheaves on
G and the set of unipotent representations of a split reductive group of the same type over a
finite field (here there is no restriction on p). In fact both sets are put in canonical bijection
with a combinatorially defined set SW defined purely in terms of the Weyl group W.

1 Proof of Theorem 0.2

1.1

A cuspidal pair for G is a pair (Σ, E) where Σ is the inverse image under G → G/Z0
G of an

isolated conjugacy class in G/Z0
G and E is a local system on Σ such that for some n ≥ 1

invertible in k,
E is equivariant for the G×Z0

G action (g, z) : g1 7→ zngg1g
−1 on Σ;

for any parabolic subgroup P 6= G and any y ∈ P̄ , we have Hδ
c (π−1

P (y) ∩ Σ, E) = 0 where
δ = dim(Σ/Z0

G)− dim(P̄ ) + dimZP̄ (y).
(See [7], §2).

An induction datum for G is a triple (L,Σ, E) where L is a Levi subgroup of a parabolic
subgroup of G and (Σ, E) is a cuspidal pair for L. Given an induction datum (L,Σ, E) for G
we set

Σr = {g ∈ Σ;ZG(gs)
0 ⊂ L}

Y = tx∈GxΣrx
−1

Ỹ = {(g, xL) ∈ G×G/L;x−1gx ∈ Σr}
Ŷ = {(g, x) ∈ G×G;x−1gx ∈ Σr}.

We have a diagram

Σ
α←− Ŷ β−→ Ỹ

π−→ Y

where α(g, x) = x−1gx, β(g, x) = (g, xL), π(g, xL) = g. The local system α∗E on Ŷ is L-
equivariant for the action of L on Ŷ given by l : (g, x) 7→ (g, xl−1) hence it is equal to β∗Ẽ for a
well defined local system Ẽ on Ỹ . Now π!Ẽ is a well defined local system on Y (a locally closed
smooth irreducible subvariety of G). Let K = IC(Ȳ , π!Ẽ) extended to G by 0 on G− Ȳ . Here
Ȳ is the closure of Y in G. We set f0 = dimY = dimG− dimL+ dim Σ. Note that K[f0] is a
perverse sheaf.

1.2

Let σ ∈ G be a semisimple element which is G-conjugate to an element of Σs. Let M = {x ∈
G;x−1σx ∈ Σs}. We have M 6= ∅. Let Γ = Z0

G(σ)\M/L, a finite nonempty set. The group
W̃Σ := {y ∈ G; yLy−1 = L, yΣy−1 = Σ} acts on Γ by y : η 7→ ηy−1. This induces an action of
the finite group WΣ = W̃Σ/L on Γ.

For any x ∈ M let Lx = xLx−1 ∩ Z0
G(σ); this is a Levi subgroup of a parabolic subgroup

of Z0
G(σ). Let Cx = {v ∈ Z0

G(σ); v unipotent , x−1σvx ∈ Σ}; this is a unipotent class in Z0
G(σ),
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see [9], 7.11(c). Let Σx = Z0
Lx
Cx. Let Ex be the local system on Σx obtained as the inverse

image of E under the map Σx → Σ, g 7→ x−1σgx. Then (Σx, Ex) is a cuspidal pair for Lx. (See
[9], 7.11(a).) The definitions in 1.1 are applicable to Z0

G(σ), Lx,Σx, Ex instead of G,L,Σ, E . Let
πx : tY ′x → Y ′x, Ȳ

′
x, Ẽx,Kx be obtained from π : Ỹ → Y, Ȳ , Ẽ ,K in 1.1 by replacing G,L,Σ, E

by Z0
G(σ), Lx,Σx, Ex. We set f = dimY ′x = dimZ0

G(σ)− dimLx + dim Σx; this is independent
of the choice of x in M (it is in fact equal to dimZ0

G(σ)− dimL+ dim Σ, see the proof of [13],
16.10(b)). Note that Kx[f ] is a perverse sheaf on Z0

G(σ) with support equal to Ȳ ′x.

For any η ∈ Γ (viewed as a subset of M) we choose a base point xη ∈ η. We set

Lη = Lxη , Cη = Cxη ,Ση = Σxη , πη = πxη , Ỹ
′
η = Ỹ ′xη ,

Y ′η = Y ′xη , Ȳ
′
η = Ȳ ′xη , Eη = Exη , Ẽη = Ẽxη ,Kη = Kxη .

