A Note On S^1-Equivariant Maps Between 3-Spheres
by Seda Eren1 and Ali Özkurt2

Abstract
In this paper, we study the non-existence of equivariant maps of 2-connected compact manifold with effective circle actions. It was given a necessary condition for a map between 3-spheres to be equivariant for an effective circle action.

Key Words: Inverse limit, Hilbert-Smith conjecture, effective group action, equivariant map.
2010 Mathematics Subject Classification: Primary 54B25, Secondary 57S10, 57S25.

1 Introduction
This short note is motivated by the following statement known as the generalized Hilbert-Smith conjecture:

Conjecture: If G is a compact group which acts effectively on a connected finite dimensional manifold, then G is a Lie group. A well known fact ([7]) states Hilbert-Smith conjecture is equivalent the following conjecture:

Conjecture: A p-adic group cannot act effectively on a connected finite dimensional manifold.

Therefore constructing effective p-adic space plays an important role in the study of the Hilbert-Smith conjecture.

We show that one way to obtain a compact space with an effective p-adic group action, is to take inverse limit of inverse systems of effective S^1-spaces with bonding maps that satisfy certain equivariant properties.

2 Preliminaries and Background
In this section we give necessary definitions and facts that will be used in the note. Suppose that to every α in a set I directed by the relation \leq corresponds a topological space X_α, and that for any $\alpha, \beta \in I$ satisfying $\alpha \leq \beta$ a continuous mapping $f_\beta^\alpha : X_\beta \to X_\alpha$ is defined; suppose further that $f_\gamma f_\alpha = f_\beta$ for any $\alpha, \beta, \gamma \in I$ satisfying $\gamma \leq \alpha \leq \beta$ and that $f_\alpha^\alpha : X_\alpha \to X_\alpha$ is the
identity map for all $\alpha \in I$. In this case we say that the family $S = \{X_\alpha, f_\alpha^\beta, I\}$ is an inverse system of the spaces X_α; the mappings f_α^β are called bonding mappings of the inverse system S.

Let $S = \{X_\alpha, f_\alpha^\beta, I\}$ be an inverse system; an element (x_α) of the cartesian product $\prod_{\alpha \in I} X_\alpha$ is called a thread of S if $f_\alpha^\beta(x_\beta) = x_\alpha$ for any $\alpha, \beta \in I$ satisfying $\alpha \leq \beta$, and the subspace of $\prod_{\alpha \in I} X_\alpha$ consisting of all threads of S is called the limit of the inverse system $S = \{X_\alpha, f_\alpha^\beta, I\}$ and is denoted by $\varprojlim S$ or by $\varprojlim X_\alpha$.

We denote by $\pi_\beta : \varprojlim X_\alpha \to X_\beta$ the restriction of the canonical projection $\prod_{\alpha \in I} X_\alpha \to X_\beta$. Clearly, for any $\alpha, \beta \in I$ such that $\alpha \leq \beta$, the projections π_α and π_β satisfy the equality $\pi_\alpha = f_\alpha^\beta \pi_\beta$. The following results are well known and we refer to [10] for more details.

Theorem 1. [10, pg. 99] The limit of inverse system of T_i-spaces is a T_i-space for $i \leq 3\frac{1}{2}$.

Theorem 2. [10, pg. 355] The inverse limit of inverse system $S = \{X_\alpha, f_\alpha^\beta, I\}$ of continua is a continuum.

If $S = \{G_\alpha, f_\alpha^\beta, I\}$ is an inverse system of topological groups (f_α^β are continuous group homomorphisms), then $\varprojlim G_\alpha$ is also a topological group with the subspace topology from $\prod_{\alpha \in I} G_\alpha$ and with the group operation $(g_\alpha)(h_\alpha) \mapsto (g_\alpha h_\alpha)$. Further, if all groups G_α in the inverse system are compact then inverse limit is compact group.

