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Abstract

In this note we discuss the behavior of minimized inertia/decomposition groups of
valuations, and prove similar results to the ones for tame inertia. The results are technical
tools for a host of questions in Bogomolov’s birational anabelian program.
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1 Motivation / Introduction

We begin by recalling that Bogomolov’s birational anabelian program originates form [Bo], and
aims to reconstruct function fields K|k over algebraically closed base fields k from the pro-`

abelian-by-central Galois group Π
c

K of K, provided ` 6= char(K) and td(K |k) > 1. When com-
pleted, this would go far beyond Grothendieck’s birational anabelian program, see [G1], [G2],
which was asking to recover the isomorphy type of finitely generated infinite fields K from their
full absolute Galois group GK . Bogomolov’s program is far from complete, although there has
been progress towards tackling it, see e.g., Bogomolov–Tschinkel [B-T1], [B-T2] and Pop [P4],
in the case k is an algebraic closure of a finite field. Finally, there is progress on Bogomolov’s
program over more general base fields k, namely those of finite Kronecker dimension, e.g., al-
gebraic closures of global fields, see Pop [P5], and Silberstein [Sb]. The content of this note is
essential to that progress.
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In order to explain the difficulties of going beyond the case where k is an algebraic closure of
a finite field, and to put the results of this note in the right perspective, let me first recall briefly
the strategy to tackle Bogomolov’s program, as presented in Pop [P3]. The strategy is similar
to the one employed in Grothendieck’s birational anabelian geometry: One first develops a local
theory similar to that in Neukirch [Ne], and then globalizes the local information to reconstruct
K from its Galois theory.

We will focus here on the local theory, and explain what difficulties one encounters. The local
theory is concerned mainly with recovering the space of arithmetically significant valuations v
of K, more precisely, their Galois theoretical invariants, i.e., the inertia/decomposition groups
Tv ⊂ Zv above v, and the partial order v ≤ w. To proceed, let us introduce the precise
terminology, which is as follows. First, given a function field K|k (where the base field k will
be usually algebraically closed) with char(k) 6= `, a prime divisor of K|k is any valuation v of K
which is trivial on k and has value group vK = Z and residue field Kv|k a function field with
td(Kv |k) = td(K |k)−1. Basics of valuation theory and algebraic geometry apply to show that
for a valuation v of K the following are equivalent:

a) v is a prime divisor of K|k.

b) v is trivial on k and td(Kv |k) = td(K |k)− 1.

c) The center of v on some normal model of K|k is a prime Weil divisor.

For reader’s sake, recall that a (normal/regular) model of K|k is any (normal/regular) integral
k-variety X with K = k(X) the function field of X. Further, the center of v on X is the unique
point x ∈ X –if such a point x exists– whose local ring OX,x is dominated by the valuation
ring Ov, notation OX,x ≺ Ov. By the valuation criterion, the point x ∈ X with OX,x ≺ Ov is
unique, if it exists; and it exists, if X is proper, e.g., projective.

An obvious generalization of the prime divisors are the (generalized) prime r-divisors of K|k,
which are defined inductively as follows: The prime 1-divisors of K|k are precisely the prime
divisors v of K|k, and inductively, a valuation v of K is called a prime r-divisor for some
r > 1, if there exists a prime (r − 1) divisor w of K|k such that v > w and the valuation
theoretical quotient vr := v/w on the residue field Kw|k is a prime divisor. Notice that one
gets inductively that v is trivial on k, and Kv|k is a function field. Further, Kv|k is finite if
and only if r = td(K |k), thus Kv = k because k is algebraically closed. We notice that a prime
r-divisor has vK = Zr ordered lexicographically. By abuse of language, we will say that the
trivial valuation v0 of K|k is the generalized prime divisors of rank zero of K|k, and will speak
about generalized prime divisors, if the rank r is not relevant for the context.

To complete the picture, the set of all the generalized prime divisors of K|k gives rise to
the total divisor graph Dtot

K of K|k, whose vertices are indexed by the residue fields Kv, and an
edge from Kw to Kv exists if and only if w ≤ v and v/w has rank ≤ 1, and further v/w is the
only edge from Kw to Kv, oriented if w < v, non-oriented if w = v.

Via the Galois correspondence and the Hilbert decomposition theory, one attaches to the
total divisor graph Dtot

K of K|k its Galois theoretical counterpart, which is the total decompo-
sition graph Gtot

K for K|k or for ΠK , which is a graph in bijection with Dtot
K , but whose vertices
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and edges are “decorated” with subquotients of Π
c

K as follows: Each vertex Kv is endowed
with the corresponding ΠKv = Zv/Tv, and each edge v/w is endowed with the corresponding
inertia/decomposition subgroups Tv/w ⊂ Zv/w of v/w in ΠKw. To fix notations, if v is a prime
r-divisor of K|k, by abuse of language, we will say that Tv ⊂ Zv is an r-divisorial group in ΠK ,
respectively, that Tv ⊂ Zv is a divisorial group, if v is a prime divisor of K|k.

One of the main points of the local theory is that the total decomposition graph Gtot
K

can be recovered (using group theoretical recipes about pro-` abelian-by-central groups) from

Π
c

K → ΠK endowed with all the divisorial groups Tv ⊂ Zv of ΠK . The recipes to do so use in a
central way the main results from Pop [P2] and [P3], as follows: First recall that by Theorems A,
from [P2], the set Ink(K) of all the inertia elements at valuations v of K which are trivial on k is
closed in ΠK , and second, since char(k) 6= `, all such inertia elements are actually tame inertia
elements. Hence by Theorem B of [P2], it follows that Ink(K) is nothing but the topological
closure in ΠK of the set of divisorial inertia elements In.div(K) := ∪vTv, i.e., inertia elements
at prime divisors v of K|k. Hence, one concludes that for every generalized prime divisor v of
K|k one has: Tv ⊂ Ink(K), and by [P3], [P4] it follows that the r-divisorial groups Tv ⊂ Zv

are precisely the maximal pairs of subgroups T ⊂ Z of ΠK satisfying the following: First, Z

contains a subgroup ∆ ∼= Ztd(K |k)
` whose preimage under Π

c

K → ΠK is abelian. Second, T ∼= Zr`
and the preimage of T under Π

c

K → ΠK is the center of the preimage of Z under Π
c

K → ΠK .

Unfortunately, at the moment, there is neither a strategy to recover the divisorial subgroups
Tv ⊂ Zv, nor one to recover Ink(K), using the group theoretical information encoded in the

pro-` group Π
c

K . The best we can do thus far is to recover pieces of information about the
(generalized) quasi prime divisors of K|k, defined as follows. First, the quasi prime divisors of K|k
are the valuations v of K, not necessarily trivial on k, but satisfying the following:

i) vK/vk ∼= Z as groups, and Kv|kv is a function field with td(Kv |kv) = td(K |k)− 1.

ii) v is minimal among the valuations of K satisfying condition i) above.

Recall that the condition ii) asserts that if w is any valuation of K satisfying i) and having
Ov ⊂ Ow, then w = v; or equivalently, vK does not contain any convex divisible subgroup. We
notice that the conditions at i) can be weakened, because the following are equivalent:

a) v is a quasi prime divisor of K|k.

b) v is minimal with the properties: td(Kv |kv) = td(K |k)− 1, vK 6= vk.

One should remark that if v is a quasi prime divisor of K|k, then v has no transcendence
defect, i.e., it satisfies the Abhyankar equality. As in the case of the prime divisors, one defines
the quasi prime r-divisors of K|k inductively as follows: First, the quasi prime 1-divisors of K|k
are by definition the quasi prime divisors of K|k. Second, for r > 1, one defines the quasi prime
r-divisors inductively, as being the valuations v of K|k such that there exists a quasi prime
(r − 1)-divisor w of K|k such that v > w and the valuation theoretical quotient vr := v/w is a
quasi prime divisor of the residue field Kw|kw. Notice that, inductively, one has the following:
If v is quasi prime r-divisor of K|k, then vK/vk ∼= Zr, and Kv |kv is a function field with
td(Kv|kv) = td(K |k) − r. In particular, for all quasi prime r-divisors one has r ≤ td(K |k),
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and r = td(K |k) if and only if Kv = kv. Finally, it makes sense to say that the trivial valuation
is the (unique) quasi prime 0-divisor. Then the set of all the generalized quasi prime divisors
is a tree-like partially ordered set, and as in the case of generalized prime divisors, it gives rise
to the total quasi divisorial graph Qtot

K .

Unfortunately, the situation with the Galois theoretical counterpart of the total quasi di-
visorial graph is much more involved than in the case of generalized prime divisors. To make
a long story short, if one restricts to the subgraph of generalized quasi prime divisors v with
char(Kv) 6= `, then one can develop a perfectly satisfactory theory, completely parallel to the
case of generalized prime divisors, by replacing Ink(K) by the set of all the tame inertia ele-
ments In.tm(K) in ΠK , see Pop [P2], [P4]. On the other hand, at the moment, we do not have
a method to single out the quasi prime divisors v having char(Kv) 6= ` using the information en-

coded in Π
c

K . The best one can do thus far is as follows: First, for an arbitrary valuation v of K,
let U1

v := 1+mv ⊂ O×v =: Uv be the groups of principal v-units, respectively the group of v-units

in K×, and set KZ1

:= K[ `
∞√
U1
v ], KT 1

:= K[ `
∞√
Uv ]. We further denote Z1

v := Gal
(
K ′ |KZ1)

and T 1
v := Gal

(
K ′ |KT 1)

, and call T 1
v ⊂ Z1

v the minimized inertia/decomposition groups of v in

ΠK , and further call Π1
Kv := Z1

v/T
1
v = Gal

(
KT 1 |KZ1)

the minimized residue group at v. Thus
one has canonical exact sequences

1→ T 1
v → Z1

v → Π1
Kv → 1, 1→ Uv/U

1
v = Kv× → K×/U1

v → K×/Uv → 1

which are `-adically dual to each other via Kummer theory. We notice that by general decompo-
sition theory for valuations, it follows that T 1

v = Tv and Z1
v = Zv are the inertia/decomposition

groups above v, and Π1
Kv = ΠKv, provided char(Kv) 6= `. Further, if char(Kv) = `, then

T 1
v ⊆ Z1

v ⊆ Vv, where Vv = Tv is the wild ramification group of v, and Π1
Kv has no interpreta-

tion as a Galois group over Kv. Hence Tv consists of tame inertia if and only if char(Kv) 6= `,
and Tv = Vv consists of wild ramification elements if and only if char(Kv) = `. Finally, we
notice that one can write Val(K) = Val0(K) ∩Val`(K), where

Val0(K):= {v |v(`)=0}= {v | char(Kv) 6= `}, Val`(K):= {v |v(`) > 0}= {v | char(Kv) = `}

are disjoint and closed subsets (in the patch topology) of Val(K). Thus letting Q0(K|k) and
Q`(K|k) be the corresponding subset of quasi prime divisors of K|k, by Theorem A and The-
orem B from Pop [P2] applied to the special case of ΠK , one gets:

a) The set of all the tame inertia elements In.tm(K) = ∪v∈Val0(K)Tv ⊂ ΠK and the set of
all the ramification elements Ram(K) = ∪v∈Val`(K)Tv ⊂ ΠK are topologically closed, and
have trivial intersection.

b) The set of all the quasi divisorial tame inertia In.tm.q.div(K) = ∪v∈Q0(K)Tv ⊂ ΠK is
dense in In.tm(K).