1.3

Let U be the set of all open sets U in Z0
G(σ) such that

1 ∈ U ;

gUg−1 = U for all g ∈ Z0
G(σ);

for x ∈ Z0
G(σ) we have x ∈ U if and only if xs ∈ U .

For example, Z0
G(σ) ∈ U.

Let U ∈ U. For η ∈ Γ we set

ỸU,η = {(g, xL) ∈ Ỹ ; g ∈ σU , x ∈ η}, YU,η = π(ỸU,η).

Let y ∈ W̃Σ, η ∈ Γ. If (g, xL) ∈ ỸU,η then (g, xy−1L) ∈ ỸU,ηy−1 hence YU,ηy−1 = YU,η. Thus for
any WΣ-orbit Z in Γ we can set YU,Z = YU,η where η is any element in Z. For Z as above we
set VZ = ∩η∈Z(σ(Y ′η ∩ U) ∩ YU,Z). Let V = ∪ZVZ where Z runs over the WΣ-orbits in Γ. For
η ∈ Γ let [η] be the WΣ-orbit of η in Γ.

As shown in [13], §16 (see also [9], §8), for any U1 ∈ U we can find U ∈ U with U ⊂ U1 so
that (a),(b),(c) below hold.

(a) V is an open subset of Y ∩ σU of pure dimension f and the VZ (Z runs over the
WΣ-orbits in Γ) form a finite partition of V into open and closed subsets; V is open dense in
Ȳ ∩ σU = ∪η∈Γσ(Ȳ ′η ∩ U); for η ∈ Γ, σ−1V[η] is open dense in Ȳ ′η ∩ U .

(b) Let 0Ỹ = {(g, xL) ∈ Ỹ ; g ∈ V}. For η ∈ Γ let 0Ỹ ′η = {(h, zLη) ∈ Ỹ ′η ;h ∈ σ−1V[η]}. We
have a commutative diagram

tη∈Γ
0Ỹ ′η

a−−−−→ 0Ỹy y
σ−1V ε−−−−→ V

where a is the isomorphism given by (h, zLη) 7→ (σg, zxηL), ε(h) = σh and the vertical maps
are given by the first projection.

(c) The canonical isomorphism

⊕η∈Γ(πη!Ẽη)|σ−1V[η]
∼−→ ε∗((π!Ẽ)|V)
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of local systems over σ−1V obtained from (b) (where (πη!Ẽη)|σ−1V[η] is extended by 0 on σ−1VZ′
for Z ′ 6= [η]) extends uniquely to an isomorphism

κ : ⊕η∈ΓKη|U
∼−→ ε′∗(K|σU )

where ε′ : U → σU is g 7→ σg.
(The uniqueness follows from the definition of the intersection cohomology complex.)

Proposition 1.4 Let E be a semisimple class of G. Let Ê = {g ∈ G; gs ∈ E}. Let
L,Σ, E , Y, Ȳ ,K, f0 be as in 1.1. Let c = dimZ0

L. Then K|Ê [f0 − c] is a semisimple perverse
sheaf.

Let σ ∈ Es. If σ /∈ Ȳs then clearly K|Ê = 0. Thus we can assume that σ ∈ Ȳs. It follows

that σ is as in 1.2. Let Ξ be the set of unipotent elements in Z0
G(σ). Note that σΞ ⊂ Ê. It is

enough to show that K[f − c]|σΞ is a semisimple perverse sheaf where f is as in 1.2. (Note that
dim(G/Z0

G(σ)) = f0 − f .) With notation of 1.3(c) we have

(a) ⊕η∈Γ Kη|Ξ
∼−→ ε′′∗(K|σΞ)

where ε′′ : Ξ → σΞ is g 7→ σg. (We use that Ξ ⊂ U .) We see that it is enough to show that
for any η ∈ Γ, Kη|Ξ[f − c] is a semisimple perverse sheaf. We define a local system E1

η as in
1.3. We define K1

η in terms of Z0
G(σ), Lη,Ση, E1

η in the same way as K was defined in terms of
G,L,Σ, E in 1.1.From [13], 15.2 we see that there is a canonical isomorphism

(b) (Kη)|Ξ
∼−→ (K1

η)|Ξ.