Given a prime number p. Set $G_n = S^1 = \{z \in \mathbb{C} : |z| = 1\}$ (the usual torus group) for all $n \in \mathbb{N}$ and define $f_n^{n+1} : G_{n+1} \to G_n$, $f_n^{n+1}(z) = z^p$ for all $n \in \mathbb{N}$ and $z \in S^1$. The inverse limit of this inverse system is called the p-adic solenoid T_p. This inverse limit has the p-adic integers as a totally disconnected closed normal subgroup. Solenoids are one of the prototypes of compact abelian groups that are connected but not arc-wise connected.

Let G be a group and X be a topological space. Then G acts on X if there is a continuous function $G \times X \to X$ denoted by $(g, x) \mapsto gx$, such that

- $1x = x$
- $(gh)x = g(hx)$

for all $x \in X$ and $g, h \in G$ (here 1 is the identity element of G). Call X a G-space if G acts on X. If X is a G-space and $x \in X$, then the subspace $G(x) = \{gx \in X : g \in G\}$ is called the orbit of x. We denote the set whose elements are the orbits by X/G. An action of G on X is said to be transitive if there is precisely one orbit, X itself and it is said to be effective if for any $g \neq 1$ in G there exists an x in X such that $gx \neq x$.

3 Main Result

Let X be a G-space, Y be an H-space and $\varphi : G \to H$ be continuous group homomorphism. A continuous map $f : X \to Y$ is called φ-equivariant if

$$f(gx) = \varphi(g)f(x)$$

for all $g \in G$ and $x \in X$.
If \(\{X_\alpha, f_\alpha^\beta, I\} \) is an inverse system of topological spaces and \(\{G_\alpha, \varphi_\alpha^\beta, I\} \) is an inverse system of topological groups, where each \(X_\alpha \) is a \(G_\alpha \)-space and each bonding map \(f_\alpha^\beta \) is \(\varphi_\alpha^\beta \)-equivariant, then we get another inverse system of topological spaces \(\{X_\alpha/G_\alpha, f_\alpha^\beta, I\} \) by passing to orbit spaces. Also, under above conditions \(\varprojlim X_\alpha \) is a \(\varprojlim G_\alpha \)-space with the action given by

\[
(g_\alpha)(x_\alpha) = (g_\alpha x_\alpha)
\]

for \((g_\alpha) \in \varprojlim G_\alpha \) and \((x_\alpha) \in \varprojlim X_\alpha \). Singh [9] has proved, for the inverse systems of spaces with bonding maps satisfy certain properties, that \((\varprojlim X_\alpha)/(\varprojlim G_\alpha) \) is homeomorphic to \(\varprojlim (X_\alpha/G_\alpha) \). As a consequence of this, under the above conditions, if each \(X_\alpha \) is transitive \(G_\alpha \)-space then \(\varprojlim X_\alpha \) is a transitive \(\varprojlim G_\alpha \)-space. Here we consider the following question.

Problem: In the above discussion, is it possible to replace ”effective” by ”transitive”.

Before answer the problem, we recall some facts about ordered sets. If \(I \) is a set and \(\leq \) is an order relation on \(X \), and if \(a < b \) (i.e. \(a \leq b \) and \(a \neq b \)), we use the notation \((a, b)\) to denote the set \(\{x : a < x < b\} \); is called an open interval in \(X \). If this set is empty, we call \(a \) the immediate predecessor of \(b \), and we call \(b \) the immediate successor of \(a \).

Lemma 1. Let \(\{X_\alpha, f_\alpha^\beta, I\} \) be an inverse system of non-empty Hausdorff topological spaces with a linear order \((\leq)\) on \(I \) and let \(\{G_\alpha, \varphi_\alpha^\beta, I\} \) be an inverse system of topological groups, where each \(X_\alpha \) is an effective \(G_\alpha \)-space and each bonding map \(f_\alpha^\beta \) is \(\varphi_\alpha^\beta \)-equivariant and onto. Further, assume that each element of \(I \) has an immediate predecessor and immediate successor. Then \(X = \varlimsup X_\alpha \) is an effective \(G = \varlimsup G_\alpha \)-space.