Our aim is to obtain similar results for the minimized inertia In1(K) = ∪v∈Val(K)T
1
v . First we

notice that Val`(K) is non-empty if and only if char(K) = 0. Thus if char(K) 6= 0, it follows
that Val`(K) is empty, and T 1

v = Tv and Z1
v = Zv for all v ∈ Val(K), thus there is nothing new

to prove. But if char(K) = 0, then In1(K) = In.tm(K) ∪ InT
1

(K), where

In.tm(K) = ∪v∈Val0(K)Tv, InT
1

(K) = ∪v∈Val`(K)T
1
v



On the minimized decomposition theory of valuations 335

have trivial intersection. The facts a), b) above give a good description of the tame part

In.tm(K), but do not touch upon InT
1

(K) = ∪v∈Val`(K)T
1
v ⊂ ∪v∈Val`(K)Z

1
v = InZ

1

(K) origi-
nating form the set of valuations Val`(K) with residue characteristic equal to `.

The first result we announce is the following:

Theorem 1.1. In the above notations, the following hold:

1) The subsets InT
1

(K) ⊂ InZ
1

(K) ⊂ ΠK are closed in ΠK .

2) Actually more is true: Let ∆ ⊆ ΠK be a closed subgroup such that for every open subgroup
Πi ⊂ ΠK there exists vi ∈ Val(K) such that ∆ ⊆ ΠiT

1
vi (resp. ∆ ⊆ ΠiZ

1
vi ). Then there

exists v ∈ Val(K) such that ∆ ⊆ T 1
v (resp. ∆ ⊆ Z1

v ).

We remark that the result above has a kind of general non-sense type proof, being proved
along the lines from Pop [P2], Theorem A, namely: Let Val(K) be the space of all the valuations
of K endowed with the patch topology τpa, and Sbg

(
ΠK

)
the space of all the closed subgroups

of ΠK endowed with the étale topology τ et, see Section 2) for the definitions. Then one proves
that the maps sending each v ∈ Val(K) to T 1

v , respectively Z1
v , are continuous. One concludes

by showing that Theorem 1.1 is a reinterpretation of this fact.

The next result is more technical, and does not follow by general non-sense type arguments.
It reduces the detection of minimized inertia of a special class of generalized quasi prime divisors
to identifying the minimized inertia of quasi prime divisors in a very special class of such, the so
called c.r. quasi prime divisors. But first let us explain the terms. Let K|k be a function field with
k algebraically closed of characteristic 6= `. Recall that constant reductions (à la Deuring) of K|k
are valuations v of K which are not necessarily trivial on k and satisfy td(K |k) = td(Kv|kv). In
particular, constant reductions satisfy the Abhyankar equality, thus are defectless in the sense
of Kuhlmann [Ku] and/or [K-K]. Then given any prime divisor v0 of Kv|kv, it follows that the
valuation theoretical composition v := v0 ◦ v is a quasi prime divisor of K|k, which we will call
a c.r. quasi prime divisor of K|k.

For a given valuation vk of k, let Qvk(K|k) be the set of all the c.r. quasi prime divisors v of
K|k with v|k = vk, and let T 1

vk
(K) ⊂ ΠK be the (topological) closure of the set ∪v∈Qvk (K|k)T

1
v .

Notice that T 1
vk
⊂ InT

1

(K), because the latter set is itself topologically closed in ΠK by Theo-
rem 1.1 above, and therefore, T 1

vk
(K) consists of minimized inertia elements.

Next let w be a fixed valuation of K|k. We say that w is c.r. like, if there exists a k-subfield
k1 ⊂ K, depending on w, such that k1w is algebraically closed and Kw|k1w is a function field,
i.e., a finitely generated field extension, which satisfies td(K |k1) = td(Kw|k1w). Further, a
c.r. quasi prime w-divisor of K|k is any valuation w of K of the form w := w0 ◦w, where w0 is a
c.r. quasi prime divisor of the function field Kw|k1w. The next result we want to announce is:

Theorem 1.2. For every c.r. quasi prime w-divisor w of K|k, one has T 1
w ⊂ T 1

w · Tvk(K).

We should notice that it is generally believed that T 1
v ⊂ Tvk(K) for every valuation v of K

with vk = v|k, but as of now, there is no strategy to tackle this question. Nevertheless, if one
restricts to the tame inertia In.tm(K), i.e., if one has that char(kv) 6= `, then the inclusion
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Tv ⊂ Tvk(K) is already known, and it follows (after some work) from Theorem B, Introduction,
of Pop [P2].

Finally, Theorem 4.2 in Section 4 of this note, uses Theorems 1.1 and 1.2, to obtain an
essential tool for determining the nature of k and kv, e.g., to characterize the generalized quasi
prime divisors v of K|k with Kv 6= kv and kv an algebraic closure of a finite field.

2 Proof of Theorem 1.1

For reader’s sake, let us recall the basics concerning the Zariski topology and the patch topology
on the set of (equivalence classes of) valuations. For an arbitrary field Ω, let Val(Ω) be all the
valuations rings, thus equivalence classes of valuations, or of places, of Ω. One defines the
Zariski topology τZar on Val(Ω) as being the topology which has as a basis the sets of the form:

UA := {v ∈ Val(Ω) | v(a) ≤ 0, a ∈ A}, ∀ finite A ⊂ Ω.

Since the trivial valuation lies in UA for all finite sets A ⊂ Ω∗, it follows that τZar is not
Hausdorff. Nevertheless, τZar is quasi-compact. The constructible, thus Hausdorff, topology
generated by τZar is called the patch topology on Val(Ω), denote τpa. A basis of this topology
consists of all the sets of the form:

UA,B := {v ∈ Val(Ω) | v(a) ≤ 0, v(b) = 0, a ∈ A, b ∈ B}, ∀ finite A,B ⊂ Ω.

By general non-sense about constructible topology, it follows that τpa is Hausdorff and compact,
and the basic open subsets UA,B are actually open and closed. Thus Val(Ω) endowed with the
patch topology is a profinite topological space.

The Zariski topology and the patch topology behave nicely under field extensions as follows:
Let Ω̃|Ω be a field extension. Then the canonical restriction map

res : Val(Ω̃)→ Val(Ω), ṽ 7→ v := ṽ|Ω

is surjective (by the Chavalley’s theorem on the prolongation of places), and continuous in both
the Zariski topology and the patch topology. Moreover, if (Ωi)i is an inductive family of fields,
and Ω = ∪iΩi is the inductive limit, then

(
Val(Ωi)

)
i

endowed with the (surjective) restriction
morphism resji : Val(Ωj) → Val(Ωi) is a projective system, and Val(Ω) is in a canonical way
the projective limit of this projective system.

Second, let G be a profinite group. The set of all the closed subgroups Sbg
(
G
)

of G carries
the étale topology τ et, similar to τZar on Val(Ω), having a basis of open subsets given by:

U et
M := {Γ ∈ Sbg

(
G
)
| Γ ⊆M}, ∀ open subgroups M ⊆ G.

Clearly, τ et is quasi-compact and non-Hausdorff. The constructible topology on Sbg
(
G
)

gen-
erated by τ et is called the strict topology τ st. As above, τ st is Hausdorff and compact, and has
a basis of open (and closed) subsets given by

U st
M,N := {Γ ∈ Sbg

(
G
)
| ΓN = M}, ∀ open subgroups M,N ⊆ G, N normal.
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We next consider a special case of the situation above; see Pop [P2], Section 2, for a more
general setting. Namely, for K an arbitrary field with char(K) 6= ` and µ`∞ ⊂ K, let K ′|K
be the maximal pro-` abelian extension, and ΠK be its Galois group. Let (Ki|K)i be an
inductive family of finite subextensions of K ′|K with ∪iKi = K ′, and for Ki ⊆ Kj , setting
Πi := Gal

(
K ′ |Ki

)
and Πi = Gal

(
Ki |K

)
, let pri : ΠK → Πi, prji : Πj → Πi be the canonical

projections (which are surjective). Thus recalling the minimized inertia/decompostion groups
T 1
v ⊆ Z1

v of a valuation v ∈ Val(K) in ΠK , one gets canonical maps:

ψT
1

, ψZ
1

: Val(K)→ Sbg
(
ΠK

)
, ψT

1

i , ψ
Z1

i : Val(Ki)→ Sbg
(
Πi

)
, ψT

1

i , ψ
Z

1

i : Val(K)→ Sbg
(
Πi

)
defined by ψT

1

(v) := T 1
v , ψZ

1

(v) := Z1
v , ψT

1

i (v) := T 1
v ∩ Πi, ψ

Z1

i (v) := Z1
v ∩ Πi, and finally

ψT
1

i (v) = pri(T
1
v ) =: T

1
v, ψ

Z
1

i (v) = pri(Z
1
v ) =: Z

1
v. Letting • be either T 1 or Z1, by general

decomposition theory, (although we cannot give a precise reference for this) one has that

ψ• = lim
←−
Ki

ψ•i , ψ•i = ker(ψ• → ψ•i ) for every Ki.

After this preparation we can announce the following:

Theorem 2.1. In the above notations, the following hold:

1) The maps ψT
1

, ψZ
1

: Val(K)→ Sbg
(
ΠK

)
are continuous, provided we endow Val(K) with

the patch topology τpa and Sbg
(
ΠK

)
with the étale topology τ et.

2) For Σ ⊆ Val(K) a τpa-closed subset, the sets In.tmΣ(K), InT
1

Σ (K), InZ
1

Σ (K) of all the
corresponding elements at all the v ∈ Σ are closed in ΠK .

3) Finally, in the situation above, let ∆ ⊆ ΠK be a closed subgroup such that for every Ki|K,
there exists vi ∈ Σ such that one of the conditions below holds:

i) pri(∆) ⊆ pri(T
1
vi).

ii) pri(∆) ⊆ pri(Z
1
vi) and char(Kvi) = `.

Then there exists v ∈ Σ such that i) ∆ ⊆ T 1
v , or ii) ∆ ⊆ Z1

v and char(Kv) = `.

