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In this paper, we prove a counting result for the number of polynomials with integer
coefficients bounded by a positive integer n and having all roots integers.
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1 Introduction

For any two positive integers n and s, define An(s) to be the set of polynomials of degree s with
all the roots integer numbers, and with all the coefficients in the set [n] := {1, 2, · · · , n}. Let
An

(s) denote the cardinality of An(s). In [2], two of the authors have conjectured that for any
positive integer s,

lim
n→∞

An
(s)

n logs n
=

1

(s!)2
.

The purpose of this note is to prove the above conjecture, and to show that the following result
holds true.

Theorem 1.1. Fix a positive integer s. Then for all large n,

An
(s) =

n logs n

(s!)2
+ Os

(
n logs−1 n

)
. (1.1)

One can extract secondary terms from the right side of (1.1). Due to the complications
when dealing with all the necessary subcases, we will do this only for s = 2 and s = 3. For
s = 2, we prove the following result, which improves on Theorem 5.1 from [2].
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Theorem 1.2. There exist constants D1 and D2 such that for all large n,

An
(2) =

n log2 n

(2!)2
+D1n log n+D2n+ O

(
n2/3 log n

)
. (1.2)

For s = 3, we have the following result.

Theorem 1.3. There exist constants B1, B2 and B3 such that for all large n,

An
(3) =

n log3 n

(3!)2
+B1n log2 n+B2n log n+B3n+ O

(
n3/4 log n

)
. (1.3)

2 Proof of Theorem 1.1

Proof of Theorem 1.1. We recall the definition of An(s),

An
(s) = #

({
P (x) = a0 + a1x+ · · ·+ asx

s : a0, . . . , as ∈ {1, 2, . . . , n},
and all roots of P (x) are integers.

})
.

One observes that if P (x) ∈ An(s) then P (x) = as(x + b1) . . . (x + bs) ; b1, . . . , bs ∈ N ; a0 =
asb1 . . . bs ≤ n, a1 = as(b1 . . . bs−1 + b1 . . . bs−2bs + · · · + b2 . . . bs) ≤ n, . . . , as−1 = as(b1 +

b2 + · · ·+ bs) ≤ n. We will first count the number of polynomials in An(s) where the constant
coefficient a0 = asb1 . . . bs is largest. Denote

S1
(s) = {(as, b1, . . . , bs) : 1 ≤ as ≤ n, b1 ≤ b2 ≤ · · · ≤ bs, asb1b2 . . . bs ≤ n}.

For 0 ≤ j ≤ s, we define

Tj
(s) = #




(as, b1, . . . , bs) : asb1 . . . bs ≤ n, b1 ≤ · · · ≤ bs, with
j number of equalities between b1, b2, . . . , bs
and the remaining are strict inequalities.


 .

Then,

#(S1
(s)) = T0

(s) +

s∑
j=1

Tj
(s) =

∑
1≤as≤n

∑
1≤b1<b2···<bs
asb1b2...bs≤n

1 +

s∑
j=1

Tj
(s). (2.1)

Now,

T0
(s) =

∑
1≤as≤n

∑
1≤b1<b2···<bs
asb1b2...bs≤n

1 =
1

s!

∑
as≤n

∑
b1,...,bs

asb1b2...bs≤n

1 =
1

s!

∑
as≤n

∑
m≤ n

as

ds(m)

=
1

s!

∑
m≤n

ds+1(m), (2.2)

where dl(m) is the generalized divisor function which counts the number of ways a positive
integer m can be written as a product of l positive numbers. Estimating the error term in the
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asymptotic formula for the summatory function of dl(m) is also the famous general (Dirichlet)
divisor problem (or the Piltz divisor problem). For more on the Dirichlet divisor problem and
the Piltz divisor problem see [3], [4]. The generalized divisor summatory function is given by∑

m≤x

dl(m) = xPl(log x) + O
(
x1−1/l log x

)
, (2.3)

where Pl(log x) is a polynomial in log x of degree l − 1. It is given by

Pl(log x) = Resz=1
ζl(z)xz−1

z
=

l∑
j=1

al−j logl−j x. (2.4)

Here z is a complex number and ζ(z) is the Riemann zeta-function. A.F.Lavrik [1] evaluated
the coefficients al−j explicitly in terms of constants γ′ks appearing in the coefficients of Laurent
series expansion of the Riemann zeta function about its pole z = 1,

al−j =
(−1)

j+1

(l − j)!

1 +

j−1∑
k=1

(−1)
k
∑
Ω(k)

l(l − 1) . . . (l − r + 1)

r0!r1! . . . rν !
γ′0
r0 . . . γ′ν

rν

 .