Proof: Suppose that the induced \(G \) action on \(X \) is not effective. Then, there exists an element \(g = (g_\alpha) \in G \setminus \{1\} \) such that \(g x = x \) for each \(x = (x_\alpha) \in X \). Since \(g = (g_\alpha) \in G \setminus \{1\} \), there exists at least an element \(\alpha' \in I \) such that \(p_{\alpha'}(g) = g_{\alpha'} \in G_{\alpha'} \setminus \{1\} \) where \(p_{\alpha'} \) denotes the canonical projection \(p_{\alpha'} : \varprojlim G_\alpha \to G_{\alpha'} \).

Let \(y \) be an arbitrary point of \(X_{\alpha'} \). Since each bonding map \(f_\alpha^\beta \) is onto, we have an element \(z = (x_\alpha) \in \pi^{-1}_{\alpha'}(y) \) \((\pi_{\alpha'}) \) denotes the canonical projection \(\pi_{\alpha'} : \varprojlim X_\alpha \to X_{\alpha'} \) such that

\[
(i) \quad f_{\alpha'}^\gamma(\pi_{\gamma}(z)) = \pi_{\lambda}(z)
\]

for \(\alpha' \leq \lambda \) and immediate successor \(\gamma \) of \(\lambda \)

\[
(ii) \quad f_{\alpha'}^\theta(\pi_{\theta}(z)) = \pi_{\beta}(z)
\]

for \(\theta \leq \alpha' \) and immediate predecessor \(\beta \) of \(\theta \)

Since \(g z = z \), we have \(g_{\alpha'} y = y \). This implies that \(X_{\alpha'} \) is not effective \(G_{\alpha'} \)-space which is a contradiction. \(\square \)

Example 1. Let \(p \) be a prime number. Set \(G_n = S^1 = \{z \in \mathbb{C} : |z| = 1\} \) and define \(\varphi_{n+1}^n : G_{n+1} \to G_n, \varphi_{n+1}^n(z) = z^p \). Similarly set \(X_n = \mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\} \) and define \(f_{n+1}^n : X_{n+1} \to X_n, f_{n+1}^n(w) = w^p \) for all \(n \in \mathbb{N} \). We consider the effective action of \(G_n \) on \(X_n \) given by multiplication. It is clear that each bonding map \(f_{n+1}^n \) is \(\varphi_{n+1}^n \)-equivariant. So inverse limit of the inverse system \(\{X_n, f_{n+1}^n, N\} \) is an effective compact \(\varprojlim G_n = T_p \)-space. Since the \(p \)-adic group, \(Z_p \), is a subgroup of \(T_p \), \(\varprojlim X_n \) is effective \(Z_p \)-space.
Let X be a compact and 2-connected (i.e. $\pi_i(X) = \{0\}$ for $i \leq 2$) manifold and $q : X \to Y$ be a finite sheeted covering map over a compact manifold Y. Consider a continuous map $f : X \to X$ such that $qf = q$. Let p be a prime number and $\varphi : S^1 \to S^1, \varphi(z) = z^p$.

Theorem 3. If there is an effective S^1 action on X which admits f as a φ-equivariant map, then the p–adic integers acts effectively on X.

Proof: Suppose there exists an effective S^1-action on X such that f is φ-equivariant map (i.e. $f(zx) = z^pf(x)$ for all $z \in S^1$ and $x \in X$). Let $X_f = \varprojlim (X,f) = \{(x_i)_{i \in \mathbb{N}} : f(x_{i+1}) = x_i\}$ and $T_p = \varprojlim (S^1, \varphi) = \{(z_i)_{i \in \mathbb{N}} : \varphi(z_{i+1}) = z_i^p = z_i\}$ (i.e. p-adic solenoid). On the other hand Cohen [6] defined \varprojlim functor and proved that there is a short exact sequence for the homotopy classes of maps from a space Z into the inverse limit of spaces X_α, namely

$$0 \to \varprojlim \lim^1 [SZ, X_\alpha] \to \lim[Z, \lim X_\alpha] \to \lim[Z, X_\alpha] \to 0$$

where SZ be the suspension of Z and $[Z,W]$ denotes the homotopy classes of maps from the space Z to W. It is clear that $[SZ, W] = [Z, \Omega W]$, where ΩW loop space of W. In our case, we consider the homotopy classes of maps from S^1 into the inverse limit, X_f, of the inverse system \{X, f\}. Since $\pi_1(X) = \{0\}$, we have $\pi_1(X_f) = \varprojlim [SS^1, X]$.