Proof: To 1): By the discussion before the Theorem, it is sufficient to prove that the maps
ψ•i : Val(K) → Sbg

(
Πi

)
are continuous, provided we endow Val(K) with the patch topology

and Sbg
(
Πi

)
with the étale topology. Notice that since Πi is finite, Sbg

(
Πi

)
consists of all

the subgroups of Πi, and one checks easily that the sets B∆ := {Γ ∈ Sbg
(
Πi

)
|∆ ⊆ Γ} with

∆ ∈ Sbg
(
Πi

)
, represent a basis for the τ et-closed subsets in Sbg

(
Πi

)
. [Indeed: First, the

complement of B∆ is the union of all the basic open subsets UG1 with ∆ 6⊆ G1, hence an τ et

open set. Second, the basic closed set which is the complement of UG1 is exactly the union of
all the subsets B∆ with ∆ all the subgroups ∆ 6⊆ G1.] We prove that ψ•i are continuous by
showing that the preimages of τ et-closed subsets of the form B∆ are τpa-closed.

By Kummer theory, it follows that every Ki is of the form Ki = K[ni
√
Ai ], where ni = `ei

is some power of `, and Ai ⊂ K×/ni finite subgroup, and Πi = Hom
(
Ai,Z/ni(1)

)
.
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In particular, recalling the definition of minimized inertia/decomposition groups T 1
v ⊆ Z1

v

of a valuation v ∈ Val(K) in ΠK , one gets:

a) T 1
v := ψT

1

i (v) = Gal
(
Ki |KT 1

i

)
, where KT 1

i = K[ni
√
Uv,i ] and Uv,i := Ai/ni ∩ Uv/ni.

b) Z
1

v := ψZ
1

i (v) = Gal
(
Ki |KZ1

i

)
, where KZ1

i = K[ni
√
U1
v,i ] and U1

v,i := Ai/ni ∩ U1
v /ni.

Recalling the exact sequences 1 → Uv → K×→ vK → 0 and 1 → U1
v → Uv → Kv× → 1,

one gets 1 → Uv/ni → K×/ni → vK/ni → 0 and 1 → Kv×/ni → (K×/U1
n)/ni → vK/ni → 0.

Hence Ai/Uv,i → vK/ni is injective, and Ai/U
1
v,i ⊂ (K×/U1

n)/ni fits in the last exact sequence.

We first show that ψT
1

i is continuous: Let v ∈ Val(K) be fixed. Since Ui,v/ni ⊆ Ai/ni are
finite abelian ni-torsion groups, one can write Ai/ni as a direct sum of cyclic subgroups, say
generated by (tα)α of orders (dα)α, and there exist (eα)α with eα|dα such that Ui,v is the direct
sum of the subgroups generated by (teαα )α . Then the fact that K×/ni → vK/ni maps Ai/Ui,v
injectively into vK/ni is equivalent to saying that for every (multiplicative) linear combination
t :=

∏
α t

mα
α with 0 ≤ mα < dα, one has: v(t) = v(θni) for some θ ∈ K× if and only if eα|mα

for all α. Next, let Σi,v ⊂ Ai be the (finite) set of all the multiplicative linear combinations
t :=

∏
α t

mα
α as above, and for every valuation w ∈ Val(K) and θ ∈ K×, consider the condition:

(∗)θ w(t) 6= w(θni) for all t ∈ Σi,v.

Since Σi,v is finite, the set Vθ,v of valuations w satisfying (∗)θ is obviously open and closed
in the patch topology; hence Vv := ∩θ∈K×Vθ,v is closed in the patch topology. Moreover, if
w ∈ Vv, then the map K×/ni → wK/ni is injective on Σi,v, and an easy argument shows that
Ui,w := Ai/ni ∩ Uw/ni = ker(Ai/ni → wK/ni) must be contained in Ui,v. We thus conclude
that there exists a τpa closed subset Vv ⊂ Val(K) such that for all w ∈ Vv one has: Ui,w ⊆ Ui,v.
Thus by the point a) of the discussion above, and in the notations from there, one has that
T 1
v ⊆ T 1

w for all w ∈ Vv. The converse implication is obvious, namely, if T 1
v ⊆ T 1

w , then by
Kummer theory and point a) above, it follows that Ui,w ⊆ Ui,v.

Let ∆i ⊆ Πi be a fixed subgroup, and V∆i
:= {w ∈ Val(K) | ∆i ⊆ T 1

w } be the preimage of
the τ et-closed set B∆i

⊆ Sbg
(
Πi

)
. We claim that V∆i

is τpa-closed in Val(K). Indeed, since

Πi is finite, thus Sbg
(
Πi

)
is finite, the set G∆i := {T 1

w | ∆ ⊆ T 1
w } is finite as well (maybe

empty). Let V0 be a finite set of valuations v ∈ Val(K) such that G∆i
= {T 1

v | v ∈ V0}. Then
∪v∈V0

Vv = V∆i
, and further ∪v∈V0

Vv is τpa-closed, because each Vv is so by the discussion

above. We conclude that ψT
1

is continuous.

The continuity of ψZ
1

is proved in a similar way, but starting with Ai/U
1
v,i ⊂ (K×/U1

n)/ni
which fits in the exact sequence 1→ Kv×/ni → (K×/U1

n)/ni → vK/ni → 0, etc.

To 2): Since Σ ⊂ Val(K) is τpa closed, so are the sets Σ0 = {v ∈ Σ | char(Kv) 6= `} and
Σ` = {v ∈ Σ | char(Kv) = `}, and Σ = Σ0 ∪ Σ`. Further, since ψ• are continuous, it follows

that ψT
1

(Σ0), ψT
1

(Σ`), ψ
Z1

(Σ`) are τ et quasi compact subsets of Sbg
(
ΠK

)
. But then it follows

by general non-sense that In.tmΣ(K) := ∪v∈Σ0
Tv, In

T 1

Σ (K) := ∪v∈Σ`T
1
v , InZ

1

Σ (K) := ∪v∈Σ`Z
1
v

are closed subsets of ΠK .
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To 3): We prove i), because the proof of ii) is mutatis mutandis identical. Thus suppose

that for every Ki|K there exists vi ∈ Σ such that ∆i := pri(∆) ⊆ ψT
1

i (vi) = pri(T
1
vi). Then in

the notations from the proof of assertion 1), and taking into account the continuity of

ψT
1

: Σ→ Sbg
(
Πi

)
,

it follows that V∆i := {v ∈ Σ | ∆i ⊆ ψT
1

(v)} is closed in Σ, and is non-empty because vi ∈ V∆i .
Thus (V∆i)i is a family of compact subsets of Σ, and we notice that (V∆i)i has the finite
intersection property, because V∆j

⊆ V∆i
for Ki ⊆ Kj ; hence ∩iV∆i

is non-empty. For every

v ∈ ∩iV∆i the following hold: Since ψT
1

is the limit of the surjective projective system of maps

(ψT
1

i )i, we have that T 1
v = ψT

1

(v) → ψT
1

i (v) = pri(T
1
v ) is surjective, and T 1

v = ψT
1

(v) is the

projective limit of the surjective projective system
(
ψT

1

i (v) = pri(T
1
v )
)
i
. Further, since v ∈ V∆i

,
one has by the definition of V∆i

that

pri(∆) =: ∆i ⊆ ψT
1

i (v) := pri(T
1
v ).

Since this holds for all pri : ΠK → Πi, we finally have ∆ ⊆ T 1
v , as claimed.

3 Proof of Theorem 1.2

The proof of Theorem 1.2, although not too difficult, is quite involved, and we will end up
by proving a more precise result, which is Theorem 3.2 below. Concerning the strategy of
proof, one starts as in the proof of Theorem 1.1, namely: For every `-power n = `e and
every finite subgroup A of K×/n, we set KA := K[n

√
A ] and consider the canonical projection

ΠK → Π := Gal
(
KA |K

)
, σ 7→ σ. Further, for every valuation v of K, we let T 1

v → T 1
v be the

projection of T 1
v under ΠK → Π. Then the following assertions for σ ∈ ΠK are equivalent:

i) σ ∈ ΠK lies in Tvk(K).

ii) ∀ n = `e, A ⊂ K×/n finite subgroups, ∃ v ∈ Qvk(K|k) such that σ ∈ T 1
v .

A) An abstract result

We next formulate and prove an abstract result, which will eventually imply Theorem 1.2.
The situation is as follows: For K|k as usual, consider the algebraically closed subfields λ ⊂ K
with td(λ|k) = td(K |k) − 1, and for every such λ, set Λ := Kλ inside K. Hence one has
td(Λ|λ) = 1, thus Λ|λ is a function field in one variable, and there exists t ∈ K such that Λ
is finite separable over λ(t). With n = `e and A ⊂ K×/n as above, we consider the resulting
finite abelian extension ΛA := Λ[n

√
A ] = KAΛ inside K, the injective canonical projection

Gal
(
ΛA |Λ

)
=: ΠΛ → Π, and recall that for every prolongation vΛ|v of v to Λ, ΠΛ → Π gives

rise by restriction to an embedding T 1
vΛ → T 1

v .

Next let vΛ be a valuation of Λ and set vλ := v|λ. Then by the additivity of the residual
transcendence degree, one has that td(ΛvΛ |kvΛ) = td(ΛvΛ |λvΛ) + td(λvλ |kvλ). Hence setting
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d := td(Λ|k) = td(Λ|λ) + td(λ|k), and applying the Abhyankar (in)equality, it follows that
td(Λ|λ) = 1 ≥ td(ΛvΛ |λvΛ) and td(λ|k) = d− 1 ≥ td(λvλ |kvλ). We will say that a valuation
vΛ of Λ is a constant reduction of Λ|k if it satisfies td(Λ|k) = td(ΛvΛ |kvΛ), or equivalently,
if td(Λ|λ) = 1 = td(ΛvΛ |λvλ) and td(λ|k) = d − 1 = td(λvλ |kvλ). In particular, if vΛ is
a constant reduction of Λ|k, it follows that td(Λ|λ) = 1 = td(ΛvΛ |λvΛ), hence vΛ defines a
constant reduction of Λ|λ in the usual way. Nevertheless, the converse of this assertion is not
true, i.e., the set of all the constant reductions of Λ|λ, having a given restriction vk to k, is
much richer, provided λ 6= k.

Further, we will say that a valuation vΛ of Λ is a c.r. quasi prime divisor of Λ|k, if there
exists a constant reduction vΛ of Λ|k and a prime divisor v0 of ΛvΛ|λvλ such that vΛ = v0 ◦ vΛ.
As in the case of constant reductions, a c.r. quasi prime divisor vΛ of Λ|k is a c.r. quasi prime
divisor of Λ|λ as well. But if λ 6= k, then there exist c.r. quasi prime divisors of Λ|λ, which are
not c.r. quasi prime divisors of Λ|k.

Definition 3.1. We say that σ ∈ Π is a c.r. codimension one minimized inertia element, if
there exists some Λ|λ as above, and some c.r. quasi prime divisor wΛ of Λ|λ such σ lies in the
image of T 1

wΛ
↪→ ΠΛ → Π.