It is then enough to show that K1
η |Ξ[f − c] is a semisimple perverse sheaf. But this follows from

[7], (6.6.1). The proposition is proved.

1.5

Remark. In the special case where E = {1}, L = Σ is a maximal torus of G, E = Q̄l, the
proposition above reduces to a result in [1].

Corollary 1.6 Let A be a character sheaf of G and let E, Ê be as in 1.4. Then for some
integer m, A|Ê [m] is a semisimple perverse sheaf.

We can find L,Σ, E , Y, Ȳ ,K as in 1.1 such that A is a direct summand of K[f0] (f0 as in
1.1). Hence A|Ê [−c] is a direct summand of K|Ê [f0 − c] which by 1.4 is a semisimple perverse
sheaf. It follows that A|Ê [−c] is itself a semisimple perverse sheaf.

1.7

We prove Theorem 0.2. Let A ∈ F. Let C = CF. We can find L,Σ, E , Y, Ȳ ,K as in 1.1 such
that A is a direct summand of K[f0] (f0 as in 1.1). We can also assume that E is irreducible.
Let σ ∈ Ds. If σ /∈ Ȳs then clearly K|D = 0 hence A|D = 0. Thus we can assume that σ ∈ Ȳs.
It follows that σ is as in 1.2. Let Ξ be the set of unipotent elements in Z0

G(σ). By the proof of
Proposition 1.4 and with the notation there we have

ε′′∗(K|σΞ)[f − c] ∼= ⊕η∈ΓK
1
η [f − c]|Ξ ∼= A1 ⊕A2 ⊕ . . .⊕An



302 G. Lusztig

where A1, . . . , An are simple perverse sheaves on Ξ, equivariant under conjugation by Z0
G(σ).

Since ε′′∗(A|σΞ)[f − c− f0] is a direct summand of ε′′∗(KσΞ)[f − c] it follows that ε′′∗(AσΞ)[f −
c− f0] is isomorphic to a direct summand of A1 ⊕A2 ⊕ . . .⊕An hence

(a) ε′′∗(A|σΞ)[f − c− f0] ∼= ⊕j∈JAj for some J ⊂ [1, n].

Now for each j ∈ J there is a unique unipotent class cj of Z0
G(σ) such that Aj |cj is of the

form Lj [dim cj ] where Lj is an irreducible local system and Aj |c′ = 0 for any unipotent class c′

of Z0
G(σ) such that c′ 6⊂ cj . It follows that for any unipotent class c of Z0

G(σ) we have

(b) ε′′∗(A|σc)[f − c− f0] ∼= ⊕j∈J;c⊂cj−cjAj |c ⊕⊕j∈J;c=cjLj [dim c].

Now assume that c is a unipotent class of Z0
G(σ) such that c ⊂ C. Assume that

(c) ⊕j∈J;c⊂cj−cjAj |c 6= 0
that is, there exists j0 ∈ J such that c ⊂ cj0 − cj0 , Aj0 |c 6= 0. Using (a) we deduce

ε′′∗(A|σcj0 )[f − c− f0] ∼= ⊕j∈JAj |cj0 .

The last direct sum contains as a summand Aj0 |cj0 = Lj0 [dim cj0 ] 6= 0 hence the whole direct
sum is 6= 0 and ε′′∗(A|σcj0 )[f − c− f0] 6= 0. Thus A|σcj0 6= 0. Let c̃ be the unipotent class of G

that contains cj0 . Since c ⊂ cj0 − cj0 , we see that C ⊂ c̃ − c̃. If D′ is the conjugacy class of G
that contains σcj0 we have D′u = c̃, dimD′u > dimC. Hence by by 0.1(a) we have AD′ = 0 so
that A|σcj0 = 0, a contradiction. Thus the assumption (c) cannot hold so that the direct sum
in (c) is zero and (b) reduces to

ε′′∗(A|σc)[f − c− f0] ∼= ⊕j∈J;c=cjLj [dim c].

We see that A|σc[f − c − f0 − dim c] is a local system. Applying this to c equal to one of
c1, c2, . . . , cr, the unipotent classes in Z0

G(σ) that are contained in C and satisfy {g ∈ D; gs =
σ} = σc1 t σc2 t . . . t σcr we deduce that A|σc1t...tσcr [f − c − f0 − d] is a local system.
(Here d = dim c1 = · · · = dim cr; note that c1, . . . cr are permuted transitively by ZG(σ) hence
have the same dimension). It also follows that A|D[f − c− f0 − d] is a local system. We have
f0−f+d = dim(G/Z0

G(σ))+d = dim(D). Hence A|D[−dim(D)−c] is a local system. Theorem
0.2 is proved.