In our case $\varprojlim [SS^1, X] = \text{coker} \psi$ where $\psi : [SS^1, X]^\mathbb{N} \to [SS^1, X]^\mathbb{N}, \psi((x_n)) = (x_n - Sf(x_{n+1}))$ ($Sf : [SS^1, X] \to [SS^1, X]$ induced by f). Since $[SS^1, X] = [S^1, \Omega X] = \pi_2(X) = \{0\}$, we have $\pi_1(X_f) = 0$.

Now we identify Y with inverse limit of inverse system \{Y, 1\}. Since $qf = q$, it induces a continuous map $q : X_f \to Y$ given by $q(x_n) = (q(x_n))$. Then, by [11] g will also be a finite sheeted (in fact has the same number of sheet as q) covering map over Y. However since X_f is simply connected, it is the universal cover of Y. Therefore $X_f = X$ by the uniqueness of the universal cover. According to Lemma 1. there is an effective T_p (therefore Z_p)-action on X.

We shift now our attention to 3-manifolds. It is well known fact that fundamental group is the most important invariant to distinguish 3-manifolds. In particular, if X is simply connected compact 3-manifold then X has the homology of a 3-sphere by Poincare duality. In fact X is homotopy equivalent to S^3 by the Hurewicz theorem. But Poincare conjecture ([2,3,4]) asserts that S^3 is the only such manifold. If X is orientable compact manifold of odd dimension then the Euler characteristic is 0 by Poincare duality. If X is not orientable compact manifold then it has a two fold covering by a compact orientable manifold. And it is obvious that the Euler characteristic of this cover is twice the Euler characteristic of X. Therefore if X is a non-orientable 3-manifold, then the Euler characteristic of X is 0. This implies that $H_1(X,Z)$ is infinite. Therefore S^3 is the only 2-connected compact 3-manifold.

Remark 1. A 3-manifold X is called spherical if there exists a finite subgroup Γ, of $SO(4)$ acting freely by rotations on S^3 such that $X = S^3/\Gamma$. On the other hand if $q : S^3 \to Y$ is a finite covering, then the covering transformation group and hence $\pi_1(Y)$ is finite. Thurston’s elliptization conjecture, which was proved in 2003 by G. Perelman ([3,4]), states that a closed
A Note on \(S^1\)-Equivariant Maps Between 3-Spheres

3-manifold with finite fundamental group is spherical. So \(Y\) must be a spherical 3-manifold. On the other hand \(\Gamma\) is either cyclic, or is a central extension of a dihedral, tetrahedral, octahedral, or icosahedral group by a cyclic group of even order. The most basic example for spherical 3-manifolds are Lens spaces (cyclic case) and links of quotient (alias simple) surface singularities. (see [1] or [8], pp 59-60.)

Recently J. Pardon [5] has proved that there is no effective action of a \(p\)-adic group on any connected 3-manifold. So we have the following theorem.

Theorem 4. If \(\Gamma\) is one of the those classes of groups and acts freely by rotations on \(S^3\) and \(\theta\) is an effective \(S^1\) action on \(S^3\) such that it admits a \(\varphi\)-equivariant map \(f : S^3 \to S^3\), then there exists \(x \in S^3\) such that \(f(x) \notin \Gamma(x)\).

Proof: Assume \(f(x) \in \Gamma(x)\) for each \(x \in S^3\). Then we have \(qf = q\) where \(q : S^3 \to S^3/\Gamma\) is the canonical, finite sheeted covering map. In accordance with Theorem 3. there is an effective \(p\)-adic group action on \(S^3\) which is a contradiction. \(\square\)

Corollary 1. There is no effective \(S^1\)-action on \(S^3\) which admits antipodal map as a \(\varphi\)-equivariant map.

Proof: The proof is trivial from Theorem 4. \(\square\)

References

Received: 07.12.2013
Revised: 24.01.2014
Accepted: 10.02.2014

Department of Mathematics,
University of Cukurova
E-mail: 1kinaciseda@gmail.com
2aozkurt@cu.edu.tr