This being said, the abstract result we prove is the following:

Theorem 3.2. In the above notations, let σ ∈ Π be a c.r. codimension one minimized inertia
element. Then there exist c.r. quasi prime divisors v of K|k with σ ∈ T 1

v . Moreover, if in
the above notation, wΛ is a c.r. quasi prime divisor of Λ|λ such that σ lies in the image of
T 1
wΛ
→ Π, then one can choose the c.r. quasi prime divisor v of K|k such that wΛ|k = v|k.

Proof: First, in the notations from the definition above, let Λ|λ and wΛ be a c.r. quasi prime
divisor of Λ|λ such that σ lies in the image of T 1

wΛ
→ Π. Then by definitions, Λ|λ is a function

field in one variable, thus Λ = λ(Cλ) for some projective smooth λ-curve Cλ. Further, setting
wλ := wΛ|λ and vk := wλ|k, it follows that vk is the restriction of wλ to k as well. Equivalently,
OvΛ

dominates Owλ , and both these valuation rings dominate Ovk .

Second, we briefly review a few generalities about the so called Riemann space Val(Ω) of all
the valuations of an arbitrary field Ω, see e.g. [Z-S] for details. Namely, let Ων ⊂ Ω be a cofinal
family of finitely generated subfields (over the prime field of Ω), i.e., Ω = ∪ν Ων . Then the set
of the projective Z-models of Ων is set theoretically projectively ordered with respect to the
domination relation, and if (Vµν )µν is a cofinal system of such models, then

(†) Val(Ω) = lim
←−
ν

lim
←−
µν

Vµν → lim
←−
µν

Vµν = Val(Ων), vΩ 7→ vΩν := vΩ|Ων

where Val(Ω)→ Val(Ων), vΩ 7→ vΩν , is the restriction map from the Riemann space Val(Ω) of
Ω to that of Ων . Recall that given vΩ ∈ Val(Ω), and letting xµν ∈ Vµν be the center of vΩ on
each Vµν , and Oµν ,mµν be its local ring, and κ(xµν ) := Oµν/mµν , one has that:

(‡) OvΩ
= ∪µν Oµν , mvΩ

= ∪µν mµν , ΩvΩ = κ(m vΩ
) = ∪µν κ(xµν ).
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Step 1. Reviewing basics about families of curves

Let Σλ ⊂ Cλ(l) be any finite subset. By general non-sense about fields of definition, and
more general, rings/schemes of definition, see e.g., Raynaud–Gruson [R-G], and/or de Jong [dJ1],
[dJ2], the following hold:

1) There exists a subextension k1 ↪→ l1 of λ|k and a projective smooth geometrically integral
l1-curve C1 satisfying the following:

a) l1|k1 is a regular extension of finitely generated fields, i.e., l1 is separable generated
over k1, and linearly disjoint from k1 over l1.

b) Cλ = C1 ×l1 λ is the base change of C1 under l1 ↪→ λ, and Σλ ⊂ Cλ(λ) is the base
change of a finite set Σ1 ⊂ C1(l1).

2) Therefore, for any cofinal system of regular extensions of finitely generated fields lν |kν of
λ|k with k1 ⊂ kν ⊂ k and l1 ⊂ lν ⊂ λ, the base change Cν := C1 ×l1 lν is a projective
smooth lν-curve with Σν ⊂ Cν(lν). Further, the base change of Σν := Σ1 ×l1 lν under
lν ↪→ λ equals the given Σλ.

For the above l1-curve C1 with Σ1 ⊂ C1(l1), and the resulting Cν → lν → kν , we will
consider cofinal systems of models Xµν → Sµν → Vµν with several extra properties, e.g., ones
resulting from de Jong’s theory of alteration, etc.

First, by general non-sense about schemes of definition, it follows that for any given proper
Z-models V ′, S ′, X ′ of kν , lν , Cν , respectively, there exist projective birational morphisms of Z-
schemes V ′′ → V ′, S ′′ → S ′, X ′′ → X ′, and projective morphisms X ′′ → S ′′ → V ′′ with generic
fiber the given Cν → Spec lν → Spec kν . By de Jong [dJ2], Theorem 2.4, especially (vii), b), it
follows that there exists a projective alteration S ′′′ → S ′′ such that the base change X ′′′ → S ′′′
is a projective semi-stable family of curves. Further, letting Z ′ ⊂ X ′ be the Zariski closure of
Σν ⊂ Cν(lν), it follows that the preimage of Z ′ under the canonical projection X ′′′ → X ′ is of
the form Z ′′′1 ∪ D′′′1 , where Z ′′′1 ⊂ X ′′′(S ′′′) is a finite set of disjoint sections with values in the
smooth locus of X ′′′ → S ′′′, and D′′′1 is the preimage of some divisor D′′′ ⊂ S ′′′. In particular,
the generic fiber D′′′1 ×S lν of D′′′1 is empty, and therefore, the generic fiber Z ′′′1 ×S′′′ lν of Z ′′′1

contains Σν . Finally, replacing Z ′′′1 by the closure of Z ′′′ of Σν in X ′′′, we can suppose that Σν
equals the generic fiber of Z ′′′. Moreover, by Raynaud–Gruson [R-G], pp. 36-37, after replacing
V ′ by its normalization V ′′′ → V ′ under S ′′′ → V ′, there exists a blowup V ıv → V ′′′ such that
the proper transform S ıv → V ′′′ of S ′′′ → V ′′′ is a projective flat morphism. Thus replacing
X ′′′ → S ′′′ by the base change under S ıv → S ′′′, and Z ′′′ by the corresponding base change, we
get that S ıv → V ıv is a projective flat morphism with geometrically integral fibers, X ıv → S ıv is
a projective semi-stable curve, and Z ıv ⊂ X ıv (S ıv ) is a finite set of disjoint sections with support
in the smooth locus of X ıv → S ıv , and having Σν as generic fiber. Finally, [dJ1], Theorem 5.8,
is applicable to the projective semi-stable family of curves X ıv → S ıv , and therefore, there
exists an projective alteration Sv → Sv, a projective split semi-stable family of curves X v → Sv

and a dominant birational morphism X v → X ıv ×S ıv Sv, and a finite set of disjoint sections
Zv ⊂ X v(Sv) whose generic fiber is the given Σν . (This is not explicitly stated in Theorem 5.8
of loc.cit., but sorting through the proof, one can easily see that this assertion is proved in
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the course of the proof.) Therefore, after replacing V ıv by its normalization under the field
extension κ(V ıv ) ↪→ κ(Sv), and performing what was done above (including the corresponding
base changes, etc.), we conclude:

3) There exist cofinal families of fields/models as follows:

a) Finitely generated subfields kν ↪→ lν of k ↪→ λ, i.e., k = ∪νkν and λ = ∪ν lν .

b) Projective flat morphism of projective normal Z-models Sµν → Vµν for lν ←↩ kν
having geometrically integral fibers.

c) Projective split semi-stable families of curves Xµν → Sµν .

d) A finite set of disjoint sections Zµν ⊂ Xµν (Sµν ) with support in the smooth locus of
Xµν → Sµν and having generic fiber Σν ⊂ Cν(lν).

As a corollary of the discussion above, one has the following: Let vΛ be an arbitrary valuation
of Λ with vΛ|k = vk, and set vλ := vΛ|λ i.e., OvΛ dominates Ovλ , Ovk . For every

Xµν → Sµν → Vµν

consider the centers xµν 7→ sµν 7→ zµν of vΛ on the models above (which exist by the valuation
criterion for properness), and the canonical embeddings of their local rings and residue fields:

Oxµν ,mxµν ←↩ Osµν ,msµν ←↩ Ozµν ,mzµν , κ(xµν )←↩ κ(sµν )←↩ κ(zµν ).

By the discussion at the beginning of the proof, and taking into account that the families ( · )µν
above are co-final, it follows that one has the following:

(∗) OwΛ
= ∪µν Oxµν , mwΛ

= ∪µν mxµν , ΛwΛ = ∪µνκ(xµν ),

and similarly for Ovk ↪→ Owλ ↪→ OwΛ , mvk ↪→ mwλ ↪→ mwΛ , and kvk ↪→ λwλ ↪→ ΛwΛ.

Step 2. A transfer principle

Recall that wΛ is a c.r. quasi prime divisor of Λ|λ such that wΛ|k = vk. In particular,
wΛ = w0 ◦wΛ, where wΛ is a constant reduction of Λ|λ, and w0 is a prime divisor of the residue
function field ΛwΛ|λwλ. In particular, the following hold:

a) wΛ|k = wΛ|k = vk, thus OwΛ , OwΛ both dominate Ovk .

b) One has a canonial exact sequence: 0→ w0(ΛwΛ) = Z→ wΛΛ→ wΛΛ = wλλ→ 0.

c) OwΛ
contains elements of minimal positive value π, and mwΛ

= πOwΛ
for any such π.

Further, if vΛ is a c.r. quasi prime divisor of Λ|k, then vΛ is definitely a c.r. quasi prime
divisor of Λ|λ. But the converse of this assertion is true only if λ|k has no proper constant
reductions, which holds if and only if λ = k.

Proposition 3.3. (Transfer Principle). In the above notations, suppose that wΛ is a c.r. prime
divisor of Λ|λ with mwΛ = πOwΛ , and u1, . . . , un ∈ O×wΛ

be given. Then there exist c.r. quasi
prime divisors vΛ of Λ|k with vΛ|k = wΛ|k, mvΛ

= πOvΛ
, and u1, . . . , un ∈ O×vΛ

· k×.
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Proof: In the discussion at Step 2 above, let Cλ be the projective smooth model of Λ|λ. Let
k1 ↪→ l1 and the projective smooth curve C1 in Step 1 above be chosen such that π, u1, . . . , un ∈
l1(C1), and Σ1 ⊂ C1(l1) be the support of the divisors of the rational functions π, u1, . . . , un.
We also let D0 =

∑
imiPi, be the zero divisor of π ∈ l1(C1), hence in particular, one has that

{Pi}i ⊂ Σ1 ⊂ C1(l1).

For models Xµν → Sµν → Vµν satisfying conditions from item 3) in Step 2 above, and
π ∈ lν(Cν), we consider the base changes

X := Xµν×VµνOvk → Sµν×VµνOvk =: S, Z := Zµν×VµνOvk ⊂ Xµν (Sµν )×VµνOvk ⊂ X (S).

1) Letting l := lν k be the compositum of lν and k, and recalling the projective smooth
lν-curve Cν , the support Σν ⊂ Cν(lν) of the divisors of the given rational functions
π, u1, . . . , un ∈ l1(C1) ⊂ lν(Cν), and the zero divisor D0 =

∑
imi Pi of π, one has:

a) The generic fiber of X → S is nothing but Cl := Cν ×lν l = C1 ×l1 l.
b) X → S is a projective split semi-stable family of curves (as base change of such).