1.8

The following result can be proved in the same way as Theorem 0.2 with no restriction on p.

Let A ∈ Ĝ. Assume that C0 is a unipotent class of G such that the following holds: if D is
a conjugacy class of G such that dimDu ≥ dimC0 and Du 6= C0 then A|D = 0. Then for any
conjugacy class D of G such that Du = C we have A|D = L[dim(D) + c] where L is a local
system on D and c ∈ N depends only on A, not on D.

1.9

The local system L which appears in Theorem 0.2 can be reducible. For example if G is of type
B2 (resp. G2) and p is not a bad prime for G then there exist character sheaves on G with
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unipotent support equal to the subregular unipotent class C in G whose restriction to C is (up
to shift) the direct sum of Q̄l and an irreducible local system of rank 1 (resp. 2).

2 Unipotent character sheaves

2.1

For w ∈ W let Yw = {(g,B) ∈ G × B; (B, gBg−1) ∈ Ow} and let πw : Yw → G be the
first projection. Let Ĝun be the subset of Ĝ consisting of unipotent character sheaves that is,
those character sheaves on G which appear as constituents of the perverse cohomology sheaf
pHi(πw!Q̄l) for some w ∈W, i ∈ Z. Note that Ĝun is a union of families of Ĝ. In fact, as in
[11], 4.6, we have a partition Ĝun = tF ĜunF where F runs over the families in IrrW and for

each family F of IrrW, ĜunF is a family of Ĝ.

If A ∈ Ĝun the proof of Theorem 0.2 for A simplifies somewhat. In this case Proposition
1.4 is only needed in the case where (L,C, E) satisfies the condition that E is equivariant for
the L × Z0

L-action (g, z) : g1 7→ zgg1g
−1 on Σ (hence E is the inverse image under Σ → Σ/Z0

L

of an irreducible local system on Σ/Z0
L). Hence if σ is as in 1.2 then with notation in the proof

of 1.4, for η ∈ Γ, the local system Eη on Ση is equivariant for the action of Z0
Lη

= Z0
L on Ση

(left multiplication) hence Eη = E1
η and K1

η = Kη. Thus the step 1.4(b) in the proof of 1.4 is
unnecessary in this case.

We shall try to make Theorem 0.2 more precise in the case of unipotent character sheaves.
In the remainder of this section we assume that p is not a bad prime for G.

2.2

For a finite group ∆, M(∆) is the set of all pairs (g, ρ) where g ∈ ∆ is defined up to conjugacy
and ρ ∈ IrrZ∆(g).

2.3

In the remainder of this section we fix a family F of IrrW. Let F = ĜunF be the corresponding

family in Ĝun. In this case C = CF is the special unipotent class of G such that the corre-
sponding Springer representation of W belongs to F . Let SC be the set of conjugacy classes
D in G such that Du = C. Let ω ∈ C. Let A(ω) = ZG(ω)/Z0

G(ω) and let ∆ = A(ω) be the

canonical quotient of A(ω) defined in [6], (13.1.1). Let ZG(ω)
j′−→ A(ω)

h−→ ∆ be the obvious
(surjective) homomorphisms; let j = hj′ : ZG(ω)→ ∆. Let [∆] be the set of conjugacy classes
in ∆. For D ∈ SC let φ(D) be the conjugacy class of j(gs) in ∆ where g ∈ D is such that
gu = ω; clearly such g exists and is unique up to ZG(ω)-conjugacy so that the conjugacy class
of j(gs) is independent of the choice of g. Thus we get a (surjective) map φ : SC → [∆].
For γ ∈ [∆] we set SC,γ = φ−1(γ). We now select for each γ ∈ [∆] an element xγ ∈ γ. Let
D ∈ SC,γ , E ∈ IrrZ∆(xγ). We can find g ∈ D such that gu = ω, j(gs) = xγ (and another
choice for such g must be of the form bgbı where b ∈ ZG(ω), j(b) ∈ Z∆(xγ)). Let ED be the
G-equivariant local system on D whose stalk at g1 ∈ D is {z ∈ G; zgz−1 = g1} × E modulo
the equivalence relation (z, e) ∼ (zh−1, j(h)e) for all h ∈ ZG(g). If g is changed to g1 = bgb−1
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(b as above) then ED is changed to the G-equivariant local system ED1 on D whose stalk at
g′ ∈ D is {z′ ∈ G; z′g1z