The index Ω(k) denotes summation over all solutions of the equation k = r0+2r1+· · ·+(ν+1)rν
in non negative integers ν, r0, . . . , rν , and r = r0 + · · ·+ rν , while γ′0, γ′1, . . . are the coefficients
of the series

∞∑
ν=0

γ′ν(z − 1)
ν

= ζ(z)− 1

z − 1
.

The coefficients γ′ns for n = 0, 1, . . . are given by,

(−1)nn!γ′n = lim
N→∞

(
N∑
m=1

lognm

m
− logn+1N

n+ 1

)
.

These are related to the Stieltjes constants γks that occur in the Laurent series expansion of the
Riemann zeta function by the relation γ′n = (−1)n

n! γn. Note that the first coefficient al−1 = 1
(l−1)!

and so we get

Pl(log x) =
1

(l − 1)!
logl−1 x+

l∑
j=2

al−j logl−j x.

This along with (2.2) and (2.3) gives

T0
(s) =

1

s!

∑
m≤n

ds+1(m) =
n

s!2
logs n+ O

(
n log(s−1) n

)
. (2.5)

In Tj(s), since two or more bi′s are equal and they satisfy the same inequality asb1 . . . bs ≤ n,
we have Tj(s) = O

(
n log(s−1) n

)
. This along with (2.1) and (2.5) gives

#(S1
(s)) =

n

s!2
logs n+ O

(
n log(s−1) n

)
. (2.6)
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It remains to consider the cases when the constant coefficient is not the largest. We begin with
counting polynomials in which a0 is not the largest but the previous coefficient a1 is largest.
Then

b2b3 . . . bs + b1b3 . . . bs + · · ·+ b1b2 . . . bs−1 > b1 . . . bs.

Here at least one of the s terms on the left side is larger than
b1 . . . bs

s
. Say b2 . . . bs >

b1 . . . bs
s

.
This implies b1 < s. So one of the roots, b1 in this case is bounded in terms of s. But for
each fixed value of b1, we have at most O

(
n logs−1 n

)
choices for the s-tuple (as, b2, . . . , bs).

Similarly, if the next coefficient a2 is largest then,

b3b4 . . . bs + b1b4 . . . bs + · · ·+ b1b2 . . . bs−2 > b1 . . . bs,

which implies that at least one of the
(
s
2

)
terms on the left side is larger than

b1 . . . bs(
s
2

) . Say

b3b4 . . . bs >
b1 . . . bs(

s
2

) . This gives b1b2 <
(
s
2

)
. Hence both roots b1, b2 are bounded in this case

and so for each fixed value of b1 and b2, we have at most O
(
n logs−2 n

)
choices for the (s− 1)-

tuple (as, b3, b4 . . . , bs). Repeating this argument for all the cases when the last coefficient is not
the largest, we finally obtain that the number of polynomials in which the maximum coefficient
is attained elsewhere than the last one is O

(
n logs−1 n

)
. This along with (2.6) gives

An
(s) =

n

(s!)2
logs n+ O

(
n logs−1 n

)
,

which completes the proof of the theorem.

3 Proof of Theorem 1.2

In this section we consider the case s = 2.

Proof of Theorem 1.2. For a fixed positive integer n,

An
(2) = #

({
a0 + a1x+ a2x

2 : a0, a1, a2 ∈ {1, 2, . . . , n}
and all roots are integers

})

If P (x) ∈ An(2) then P (x) = a2(x+ b1)(x+ b2) ; b1, b2 ∈ N ; a2b1b2 ≤ n ; a2(b1 + b2) ≤ n and
a2 ≤ n. Thus,

An
(2) =

∑
1≤a2≤n

∑
1≤b1≤b2
a2b1b2≤n,
a2(b1+b2)≤n

1 =
∑

1≤a2≤n

∑
1≤b1≤b2
a2b1b2≤n

1−
∑

1≤a2≤n

∑
1≤b1≤b2
a2b1b2≤n

a2(b1+b2)>n

1

=: S1
(2) − S2

(2). (3.1)
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Rewrite S1
(2) as

S1
(2) =

1

2

∑
1≤a2≤n

∑
b1,b2

a2b1b2≤n

1 +
1

2

∑
1≤a2≤n

∑
b1=b2

a2b1b2≤n

1

=
1

2

∑
b1,b2,a2
a2b1b2≤n

1 +
1

2

∑
1≤a2≤n

∑
b2∈N

a2b2
2≤n

1 =
1

2

∑
m≤n

d3(m)

+
1

2

 ∑
1≤a2≤n1/3

∑
1≤b2≤

√
n
a2

1 +
∑

1≤b2≤n1/3

∑
1≤a2≤ n

b2
2

1−
∑

1≤a2≤n1/3

∑
1≤b2≤n1/3

1

 .