2) Let D0 = {σPi(S)}i be the closure of {Pi}i in X . Then D0 ⊂ Z ⊂ X (S) are sets of
disjoint sections with support in the smooth locus of X → S, and the following hold:

a) The rational map X - - -> P1
S defined by π ∈ κ(X ) = l(Cl) is everywhere defined, and∑

imiσPi(S) are the zero sections of π.

b) Let Xξ → ξ the fiber of X → S at some ξ ∈ S. The restriction of π to the fiber Xξ
is a rational function having D0(ξ) :=

∑
imiσPi(ξ) as its zero divisor.

3) Since wΛ|k = wΛ|k = vk, and wΛ|λ = wΛ|λ = wλ, setting κ := kvk, and letting Xκ → Sκ
be the closed fiber of X → S, the following hold:

a) wΛ, wΛ have the same center s on S, and s ∈ Sκ. Further, the centers y 7→ s of wΛ,
and x 7→ s of wΛ, on X → S lie in the closed fiber Xκ → Sκ.

b) Since mwΛ ⊂ mwΛ , it follows that x lies in the closure of y, thus y ∈ Spec(Ox), and
if py := mw ∩ Ox is the prime ideal defining y ∈ Spec(Ox), one has:

i) Oy = (Ox)py .

ii) κ(y) = Quot(Ox/py).

4) Since OwΛ
= ∪µνOxµν , ΛwΛ = ∪µνκ(xµν ), and OwΛ

= ∪µνOyµν , ΛwΛ = ∪µνκ(yµν ), for
all sufficiently large models Xµν → Sµν → Vµν , the following hold:

a) L := l(Cl) = lν(Cν) l = l1(C1) l.

b) Since wΛ is a constant reduction of L|l, hence LwΛ is finitely generated over lwΛ,
one eventually has LwΛ = κ(yµν ) lwΛ = κ(y), hence ΛwΛ = LwΛ λwλ = κ(y)λwλ.

c) Hence since LwΛ = κ(y) = Quot(Ox/py), one has that Ox/py = Ow0
.
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d) Since td(LvΛ |kvΛ) ≤ td(K |k) <∞, eventually td(LwΛ |kvk) = td(κ(x)|κ).

e) u1, . . . , un ∈ O×x and π ∈ Ox. Therefore, mw0
= πOw0

= (π, py)/py.

Next, set Ox := Ox⊗Ovkκ = Ox/mvkOx, Os := Os⊗Ovkκ = Os/mvkOs, and consider the base

change XOs := X ⊗SOs of X → S under SpecOs ↪→ S. Then the closed fiber of XOs , i.e., the

fiber at the closed point s ∈ SpecOs, equals the special fiber Xs → s of X → S at s ∈ S. Let
η ∈ SpecOs be a generic point, and consider the resulting commutative diagrams:

XOs ↪→ Xκ ↪→ X Xη ↪→ XOs ←↩ Xs
↓ ↓ ↓ ↓ ↓ ↓

SpecOs ↪→ Sκ ↪→ S η ↪→ SpecOs ←↩ s

We notice that all the vertical morphisms in the diagrams above are base changes of the pro-
jective split semi-stable family of curves X → S, and therefore, they define projective split
semi-stable families of curves over the corresponding bases. In particular, Xκ → Sκ is a
projective flat morphism of projective connected pure dimensional κ-varieties, of dimensions
dim(Xκ) = td(L|k) and dim(Sκ) = td(l|k), where td(l|k) = td(L|k)− 1. Further, Os ↪→ Ox is
the canonical inclusion of the local rings of the morphism of κ-varieties Xκ → Sκ at x 7→ s.

Therefore we conclude that Ox is catenary and a flat Os-algebra, of Krull dimension given
by dim(Ox) = td(L|k) − td(κ(x)|κ). Further, Ox satisfies: First, it contains (at least) one
generic point η1 of Xs such that y, thus x, lie in the closure X1 := {η1} of η1; and notice that
X1 ↪→ Xs is then an irreducible component of the fiber Xs at s ∈ S. Second, every generic point
ηα ∈ Ox is actually a generic point of Xs, thus the closure Xα := {ηα} of ηα is an irreducible
component of Xs. And since ηα ∈ SpecOx, it follows that x lies in the closure Xα of ηα. Hence
finally, x ∈ ∩ηαXα, where (ηα)α is the set of all the generic points ηα ∈ SpecOx. Third, recall
that by item 4), b) and d) above, one has that Ox/px = Ow0 is a discrete valuation ring having
valuation ideal equal to πOw0

, i.e., π is a uniformizing parameter of Ow0
. Therefore, the local

ring OXs,x of x ∈ Xs satisfies:

OXs,x = Ox/py = Ox/py = Ow0
, mXs,x = mx/py = mx/px = πOw0

,

thus concluding that x ∈ Xs is a zero of the rational function defined by π on the fiber Xs.
Hence by the discussion at item 2) above, it follows that x = σPi0 (s) ∈ Xs for some Pi0 , and
after renumbering (Pi)i, we can suppose that i0 = 1, i.e., x = σP1

(s). On the other hand, by
the construction/definition of σPi(S) ∈ Z ⊂ X (S), it follows that x = σP1

(s) lies in the smooth
locus of X → S, thus in the smooth locus of Xs → Ss. Hence recalling the fact proved above,
namely that x ∈ ∩ηα Xα, we have: First, since any two distinct irreducible components of Xs
meet is a double point, thus a singular point of Xs, and second, since x = σP1(s) lies in the
smooth locus of X → S, thus in the smooth locus of Xs → s, it follows that X1 ↪→ Xs is the
unique irreducible component of Xs containing x = σP1

(s). Hence by the discussion above,
SpecOx has a unique generic point, which is η1.

Equivalently, Ox has a unique minimal prime ideal, which equals the nilpotent radical
of Ox. On the other hand, Ox is reduced (as being a local ring of the reduced κ-variety Xκ),
and therefore, Ox is actually an integral domain. Therefore, Os ↪→ Ox is an integral domain
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as well. Letting η be the generic point of SpecOs, it follows that the generic fiber Xη → η is
integral as well. Further, σP1

(η) is a simple zero of π viewed as a rational function on Xη.

Now recalling the given functions u1, . . . , un ∈ O×wΛ
, and that u1, . . . , un ∈ O×x, we claim

that σP1
(η) is neither a zero nor a pole of any of the rational functions on X defined by any of

the u1, . . . , un. Indeed, by contradiction, suppose that σP1
(η) is a zero (or a pole) of some ui.

Since x lies in the closure of η, it follows that σP1
(s) lies in the closure of σP1

(η). And since
the later is a zero (or a pole) of the rational function defined by ui on the generic fiber Xη, it
follows that x = σP1(s) is a zero (or a pole) of the rational function defined by ui on Xs, thus
contradicting the fact ui ∈ O×x.

Finally, since π is a uniformizing parameter of OXs,x = Ow0
, it follows that x = σP1

(s) is
a simple zero of π on Xs. Therefore, by the discussion at item 2) above, it follows that the
multiplicity m1 of P1 in D0 =

∑
imi Pi is m1 = 1. Hence by the discussion at item 2) above,

xη := σP1
(η) ∈ Xη is a simple zero of π on the generic fiber Xη → η of XOs . Further, xη is

neither a zero, nor a pole of any of the u1, . . . , un on the fiber Xη.

Since td(l|k) = dim(Sκ) = td
(
κ(η)|κ

)
, it follows that every valuation vl of l|k which dom-

inates OS,η must satisfy td(l|k) = td(lvl |kvl), and therefore, vl is a constant reduction of l|k
with vl|k = vk, and further, κ(vl)|κ(η) is finite.1

For such a constant reduction vl of l|k, consider the base change Xvl := X ×S Ovl defined
by the canonical embedding SpecOvl → S. Since being a projective split semi-stable curve is
invariant under base change, and X → S is such a family of curves, one has:

5) Xvl is a projective split semi-stable curve over Ovl , having l-generic fiber the given pro-
jective smooth l-curve Cl. Further the following hold:

a) The special fiber Xvl,s := Xvl ×Ovl κ(vl) is the base change Xvl,s = Xη ×κ(η) κ(vl) of
the projective geometrically integral smooth κ(η)-curve Xη under κ(η) ↪→ κ(vl).

• Thus Xvl,s is a projective geometrically integral smooth κ(vl)-curve.

b) xvl,s := σP1
(mvl) is the base change of xη = σP1

(η) under κ(η) ↪→ κ(vl), thus it is a
simple κ(vl)-rational zero of π on the special fiber Xvl,s of Xvl .

c) Let X1,vl ↪→ Xvl,s be the unique irreducible component containing xvl,s, and η1,vl

be its generic point. Then the local ring Oη1,vl
is dominated by the local ring of a

unique constant reduction vL of the function field L|l such that vL|l = vl, thus one
also has vL|k = vk.

d) Since vl is a constant reduction of l|k, and k is algebraically closed, one has that
vll = vkk. Further, since vL is a constant reduction of L|l, it follows by the Abhyankar
(in)equality that vLL/vll is a torsion group. Hence since vll = vkk is divisible, it
follows that vLL = vll = vkk. Hence for each i, there exist elements ai ∈ k× such
that ui/ai ∈ O×vL, and further, xvl,s is neither a zero, nor a pole, of any of the
functions ui/ai viewed as rational functions on the fiber Xvl,s.

One concludes the poof of the Transfer Principle as follows: First, lvl = κ(vl) is the residue
field the constant reduction defined by vl on l, and LvL is the residue function field of the constant

1 Actually, κ(η) = κ(vl), for S “sufficiently large,” but we will not need this fact.
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reduction vL of L|l. Therefore, the relative algebraic closure lL ⊂ LvL of lvl in LvL is finite over
lvl, and LvL|lL is the function field of the projective smooth curve lL-curve XlL := Xvl,s ×lvl lL.
Second, the lvl-rational point x1,vl ∈ X1,vl gives rise by base change to an lL-rational point
xlL ∈ XlL .

6) Let v0 be the prime divisor of LvL|lL defined by xlL , and set vL := v0 ◦ vL. Recalling the
quasi prime wΛ-divisor from Theorem 3.2, the following hold:

a) One has vL|l = vL|l = vl and vL|k = vL|k = vk. Hence since wΛ|k = vk, one finally
gets vL|k = wΛ|k.

b) Since vL is a constant reduction of L|k, and its restriction to l is the constant re-
duction vl of l|k, it follows that vL is a constant reduction of K|k. Hence vL is a
c.r. quasi prime divisor of K|k.

c) π is a uniformizing parameter of the discrete valuation ring Ov0 . Hence vL(π) is the
minimal positive element of vLL, and mvL = πOvL .

d) The elements u′1 := u1/a1, . . . , u
′
n := un/an are vL-units, and their vL-residues

u′1, . . . , u
′
n in LvL are v0-units. Hence u′1, . . . , u

′
n ∈ O×vL, thus u1, . . . , un ∈ O×vL · k×.