′−1 = g′} × E modulo the equivalence relation (z′, e′) ∼ (z′h′−1, j(h′)e)
for all h′ ∈ Z(g1). We have an isomorphism of local systems ED ∼−→ ED1 which for any g′ ∈ D
maps the stalk of ED at g′ to the stalk of ED1 at g′ by the rule (z, e) 7→ (zb−1, j(b)e). (We
have zb−1g1bz

−1 = zgz−1 = g′.) This is compatible with the equivalence relations. Thus the
isomorphism class of the local system ED does not depend on the choice of g.

Using the methods sketched in [15], S4 one can prove the following refinement of Theorem
0.2.

Theorem 2.4 (a) Let A ∈ ĜunF . There exists a unique γ ∈ [∆] and a unique E ∈ IrrZ∆(xγ)
such that

(i) if D ∈ SC,γ , we have A|D ∼= ED[dim(D) + c] (c as in 1.7).

(ii) if D ∈ SC,γ′ with γ′ ∈ [∆]− {γ}, we have K|D = 0.

(b) The assignment A 7→ (γ, E) in (a) defines a bijection ĜunF
∼−→M(∆).

3 Parametrization of unipotent representations and of unipotent character sheaves

3.1

Let (W,S) be a Weyl group. Let n = |S|. Let νW be the number of reflections of W . For
any subset J of S we denote by WJ the subgroup of W generated by J . Assuming that W is
irreducible or {1} we define a set S0

W as follows.

If W = {1} we have S0
W = {1}.

If W is of type An(n ≥ 1) we have S0
W = ∅.

If W is of type Bn or Cn (n ≥ 2) we have S0
W = {(−1)n/2} if n = k2 + k for some integer

k ≥ 1 and S0
W = ∅, otherwise.

If W is of type Dn n ≥ 4 we have S0
W = {(−1)n/4} if n = 4k2 for some integer k ≥ 1 and

S0
W = ∅, otherwise.

If W is of type E6 then S0
W = {ζ ∈ Q̄l; (ζ3 − 1)/(ζ − 1) = 0}.

If W is of type E7 then S0
W = {ζ ∈ Q̄l; (ζ4 − 1)/(ζ2 − 1) = 0}.

If W is of type E8 then S0
W = {ζ ∈ Q̄l; (ζ4 − 1)(z5 − 1)(z6 − 1)/(ζ2 − 1) = 0} with ζ = 1

appearing twice as ζ = 1′ and ζ = 1′′.

If W is of type F4 then S0
W = {ζ ∈ Q̄l; (ζ2 − 1)(z3 − 1)(z4 − 1)/(ζ2 − 1) = 0} with ζ = 1

appearing twice as ζ = 1′ and ζ = 1′′.

If W is of type G2 then S0
W = {ζ ∈ Q̄l; (ζ2 − 1)(ζ3 − 1)/(ζ − 1) = 0}.

The exponents 4, 5, 6 which appear in type E8 satisfy: 4 = n/2, 5× 6 = Coxeter number of W ,
4× 5× 6 = νW .

The exponents 2, 3, 4 which appear in type F4 satisfy: 2 = n/2, 3×4 = Coxeter number of W ,
2× 3× 4 = νW .

If W is not irreducible or {1}, we define S0
W = S0

W1
×· · ·×S0

Wr
where W = W1×· · ·×Wr

with W1, . . . ,Wr ireducible Weyl groups (r ≥ 2).

Assume now that W is irreducible or {1}. If J ⊂ S and S0
WJ
6= ∅ then WJ is irreducible or

{1} and for any J ′ ⊂ S such that J ⊂ J ′, conjugation by the longest element wJ
′

0 of WJ′ leaves
J stable; using [4], 5.9 it follows that the involutions σh := wJ∪h0 wJ0 = wJ0w

J∪h (h ∈ S − J)
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generate a subgroup of W which is itself a Weyl group denoted by WS/J . For h 6= h′ in S − J
the order of σhσh′ is equal to

2(νWJ∪h∪h′ − νWJ
)/(νWJ∪h + νWJ∪h′ − 2νWJ

).