Observe that the sum in the bracket above is given by∑
1≤a2≤n1/3

∑
1≤b2≤

√
n
a2

1 +
∑

1≤b2≤n1/3

∑
1≤a2≤ n

b2
2

1−
∑

1≤a2≤n1/3

∑
1≤b2≤n1/3

= C1n+ O
(
n2/3

)
.

Using this and the expression for the summatory function for d3(m) from (2.3) we obtain

S1
(2) =

1

4
n log2 n+ C2n log n+ C3n+ O

(
n2/3 log n

)
, (3.2)

where C2 and C3 are constants. Next we estimate S2
(2), the number of polynomials in An(2)

in which the last coefficient is not the largest. Now,

S2
(2) = S1,1 + S1,2 (3.3)

where S1,1 = #({(a2, b1, b2) ∈ N3 : b1 < b2 and a2b1b2 ≤ n < a2(b1 + b2)}) and
S1,2 = #(

{
(a2, b1, b2) ∈ N3 : b1 = b2 and a2b1b2 ≤ n < a2(b1 + b2)

}
). In S1,1, since b1b2 < b1 +

b2 < 2b2, we have b1 < 2. This implies b1 = 1. Then, a2b2 ≤ n < a2(1 + b2). This implies
n
a2
− 1 < b2 ≤ n

a2
. Therefore,

S1,1 = #

({
(a2, b2) : a2 > n2/3, b2 ≥ 1,

n

a2
− 1 < b2 ≤

n

a2

})
+ #

({
(a2, b2) : 1 ≤ a2 ≤ n2/3, b2 ≥ 1,

n

a2
− 1 < b2 ≤

n

a2

})

=
∑

1≤b2≤n1/3

(
n

b2
− n

(1 + b2)

)
+ O

 ∑
1≤a2≤n2/3

1


= n

∑
b2>1

1

b2(1 + b2)
− n

∑
b2>n1/3

1

b2(1 + b2)
+ O

(
n2/3

)
= C4n+ O

(
n2/3

)
. (3.4)
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In S1,2, since b1 = b2, we have a2b1
2 ≤ n < 2a2b1, which implies b1 = b2 = 1. And so,

S1,2 = #({a2 ∈ N : a2 ≤ n < 2a2}) =
n

2
+ O (1) .

Combining (3.3), (3.4) and above, we obtain,

S2
(2) = C5n+ O

(
n2/3

)
, (3.5)

for a positive constant C5. Therefore, the above equation along with (3.1) and (3.2) gives us

An
(2) =

1

4
n log2 n+ C6n log n+ C7n+ O

(
n2/3 log n

)
,

where C6 and C7 are constants. This completes the proof of the theorem.

4 Proof of Theorem 1.3

In this section we estimate An(s) for s = 3.

Proof of Theorem 1.3. For a fixed positive integer n,

An
(3) = #

({
a0 + a1x+ a2x

2 + a3x
3 : a0, a1, a2, a3 ∈ {1, 2, . . . , n}

and all roots are integers

})

If P (x) ∈ An(3) then P (x) = a3(x+ b1)(x+ b2)(x+ b3) ; b1, b2, b3 ∈ N ; a3b1b2b3 ≤ n, ; a3(b1 +
b2 + b3) ≤ n, ; a3(b1b2 + b2b3 + b3b1) ≤ n and a3 ≤ n.

An
(3) =

∑
1≤a3≤n

∑
1≤b1≤b2≤b3
a3b1b2b3≤n,

a3(b1b2+b2b3+b1b3)≤n,
a3(b1+b2+b3)≤n

1

=
∑

1≤a3≤n

∑
1≤b1≤b2≤b3
a3b1b2b3≤n,

a3(b1b2+b2b3+b1b3)≤n

1−
∑

1≤a3≤n

∑
1≤b1≤b2≤b3
a3b1b2b3≤n,

a3(b1b2+b2b3+b1b3)≤n,
a3(b1+b2+b3)>n

1. (4.1)

Now for any positive integers b1, b2, b3, we have, b1b2 + b2b3 + b1b3 ≥ b1 + b2 + b3 which implies
there exists no positive integers b1, b2, b3, for which the condition, b1b2 + b2b3 + b1b3 ≤ n <
b1 + b2 + b3 holds true. And so the second sum in the above equation equals zero. This gives,

An
(3) =

∑
1≤a3≤n

∑
1≤b1≤b2≤b3
a3b1b2b3≤n,

a3(b1b2+b2b3+b1b3)≤n

1

=
∑

1≤a3≤n

∑
1≤b1≤b2≤b3
a3b1b2b3≤n

1−
∑

1≤a3≤n

∑
1≤b1≤b2≤b3
a3b1b2b3≤n,

a3(b1b2+b2b3+b1b3)>n

1. (4.2)
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Define
S1

(3) :=
{
x = (a3, b1, b2, b3) ∈ N4 : 1 ≤ a3 ≤ n, a3b1b2b3 ≤ n

}
,

S2
(3) :=

{
x = (a3, b1, b2, b3) ∈ N4 : 1 ≤ a3 ≤ n, 1 ≤ b1 ≤ b2 ≤ b3,

a3b1b2b3 ≤ n < a3(b1b2 + b2b3 + b1b3).