We now conclude the proof of the Transfer Principle by letting vΛ be any prolongation of
vL to the compositum Λ = Lλ defined by the canonical inclusions l ↪→ lL ↪→ λ.

Step 3. Concluding the proof of Theorem 3.2

In the notations from the beginning of the proof of Theorem 3.2, recall that σ ∈ Π was
the image of some σwΛ

∈ T 1
wΛ

under the canonical inclusion T 1
wΛ
→ Π, where wΛ is a c.r.

quasi prime divisor of Λ|λ, etc. In particular, if π ∈ OwΛ is such that mwΛ = πOwΛ , then
one has that wΛΛ/n = wΛ(π)Z/n is Pontrjagin dual to T 1

wΛ
, thus σwΛ : A → Z/n(1) factors

through A → wΛΛ/n = wΛ(π)Z/n, and we can write A = uZ0 · B, with B = ker(σwΛ
) and

u0 ∈ K× such that σwΛ
(u0) = σwΛ

(π). Moreover, without loss of generality, we can suppose
that σwΛ

(π) ∈ Z/n(1) is a generator of T 1
wΛ

.

Let u1, . . . , un ∈ OwΛ
∩K× be generators of B (when viewed as a subgroup of K×/n). By

the transfer principle, there exists a c.r. quasi prime divisor vΛ such that mvΛ
= πOvΛ

, hence
vΛΛ/n = vΛ(π)Z/n, and u1, . . . , un ∈ O×vΛ

· k×. But then it follows that σwΛ
: A → Z/n(1)

factors through A→ vΛΛ/n, i.e., there exists σvΛ ∈ T
1
vΛ

such that σwΛ = σvΛ inside ΠΛ. Finally,
let v := vΛ|K be the resulting c.r. quasi prime divisor of K|k, and recall that σvΛ = σwΛ on the
image AΛ ⊂ Λ×/n. Hence letting ı : A → AΛ be the canonical map induced by K× ↪→ Λ×, we
have the following situation:

a) σ is the image of σwΛ
∈ T 1

wΛ
under ΠΛ → Π, i.e., σ = σwΛ

◦ ı on A ⊂ K×/n.

b) σwΛ = σvΛ as elements of ΠΛ, i.e., as maps on AΛ = ı(A).

c) Let σv ∈ T 1
v be the image of σvΛ under the canonical injective projection T 1

vΛ
→ T 1

v .
Then σv = σvΛ

◦ ı, and therefore: σv = σvΛ
◦ ı = σwΛ

◦ ı = σ as maps on A ⊂ K×/n.
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We therefore proved that σ ∈ Π is the image of σv ∈ T 1
v under the canonical injective

projection T 1
v ↪→ ΠΛ → Π. This concludes the proof of Theorem 3.2.

B) Proof of Theorem 1.2

Recalling the discussion at the beginning of this section and using the ideas developed in
the proof of Theorem 1.1, the proof of Theorem 1.2 is reduced to proving the following: Let
w = w0 ◦w be as in Theorem 1.2. Then for every n = `e, a finite subgroup A ⊂ K×/n, and the
corresponding ΠK → Π := Gal

(
KA |K

)
, the following holds:

(!) For every σ ∈ T 1
w there exists some v ∈ Qvk(K|k) such that σ ∈ T 1

w · T
1
v .

We notice that it is sufficient to prove assertion (!) for any “sufficiently large” finite subgroup
A ⊂ K×/n, which means that if the assertion (!) holds for some finite subgroup A′ ⊂ K×/n
with A ⊂ A′, then the assertion (!) holds for A as well. We call this the enlargement principle.

Recall that for an arbitrary valuation v of K, denoting by Uv := O×v the group of v-units,
one has a canonical exact sequence 1→ Uv → K×→ vK → 0. Hence for every n = `e, one gets
canonically the exact sequence 1 → Uv/n → K×/n → vK/n → 0, because vK is torsion free.
By Kummer theory, T 1

v /n → ΠK/n is Pontrjagin dual to K×/n → vK/n, thus every element
σ ∈ T 1

v , viewed as a character σ : A → Z/n(1), factors through A → vK/n. We also notice
that by the Abhyankar (in)equality, the rational rank of vK/vk if bounded by td(K |k). Hence,
taking into account that vk ⊂ vK is divisible (because k is algebraically closed), it follows that
vK/n = (vK/vk)/n is a free Z/n-module of rank bounded by td(K |k). In particular, by the
enlargement principle above, we can suppose that A→ vK/n is surjective.

Recall that w = w0 ◦ w, where w0 is a quasi prime divisor of the function field Kw|k1w.
One has canonical exact sequences of the form

0→ w0(Kw) ∼= Z→ wK → wK → 0, 0→ w0(Kw)/n ∼= Z/n→ wK/n→ wK/n→ 0,

the latter exact sequence being Pontrjagin dual to 1→ T 1
w/n→ T 1

w/n→ T 1
w0
/n→ 1, where,

by abuse of language/notation, T 1
w0
/n is the dual of w0(Kw)/n. Further, by the enlargement

principle above, without loss of generality we can suppose that A → wK/n is surjective, thus
A→ wK/n is surjective as well, etc., and T 1

w = T 1
w/n, T 1

w = T 1
w/n, and T 1

w0
= T 1

w0
/n.

Next, interpreting σw ∈ T 1
w as a character σw : K/n→ Z/n(1), let us consider the restriction

σ0 of σw to the image of w0(Kw)/n ↪→ wK/n. Then σw := σwσ
−1
0 is trivial on w0(Kw)/n,

thus it factors though wK/n. Hence σw lies in the image of T 1
w under the canonical inclusion

T 1
w ↪→ T 1

w . Finally, the given element σw satisfies σw = σ0 σw.

Hence we conclude that in order to prove assertion (!) for σw, it is sufficient to prove that
there exists some v ∈ Qvk(K|k) such that σ0 ∈ T 1

v . For this we employ Theorem 3.2.

Let π ∈ K be a fixed w-unit such that its residue π ∈ Kw is a uniformizing parameter
of Ow0 (which is a DVR of Kw). Since k1w is algebraically closed, Kw|k1w has (separable)
transcendence bases of the form t1 = π, . . . , tr. Let l1 ⊂ K be the relative algebraic closure of
k1

(
(ti)1<i≤r

)
in K. Then l1(π) ↪→ K is a finite separable extension, and further one has:
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a) td(K |l1) = 1 = td(Kw|l1w), hence w is a constant reduction of K|l1.

b) w0 is a quasi prime divisor of the function field Kw|l1w such that w = w0 ◦w and Kw is
separable over l1w.

c) π is a w-unit, and its residue in Kw is a uniformizing parameter of Ow0 .

d) σ0 ∈ T 1
w viewed as a character σ0 : wK/n → Z/n(1) factors through the canonical

embeddding w(π)Z/n ↪→ wK/n.

Let λ be the algebraic closure and Λ := Kλ in some fixed algebraic closure K of K, and wΛ be
some prolongation of w to Λ. Then we are in context of Theorem 3.2. Hence there exists a c.r.
quasi prime divisor v of K|k such that σ0 ∈ T 1

v .

This concludes the proof of Theorem 1.2.

4 Application: The nature of the residue field

In this section, we keep notations as introduced in the Introduction. We consider a fixed
valuation w of K having the property:

The value group wK has no `-divisible convex subgroups, and K has a

subfield k1 ⊂ K satisfying: k1w = kw and td(K |k1) = 1 = td(Kw|k1w).

We notice that all the generalized quasi prime r divisors w of K|k with r = td(K |k) − 1
have the properties asked for above.

To simplify notations, we set K0 := Kw, kw =: k0 := k1w, and notice that w is a constant
reduction of the function field in one variable K|k1, thus K0|k0 is a function field in one

The problem we address now is about giving a recipe for deciding whether k0 is an algebraic
closure of a finite field, and further, given an algebraically closed subfield l ⊆ k, to decide
whether the residue fields l0 ↪→ k0 are actually equal. Moreover, that recipe should involve
solely ΠK endowed with the given T 1

w ⊂ Z1
w and the family of minimized quasi divisorial

subgroups T 1
v ⊂ Z1

v (which is provided to us by the local theory).

In order to announce the result answering the above question, we need a short preparation
as follows. First, let Q(K|k) be the set of all the quasi prime divisors of K|k, and denote by
T 1(K) ⊂ ΠK the topological closure of ∪v∈Q(K|k) T

1
v in ΠK . Second, for l ⊆ k and l0 ⊆ k0 as

above, let Ql(K|k) be the set of all the quasi prime divisors v with v|l = w|l, and T 1
l (K) ⊂ ΠK

be the topological closure of ∪v∈Ql(K|k) T
1
v . Then T 1

l (K) ⊆ T 1(K), and these sets consist of
minimized inertia elements by Theorem 1.1, and T 1

l (K) consists of minimized inertia elements
at valuations v with v|l = w|l. Recalling the canonical exact sequence

1→ T 1
w → Z1

w → Z1
w/T

1
w =: Π1

K0
→ 1,

let Tl(K0) ⊆ T 1(K0) be the images of T 1
l (K) ∩ Z1

w ⊆ T 1(K) ∩ Z1
w under Z1

w → Π1
K0

.

By abuse of language, we call Π1
K0

the minimized residual group at w. Further, for any
v ≥ w, one has T 1

w ↪→ T 1
v ↪→ Z1

v ↪→ Z1
w canonically. Considering v0 := v/w on K0, we set
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T 1
v0

:= T 1
v /T

1
w ↪→ Z1

v/T
1
w =: Z1

v0
, and by abuse of language, we say that T 1

v0
↪→ Z1

v0
↪→ Π1

K0
are

the minimized residual inertia/decomposition groups at v0.

Remark 4.1. As mentioned already in the Introduction, if char(K0) = `, then T 1
v ⊆ T 1

v

are contained in the wild ramification group of v, thus in the usual inertia group Tv. There-
fore, char(K0) = ` implies that the residue group Π1

K0
is not a Galois group over K0, and in

particular, T 1
v0
↪→ Z1

v0
are not a true inertia and/or decomposition groups. In order to high-

light this disparity, Topaz prefers to denote the minimized inertia/decomposition groups by
Iv ⊂ Dv, see [To1], and Appendix below. In particular, this distinction becomes as imperative
for T 1

v0
⊆ Z1

v0
, which would be denoted Iv0 ⊂ Dv0 , etc. The groups T 1

v0
⊂ Z1

v0
⊂ Π1

K0
have,

nevertheless, the following interpretation via Kummer theory: First, T 1
w ↪→ Z1

w →→ Π1
K0

and
K×0 = Uw/U

1
w ↪→ K×/U1

w →→ K/Uw are `-adically dual to each other, and so are: T 1
w ↪→ T 1

v and
vK = K×/Uv →→ K×/Uw = wK, respectively, T 1

w ↪→ Z1
v and K×/U1

v →→ K×/Uw. Hence the
following are in `-adic duality:

a) T 1
v0

= T 1
v /T

1
w ↪→ Π1

K0
and Uw/U

1
w →→ Uw/Uv = K×0 /Uv0

.

b) Z1
v0

= Z1
v/T

1
w ↪→ Π1

K0
and Uw/U

1
w →→ Uw/U

1
v = K×0 /U

1
v0

.