WS/J is a complement to WJ in the normalizer of WJ in W .) Let SW be the set of all triples
(J, ε, ζ) where J ⊂ S, ε ∈ IrrWS/J , ζ ∈ S0

WJ
. We have an imbedding S0

W → SW , ζ 7→ (S, 1, ζ).

(Note that WS/S = {1}.)
If W is not irreducible or {1}, we define SW = SW1 ×· · ·×SWr where W = W1×· · ·×Wr

with W1, . . . ,Wr ireducible Weyl groups (r ≥ 2).

3.2

Now assume that k is an algebraic closure of the finite field Fp with p elements and that G
has a fixed Fq-split rational structure with Frobenius map F : G → G. We also assume that
F (B∗) = B∗, F (T ∗) = T ∗. We fix a square root

√
q of q in Q̄l. Now F induces a map

F : B → B. For any w ∈W let Xw = {B ∈ B; (B,F (B)) ∈ Ow} (see [2]). Now GF acts on Xw

by conjugation hence there is an induced action of GF on Hi
c(Xw, Q̄l) for i ∈ Z. Also Xw is

stable under F : B → B hence the linear map F ∗ : Hi
c(Xw, Q̄l)→ Hi

c(Xw, Q̄l) is well defined for
any i. For any µ ∈ Q̄∗l let Hi

c(Xw, Q̄l)µ be the generalized µ-eigenspace of this linear map; it is
a GF -submodule of Hi

c(Xw, Q̄l). Let Uq be the set of all ρ ∈ IrrGF such that ρ appears in the
GF -module Hi

c(Xw, Q̄l) for some w ∈W, i ∈ Z. (This is the set of unipotent representations
of GF .) For any ρ ∈ Uq and any w ∈ W we denote by (ρ : Rw) the multiplicity of ρ in the
virtual representation

∑
i(−1)iHi

c(Xw, Q̄l).
According to [5], 3.9 for any ρ ∈ Uq there is a well defined coset τ̃ρ of Q̄∗l modulo its

subgroup {qr; r ∈ Z} such that whenever ρ appears in the GF -module Hi
c(Xw, Q̄l)µ (with

i ∈ Z, w ∈W, µ ∈ Q̄∗l ) we have µ ∈ τ̃ρ; now τ̃ρ is contained in a unique coset (denoted by τρ)
of Q̄∗l modulo {√qr; r ∈ Z}.

Let U0
q be the set of all ρ ∈ Uq which are cuspidal. We have the following result. (In the

case where W is of type E8 (resp. F4) we denote by w∗ an element of W whose characteristic
polynomial in the reflection representation W is (X4 −X2 + 1)2 (resp. (X2 −X + 1)2).)

Theorem 3.3 Assume that G/ZG is simple or {1}. There exists a unique bijection S0
W
∼−→

U0
q with the following properties. If ρ ∈ U0

q corresponds to ζ ∈ S0
W then ζ ∈ τρ. If in addition

G/ZG is of type E8 or F4 and ρ′ (resp. ρ′′) in U0
q corresponds to 1′ (resp. 1′′) in S0

W then
(ρ′ : Rw∗) = 1 and (ρ′′ : Rw∗) = 0.

This follows from [6], 11.2 and its proof.

3.4

Now let J ⊂ S and let ρ0 be a unipotent cuspidal representation of LFJ . Then LJ/ZLJ is simple
or {1} hence by 3.3 applied to LJ , ρ0 corresponds to an element ζ ∈ S0

WJ
. Let I(J, ζ) be

the representation of GF induced by ρ0 viewed as a representation of PFJ . This is a direct
sum of irreducible representations in Uq; the set of all ρ ∈ Uq which appear in I(J, ζ) is
denoted by Uq,J,ζ . According to [5], 3.26, the set Uq,J,ζ is in natural bijection with the set
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of irreducible representations of a Hecke algebra (a deformation of the Weyl group WS/J in
3.1 with parameters being powers of q explicitly described in [5], p.35); hence it is in natural
bijection with the set IrrWS/J (here we use our choice of

√
q). We have the following result.

Corollary 3.5 Assume that G/ZG is simple or {1}. There exists a unique bijection SW
∼−→

Uq with the following property. If ρ ∈ Uq corresponds to (J, ε, ζ) ∈ SW then ρ ∈ Uq,J,ζ and ρ
corresponds as above to ε ∈ IrrWS/J .

3.6

We now drop the assumption on k made in 3.2. Let A be a simple perverse sheaf on G which
is equivariant for the conjugation G-action on G. We define an invariant λA ∈ Q̄∗l (a root of 1)
as follows. We can find an open dense subset N of the support of A which is invariant under
conjugation by G and an irreducible G-equivariant local system L on N such that A|N = L[δ],
δ = dimN . If g ∈ N then ZG(g) acts naturally and irreducibly on the stalk Lg. Since g is in the
centre of ZG(g), it acts on Lg as a nonzero scalar which is independent of the choice of g and is
denoted by λA. In particular λA is defined for any character sheaf A on G. (I have found this
definition of λA in the late 1980’s (unpublished); it was also found later in [3]. The definition
makes sense also when G is replaced by a finite group Γ and A is replaced by an irreducible
vector bundle on Γ equivariant for the conjugation Γ-action; in this case the definition appears
in [6], 11.1 and it inspired my later definition for character sheaves.)

Let Ĝ0,un be the set of all character sheaves in Ĝun (see 2.1) which are cuspidal. For
A ∈ Ĝun and w ∈W we set

(A : Kw) =
∑
i∈Z

(−1)dimG+i(multiplicity of A in pHi(πw!Q̄l))

where πw! is as in 2.1. We have the following result (with w∗ as in 3.2).

Theorem 3.7 Assume that G/ZG is simple or {1}. There exists a unique bijection S0
W
∼−→

Ĝ0,un with the following properties. If A ∈ Ĝ0,un corresponds to ζ ∈ S0
W then ζ = λA. If in

addition G/ZG is of type E8 or F4 and A′ (resp. A′′) in Ĝ0,un corresponds to 1′ (resp. 1′′) in
S0

W then (A′ : Kw∗) = 1 and (A′′ : Kw∗) = 0.

This follows from the known classification of unipotent cuspidal character sheaves and the
known formulas for the numbers (A : Kw) (when p = 2, the cleanness results of [14] must be
used).

3.8

Now let J ⊂ S and let A0 be a unipotent cuspidal character sheaf on LJ . Then LJ/ZLJ is simple
or {1} hence by 3.7 applied to LJ , A0 corresponds to an element ζ ∈ S0

WJ
. The semisimple

perverse sheaf indGPJA0 on G (see [8], 4.1, 4.3) is a direct sum of unipotent character sheaves

on G; the set of all A ∈ Ĝun which appear in indGPJA0 is denoted by ĜunJ,ζ and is in canonical

bijection with the set of isomorphism classes of simple modules of End(indGPJA0) hence with
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IrrWS/J (one can show that the algebra End(indGPJA0) is canonically isomorphic to the group

algebra of WS/J).

Corollary 3.9 Assume that G/ZG is simple or {1}. There exists a unique bijection SW
∼−→

Ĝun with the following property. If A ∈ Ĝun corresponds to (J, ε, ζ) ∈ SW then A ∈ ĜunJ,ζ and

A corresponds as above to ε ∈ IrrWS/J .

3.10

We now return to the setup in 3.2. We assume that G/ZG is simple or {1}. Combining the
bijections in 3.5, 3.9 we obtain a canonical bijection Ĝun ↔ Uq. Here are some properties of

this bijection. If A ∈ Ĝun corresponds to ρ ∈ Uq then λA ∈ τρ; moreover (A : Kw) = (ρ : Rw)
for any w ∈W .

3.11

Now assume that k is as in 3.2 and that G has a fixed Fp-split rational structure with Frobenius
map F0 : G → G. We also assume that F0(B∗) = B∗, F0(T ∗) = T ∗. We fix a square root√
p of p in Q̄l. For any integer t > 0, F t0 : G → G is the Frobenius map for an Fpt-rational

structure on G so that the definitions in 3.2 are applicable with q = pt and F t0 instead of F .
(We set

√
q = (

√
p)t.) For w ∈ W we write Xw,t instead of Xw of 3.2 (thus Xw,t = {B ∈

B; (B,F t0(B)) ∈ Ow}). We want to show that in a certain sense the set Ĝun is the limit of the
sets Upt as t tends to 0.