Finally, recall that a pro-` abelian group G endowed with a system of procyclic subgroups
(Tα)α is called complete curve like, if there exists a system of generators (τα)α with τα ∈ Tα
such that letting T ⊆ G be the closed subgroup of G generated by (τα)α, the following hold:

i)
∏
α τα = 1 and this is the only profinite relation satisfied by (τα)α.2

ii) The quotient G/T is a finite Z`-module.

The following fact was mentioned in Pop [P4] in the tame case, i.e., if char(K0) 6= `, and
aspects of the question were revisited by Topaz [To2] in general, see the Appendix.

Theorem 4.2. In the above notations, let (Tα)α be a maximal system of distinct maximal
cyclic subgroups of Π1

K0
satisfying one of the following conditions:

i) Tα ⊂ T 1(K0) for each α.

ii) Tα ⊂ T 1
l (K0) for each α.

Then Π1
K0

endowed with (Tα)α is complete curve like if and only if

a) k0 is an algebraic closure of a finite field, provided i) is satisfied.

b) l0 = k0, provided ii) is satisfied.

Moreover, if so, then Tα = T 1
vα is the set of the minimized inertia groups in Π1

K0
at all the

prime divisors (vα)α of the function field in one variable K0|k0.

2 This implies by definition that τα → 1 in G, thus every open subgroup of G contains almost all Tα.
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Proof: The proof is based on a few lemmas as follows:

Lemma 4.3. In the above notations, let τ ∈ Z1
w be any minimized inertia element having a

non-trivial image τ0 ∈ Π1
K0

under Z1
w → Π1

K0
. Then there exists a unique quasi prime divisor

v0 of K0|k0 such that setting vτ = v0 ◦ w one has τ0 ∈ T 1
v0

= T 1
vτ /T

1
w.

Proof: First, since τ is a minimized inertia element, there exist valuations v of K such that
τ ∈ T 1

v . For such a valuation v, consider the minimal coarsening vτ ≤ v such that τ is in the
image of the canonical embedding T 1

vτ → T 1
v . In other words, after identifying T 1

vτ → T 1
v with

the `-adic dual of vK → vτK, and viewing τ : vK → Z(1) as a character, the valuation vτ is the
minimal one such that ker(vK → vτK) ⊂ ker(τ). Then by the general theory of (minimized)
core of valuations, see e.g., [P1], and [To1], it follows that τ ∈ T 1

vτ , and vτ depends on τ only, and
not on v. Further, since τ ∈ Z1

w, and wK admits no divisible convex subgroups, it follows that
w ≤ vτ . Finally, w < vτ , because one has, first, T 1

w ⊆ T 1
vτ , second, τ0 ∈ T 1

vτ /T
1
w is non-trivial.

Further, by the same strategy, it follows that vτ depends on τ only, and not on the valuation
v we started with. Finally, setting v0 := vτ/w, it follows that v0 is a valuation of K0 such that
v0K0 = ker(vτK → wK) is not `-divisible. On the other hand, since k0 is algebraically closed,
thus v0k0 is divisible, and td(K0 |k0) = 1, the Abhyankar (in)equality implies that v0K0/v0k0 is
either trivial, or isomorphic to Z. Thus since v0K0 is not `-divisible, we conclude that v0K0

∼= Z.
Finally, the minimality of vα with the property that vαK has no `-divisible convex subgroups is
equivalent to the minimality of v0 with v0K0/` being non-trivial, thus v0K0 satisfying v0K0

∼= Z.
We thus conclude that v0 is a quasi prime divisor of the function in one variable K0|k0.

Lemma 4.4. In the notations from the previous Lemma, T 1
v0
⊂ Π1

K0
is a maximal procyclic

subgroup of Π1
K0

. Further, if τ, σ ∈ Z1
w are minimized inertia elements having non-trivial

images τ0, σ0 in Π1
K0

, and vτ = v0τ ◦ w, vσ = v0σ ◦ w are the corresponding valuations, then
T 1
v0τ
∩ T 1

v0σ
is non-trivial if and only if v0τ = v0σ, thus T 1

vτ = T 1
vσ .

Proof: By the Remark above, T 1
v0
↪→ Π1

K0
and Uw/U

1
w

f−→K×0 /Uv0τ
= Uw/Uvτ are in `-adic

duality. Hence the fact that T 1
v0τ

is a maximal procyclic subgroup of Π1
K0

is equivalent to

the fact that (Uw/U
1
w)/ ker(f) has no `-torsion. On the other hand, ker(f) = Uvτ /U

1
w, hence

(Uw/U
1
w)/ ker(f) = Uw/Uvτ ↪→ K×/Uvτ = vτK has no torsion.

For the second assertion of the Lemma, suppose that v0τ 6= v0σ of K0. Then since quasi
prime divisors are not comparable as valuations, or equivalently, the valuation rings Ov0σ

, Ov0τ

are not comparable w.r.t. inclusion, it follows that O := Ov0σ
· Ov0τ

stricly contains both rings.
Further, O is the valuation ring O = Ov0 of the maximal valuation v0 with v0 ≤ v0τ , v0σ, and
one also has Uv0 = Uv0τ

·Uv0σ
. Hence, if θ ∈ T 1

v0τ
∩T 1

v0σ
, then θ is trivial on Uv0τ

(because so are

all elements of T 1
v0τ

), and trivial on Uv0σ
(because so are all elements of T 1

v0σ
). Hence θ is trivial

on Uv0
= Uv0τ

· Uv0σ
, thus factors through K×0 /Uv0

. On the other hand, since v0 < v0τ , v0σ, the
value group of v0 is a divisible group. Thus θ is trivial.

We conclude that the set of minimized inertia In1(K) = ∪v∈Val(K)T
1
v ⊂ ΠK , which is closed

in ΠK by Theorem 1.1, satisfies: The image of In1(K) ∩ Z1
w under Z1

w → Π1
K0

is actually the
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set ∪v0∈Q(K0|k0)T
1
v0

of all the quasi divisorial minimized inertia elements in Π1
K0

. Moreover, for
distinct quasi prime divisors vα, vβ ∈ Q(K0|k0), it follows that T 1

vα ∩ T
1
vβ

= 1.

1) Therefore we have: Let (Tα)α be a system of distinct maximal procyclic subgroups of
Π1
K0

with Tα ⊂ In1(K0). Then there exist quasi prime divisors vα of K0|k0 such that
Tα = T 1

vα . In particular, Tα ∩ Tβ = 1 for α 6= β.

Next let w be a c.r. quasi prime w-divisor of K|k, i.e., w is of the form w = w0 ◦w, where w0

is a c.r. quasi prime divisor of K0|k0. Then by Theorem 1.2, it follows that T 1
w ⊂ T 1

w · T 1(K).
Therefore, T 1

w0
⊂ T 1(K0) by the definition of T 1(K0). Further, if w|l = w|l, then T 1

w0
⊂ T 1

l (K).
Hence using the assertion 1) above, we conclude:

2) The system of minimized inertia groups (Tvα)α of all the c.r. quasi prime divisors vα of
K0|k0 is contained in T 1(K0).

3) The system of minimized inertia groups (Tvα)α of all the c.r. quasi prime divisors vα of
K0|k0 with vα trivial on l0 is contained in T 1

l (K0).

Hence this reduces the assertion of Theorem 4.2 to the following: Let K0|k0 be a function
field in one variable over an algebraically closed field k0, and l0 ⊂ k0 be an algebraically closed
subfield. Let Π1

K0
be the `-adic dual of K×0 , and for every quasi prime divisor vα of K0, let

T 1
vα ↪→ Π1

K0
be the `-adic dual of K×0 →→ vαK0 = K0/Uvα . Then one has:

Lemma 4.5. (Complete curve like). In the above notations, the following hold:

1) Let (vα)α be all the c.r. quasi prime divisors of K0|k0. Then k0 is an algebraic closure of
a finite field if and only if Π1

K0
endowed (T 1

vα)
α

is complete curve like.

2) Let (vβ)β be all the c.r. quasi prime divisors of K0|k0 which are trivial on l0. Then k0 = l0
if and only if Π1

K0
endowed (T 1

vβ
)
β

is complete curve like.

For a proof, see Pop [P4] in the case char(k0) 6= `, and Topaz [To2] for the general case,
which is the Appendix below.

APPENDIX: ON THE NATURE OF BASE FIELDS

Adam Topaz(2)∗∗

The purpose of this Appendix is to prove a technical part of Bogomolov’s program in anabelian
geometry, concerning recovering the nature of base fields, given enough information from the
local theory. In broad terms, if v is a quasi-divisorial valuation, and thus the residue field of v
is a function field over an algebraically closed field k, the question of determining the nature

∗∗Research supported by the NSF Postdoctoral Fellowship DMS-1304114.
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of the base fields asks –among other things– whether k and/or kv is an algebraic closure of a
finite field.

The problem of recovering the nature of the base fields was solved by Pop [P4] in the
tame case, i.e., in the case where the residue characteristic is prime to `. In this appendix,
we generalize the argument from loc.cit. so that it works even in characteristic `, by working
exclusively with the minimized inertia /decomposition groups of valuations. We recall the basic
necessary facts about minimized decomposition theory below, see [To1] for details.

For the notions divisorial valuation, quasi-divisorial valuation, constant-reduction (c.r.)
quasi-divisorial valuation, we refer to Pop [P0], [P1], and/or the present note.

A) Notation and Main Theorem

Throughout, K|k is a function field in one variable over the algebraically closed field k,
while char(k) = ` is allowed. The group

Π(K) := Hom(K×,Z`)

is called the minimized pro-` group of K, and notice that Π(K) is a pro-` abelian free group
with respect to the point-wise convergence topology. While Π(K) is not a Galois group in the
traditional sense, in the case where charK 6= `, the group Π(K) is (non-canonically) isomorphic
to the maximal pro-` abelian Galois group of K.

For a valuation v of K, we denote by vK the value group, Kv the residue field, and Ov the
valuation ring of K with valuation ideal mv. Furthermore, we denote by Uv = O×v the group
of v-units, and U1

v = (1 + mv) the group of principal v-units. With this notation in mind, we
introduce the minimized inertia/decomposition groups of v:

Iv = Hom(K×/Uv,Z`) ↪→ Hom(K×/U1
v ,Z`) =: Dv ↪→ Π(K),

and notice that these are closed subgroups of Π(K).

Next let l ⊂ k be a fixed algebraically closed subfield, and V ⊃ Vl be the collection of all
the c.r. quasi prime divisors of K|k, respectively of the c.r. quasi prime divisors of K|k which
are trivial on l. Then one has the following:

Fact 1. The minimized inertia groups of K|k have the properties:

1. For every distinct v, w ∈ V, one has Iv ∩ Iw = 1.

2. Iv is a maximal procyclic subgroup of Π(K) for every v ∈ V.

Fact 2. Let G be a profinite abelian group, (Ii)i be a system of procyclic subgroups, and τi ∈ Ii
a be generator of Ii for each i. The following assertions are equivalent:

i) Every open subgroup of G contains Ii for all but finitely many i.

ii) The pro-word τ0 :=
∏
i τi is defined in G.

iii) There exists a continuous map
∏
i Ii → G which is the identity on each Ii.



On the nature of base fields 353

The main result concerning detecting the nature of the base field is as follows.

Main Theorem. In the above notations, the following hold:

I. The nature of k. The following are equivalent:

i) k is the algebraic closure of a finite field.

ii) There is a system of generators (τv)v∈V of the groups (Iv)v∈V satisfying the pro-
relation

∏
v τv = 1, and this is the only profinite relation satisfied by (τv)v∈V .

II. The equality k = l. The following are equivalent:

i) One has k = l.

ii) There is a system of generators (τv)v∈Vl of the groups (Iv)v∈Vl satisfying the pro-
relation

∏
v τv = 1, and this is the only profinite relation satisfied by (τv)v∈Vl .

Moreover, let X be the unique projective smooth curve with K = k(X), and π`,ab
1 (X) be its pro-`

abelian fundamental group.3 If V∗ denotes either V or Vl, and the above equivalent conditions
are satisfied for V∗, one has a canonical exact sequence:

0→ Z` →
∏
v∈V∗Iv → Π(K)→ π`,ab

1 (X)→ 1.

B) Basic facts about minimized inertia /decomposition

For f ∈ Dv = Hom(K×/U1
v ,Z`), let fv : Kv× = Uv/U

1
v ⊂ K×/U1

v → Z` be its restriction
to Kv×. Then we get a canonical homomorphism Dv → Π(Kv), f 7→ fv.

Fact 3. In the above notations, let w be a valuation of Kv. Then the following hold:

1. The canonical map Dv → Π(Kv) induces an isomorphism Dv/Iv ∼= Π(Kv).

2. One has the following inequalities of subgroups of Π(K):

Iv ⊂ Iw◦v ⊂ Dw◦v ⊂ Dv.

3. Identifying Dv/Iv with Π(Kv) as above, one has Dw◦v/Iv = Dw, Iw◦v/Iv = Iw.

Next recall the following basic properties of the quasi prime divisors v of K|k:

a) One has td(K |k)− 1 = td(Kv |kv).

b) The value group vK contains no non-trivial `-divisible convex subgroups.

c) One has an isomorphism vK/vk ∼= Z as abstract groups.

3 Recall that if g is the genus of X, then π`,ab1 (X) ∼= Z2g
` if char(k) 6= `, and π`,ab1 (X) ∼= Zγ` for some

0 ≤ γ ≤ g if char(k) = `, called is the Hasse–Witt invariant of the Jacobian variety Jac(X) of X.
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d) Any two distinct quasi prime divisors v and w are incomparable, i.e., v 6= w implies that
Ov and Ow are not comparable w.r.t. inclusion.

These properties have the following consequences for minimized decomposition theory.

Fact 4. In the above notations and context, the following hold:

1. Let v be a quasi prime divisor of K|k. Then Iv = Dv and Iv ∼= Z`.

2. Let v, w be two distinct quasi prime divisors. Then one has Iv ∩ Iw = 1.

The following lemma is the key point in the proof of our Main Theorem:

Lemma 5. In the notations from the Main Theorem, let V0 denote the set of prime divisors of
K|k. Then the following hold:

1. Every open subgroup of Π(K) contains Iv for all but finitely many v ∈ V0.

2. The kernel of the canonical map ιV0 :
∏
v∈V0

Iv → Π(K) is isomorphic to Z`.

3. One has a canonical exact sequence: 0→ Z` →
∏
v∈V0

Iv → Π(K)→ π`,ab
1 (X)→ 1.

Proof: Proof of Assertion (1): Assume first that U is an open subgroup of Π(K) such that
Π(K)/U ∼= Z/`n, and let f : Π(K)→ Z/`n be a surjective homomorphism with kernel U . Since
µ`∞ ⊂ K, and thus Tor1

Z`(K
×,Q`/Z`) is `-divisible, we see that the canonical map

Π(K) = Hom(K×,Z`)→ Hom(K×,Z/`n)

is surjective, and the kernel of this map is `n · Π(K). Thus f factors through some homomor-
phism g : Hom(K×,Z/`n)→ Z/`n. By Pontryagin duality, there exists some x ∈ K× such that
g(h) = h(x) for all h ∈ Hom(K×,Z/`n). Hence our original map f is given by

f(φ) = φ(x) (mod `n)

for all φ ∈ Π(K) = Hom(K×,Z`). Now since V0 is the collection of all divisorial valuations of
K|k, and td(K |k) = 1, we see that v(x) = 0 for all but finitely many v ∈ V0. From this it
follows that U = ker(f) contains Iv for all but finitely many v ∈ V0. Next, every open subgroup
U ⊂ Π(K) is of the form U = U1 ∩ · · · ∩ Ur with Ui ⊂ Π(K) open and Π(K)/Ui ∼= Z/`ni for
each i. Thus, assertion (1) follows.

Proof of Assertions (2) & (3): Let X be the unique complete normal model of K|k, and
consider the canonical exact sequence:

0→ K×/k×
div−−→ Div(X)→ Pic(X)→ 0. (1.2)

Since Iv = Hom(K×/Uv,Z`) = Hom(vK,Z`), we obtain a canonical isomorphism:

Hom(Div(X),Z`) ∼=
∏
v∈V0

Iv.
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Moreover, ιV0
:
∏
v∈V0

Iv → Π(K) is obtained by applying the functor Hom(•,Z`) to the
divisor map div : K×→ Div(X), and since k× is divisible, one has Π(K) = Hom(K×/k×,Z`)
canonically. Thus, by applying Hom(•,Z`) to (1.2), we obtain the exact sequence:

0→ Hom(Pic(X),Z`)→
∏
v∈V0

Iv
ιV0−−→ Π(K)→ π`,ab

1 (X)→ 1. (1.3)

To conclude the proof of assertion (2), we consider the following exact sequence:

0→ Pic0(X)→ Pic(X)
deg−−→ Z→ 0. (1.4)

Applying Hom(•,Z`) to (1.4), we obtain the following short exact sequence:

0→ Z` → Hom(Pic(X),Z`)→ Hom(Pic0(X),Z`).

But Pic0(X) is divisible since k is algebraically closed, and thus Hom(Pic0(X),Z`) = 0. There-
fore, one has an isomorphism Z` ∼= Hom(Pic(X),Z`), and thus (1.3) turns into the following

short exact sequence 0 → Z` →
∏
v∈V0

Iv → Π(K) → π`,ab
1 (X) → 1. This concludes the proof

of Lemma 5.

C) Proof of Main Theorem

First, the implication i) ⇒ ii) follows directly from the Lemma 5 above: Namely, if k is
an algebraic closure of a finite field, then k has no non-trivial valuations. Therefore, the quasi
prime divisors and the prime divisors of K|k are the same, i.e., V = V0. Second, if l = k, then
V0 = Vk = Vl. Thus the implication i) ⇒ ii) is a direct consequence of Lemma 5.

For the converse implication, suppose that condition ii) is satisfied. By contradiction, sup-
pose that k is not algebraic over a finite field in case I, respectively that k 6= l in case II. Then
k has non-trivial valuations wk, which in case II, are trivial on l. For such a valuation wk, we
consider a constant reduction w of K with w|k = wk. (Notice that such constant reductions
w always exist: If t ∈ K is a non-constant function, then any prolongation w of the Gauss
valuation wt of k(t) to K will do the job.) In particular, wK = wk, because k is algebraically
closed, and by Fact 3, it follows that Iw is trivial, and Dw → Π(Kw) is an isomorphism. Thus
we can identify Π(Kw) canonically with a subgroup of Π(K).

Let V0 denote the collection of the prime divisors of K|k, and let W0 denote the collection
of prime divisors of Kw|kw. Furthermore, put

Vw := {w0 ◦ w : w0 ∈ W0}.

We put V∗ := V in case I, respectively V∗ := Vl in case II. Each v ∈ V0 is, in particular, a c.r.
quasi prime divisor of K|k (namely, with respect to the trivial valuation of K), so that V0 ⊂ V∗.
Also, for every valuation w0 ∈ W0, the composition w0 ◦w ∈ Vw is a c.r. quasi prime divisor of
K|k, hence Vw ⊂ V∗.

Applying Lemma 5 to the set V0 of the prime divisors of K|k, we have an exact sequence

1→ Z` −→
∏
v∈V0

Iv
ιV0−→Π(K). (1.5)
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On the other hand, we can apply Lemma 5 to the set of prime divisorsW0 of Kw|kw, to obtain
another short exact sequence:

1→ Z` −→
∏
w0∈W0

Iw0

ιW0−→Π(Kw).

Next recall that we identified canonically Π(Kw) = Dw/Iw = Dw as a subgroup of Π(K).
In light of this identification, Fact 3 implies that:

Iw0 = Iw0◦w/Iw = Iw0◦w

as subgroups of Π(K). In particular, we obtain yet another short exact sequence:

1→ Z` →
∏
v∈Vw Iv

ιVw−→Π(K). (1.6)

Combining (1.5) and (1.6), we see that the kernel of

ιV0∪Vw :
∏
v∈V0∪Vw Iv =

(∏
v∈V0

Iv
)
×
(∏

v∈Vw Iv
)
→ Π(K)

has Z`-rank ≥ 2 since V0 ∩Vw = ∅. Equivalently, if (τv)v∈V0∪Vw is any system of generators of
the system of procyclic groups (Iv)v∈V0∪Vw , then there are at least two pro-relations between
the generators (τv)v∈V0∪Vw .

To conclude the proof of the theorem, we note that V0 ∪ Vw ⊂ V∗. Thus if (τv)v∈V∗ is any
system of generators of the system of procyclic groups (Iv)v∈V∗ , then there are at least two
pro-relations between these generators. This contradicts the assumptions of ii).

Applying Lemma 5, (3), one concludes the proof of the Main Theorem.
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