For w ∈ W let Yw,t = {(g,B) ∈ G × B; (B, gF t0(B)g−1) ∈ Ow} and let πw,t : Yw,t → G
be the first projection. Now G acts on Yw,t by x : (g,B) 7→ (xgF t0(x−1), xBx−1) and on G

(transitively) by x : g 7→ xgF t0(x−1); then πw,t is compatible with the G-actions. Let Ĝunt be
the set of isomorphism classes of irreducible perverse sheaves on G which appear as constituents
of the perverse cohomology sheaf pHi((πw,t)!Q̄l) for some w ∈ W, i ∈ Z. If A ∈ Ĝunt then A
is G-equivariant for a transitive G-action on G hence it is of the form L[dimG] where L is an
irreducible G-equivariant local system on G. Since the isotropy group at 1 of the G-action on
G is GF

t
0 we see that L is completely determined by the (irreducible) representation of GF

t
0 on

the stalk at 1 of L. This irreducible representation is clearly unipotent and we thus obtain a
bijection Ĝunt ↔ Upt . (Note that pHi((πw,t)!Q̄l) is up to shift the G-equivariant local system on

G such that the isotropy group GF
t
0 acts on the stalk at 1 as on the GF

t
0 -module Hi′

c (Xw,t, Q̄l)
for some i′.) On the other hand if we now take t = 0 then F t0 becomes the identity map and
Yw,t, πw,t become Yw, πw in 2.1. The definition of Ĝunt specializes to the definition of Ĝun. In

this sense the set Ĝun can be viewed as limit of the sets Upt as t tends to 0.
For w ∈ W we define a map Φt : Yw,t → Yw,t by Φt(g,B) = (g, gF t0(B)g−1). This induces

for any i an isomorphism of perverse sheaves pHi((πw,t)!Q̄l)→ pHi((πw,t)!Q̄l). For any µ ∈ Q̄∗l
we denote by pHi((πw,t)!Q̄l)µ the generalized µ-eigenspace of the last isomorphism. From the

definitions we see that if τ ∈ Upt corresponds as above to A ∈ Ĝunt then we have µ ∈ τρ
whenever A is a constituent of pHi((πw,t)!Q̄l)µ for some w, i.

When t is replaced by 0, the cosets of Q̄∗l modulo its subgroup {√ptr; r ∈ Z} become just
the elements of Q̄∗l and for w ∈ W the map Φt : Yw,t → Yw,t becomes the map Φ0 : Yw → Yw
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given by (g,B) = (g, gBg−1). This induces for any i an isomorphism of perverse sheaves
pHi(πw!Q̄l) → pHi(πw!Q̄l) denoted again by Φt. For any µ ∈ Q̄∗l we denote by pHi(πw!Q̄l)µ
the generalized µ-eigenspace of the last isomorphism. One can check from the definitions that
if A ∈ Ĝun is a constituent of pHi(πw!Q̄l)µ then µ = λA. On the other hand λA can be viewed
as the limit as t tends to 0 of the coset τρ where ρ ∈ Upt corresponds to A.

3.12

Now assume that G is the identity component of a possibly disconnected reductive group over
k and that G1 is a connected component of that reductive group. Then the notion of character
sheaf on G1 is well defined (see [11].) Let A be a character sheaf on G1. Then to A we can
associate a root of 1 λA ∈ Q̄∗l as in 3.6. More precisely let d be an integer ≥ 1 such that
gd ∈ G for any g ∈ G1. Note that A is a simple perverse sheaf on G1, G-equivariant for the
conjugation action of G on G1. Let N be an open dense subset of the support of A which is
invariant by G-conjugation and is such that A|N is up to shift a local system L. If g ∈ N then
the centralizer of g in G acts naturally and irreducibly on the stalk Lg. Since gd is in the centre
of this centralizer it acts on Lg as a nonzero scalar which is independent of the choice of N and
is denoted by λA.

Using the invariant λA we can find a combinatorial parametrization of the set of unipotent
character sheaves on G1 parallel to that in 3.9.

Similarly, the set of unipotent representations of a not necessarily Fq-split connected group
over Fq can be parametrized in the same spirit using the invariant defined in [5], 3.9.
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