}
.

Let T1
(3) := {x ∈ S1

(3) : b1 < b2 = b3}, T2
(3) := {x ∈ S1

(3) : b1 = b2 < b3}, and T2
(3) := {x ∈

S1
(3) : b1 = b2 = b3}. Observe that,

∑
1≤a3≤n

∑
1≤b1≤b2≤b3,
a3b1b2b3≤n

1 =
1

3!
#(S1

(3)) +
1

2
#(T1

(3)) +
1

2
#(T2

(3)) +
5

6
#(T3

(3)).

From (4.2) and above, we obtain,

An
(3) =

1

3!
#(S1

(3)) +
1

2
#(T1

(3)) +
1

2
#(T2

(3)) +
5

6
#(T2

(3))−#(S2
(3)). (4.3)

Rewriting S1
(3) in terms of the generalized divisor function d4(n) and using (2.3), we have,

#(S1
(3)) =

∑
m≤n

d4(m) =
1

3!
n log3 n+ C8n log2 n+ C9n log n+ C10n

+ O
(
n3/4 log n

)
, (4.4)

where C8, C9 and C10 are constants. To estimate #(S2
(3)) in (4.3), we again consider cases

distinguished by the relations between the positive integers b1, b2 and b3. Let A1 := {x ∈ S2
(3) :

b1 < b2 < b3}, A2 := {x ∈ S2
(3) : b1 = b2 < b3}, A3 := {x ∈ S2

(3) : b1 < b2 = b3}, and finally
A4 := {x ∈ S2

(3) : b1 = b2 = b3}. So,

#(S2
(3)) = #(A1) + #(A2) + #(A3) + #(A4). (4.5)

We first estimate #(A4). In A4 since b1 = b2 = b3, we have a3b1
3 < 3a3b1

2, which implies
b1 = 1, 2, and so,

#(A4) =
∑

n
3<a3≤n

1 +
∑

n
12<a3≤

n
8

1 = C11n+ O (1) , (4.6)

where C10 is a positive constant. Next we estimate A3 where b1 being the smallest takes the
values 1 and 2 only. Then, #(A3) = #(A3,1) + #(A3,2), where A3,1 := {(a3, b1, b2, b3) ∈ A3 :
b1 = 1}, and A3,2 := {(a3, b1, b2, b3) ∈ A3 : b1 = 2}. In A3,2, since, 2a3b2

2 < a3(4b2 + b2
2), this

implies, b2 < 4 and so b2 = b3 = 3 since b1 = 2 < b2 = b3. Thus,

#(A3,2) =
∑

n
21<a3≤

n
18

1 = C12n+ O (1) , (4.7)
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for some positive constant C11. To estimate A3,1 we write it as A3,1 = A3,1,1 \ A3,1,2 where,
A3,1,1 := {(a3, b1, b2, b3) ∈ A3,1 : a3b2

2 ≤ n}, and A3,1,2 := {(a3, b1, b2, b3) ∈ A3,1 : a3(b2
2 +

2b2) ≤ n}. Now,

#(A3,1,1) =
∑

1≤a3≤n1/3

∑
1≤b2≤

√
n
a3

1 +
∑

1≤b2≤n1/3

∑
1≤a3≤ n

b2
2

1

−
∑

1≤a3≤n1/3

∑
1≤b2≤n1/3

1 = C13n+ O
(
n2/3

)
.

And

#(A3,1,2) =
∑

1≤a3≤n1/3

∑
1≤b2≤

√
n
a3

+1−1

1 +
∑

1≤b1≤n1/3

∑
1≤a3≤ n

b2
2+2b2

1

−
∑

1≤a3≤n1/3

∑
1≤b2≤n1/3

1 = C14n+ O
(
n2/3

)
.

Combining the above two estimates and (4.7), we obtain,

#(A3) = C15n+ O
(
n2/3

)
, (4.8)

where C15 is a constant. Next we estimate A2 in (4.5). In A2, since, b1 = b2 < b3 and a3b1b2b3 <
a3(b1b2 + b2b3 + b1b3), we find that b1 = b2 = 1, 2. and so we have #(A2) = #(A2,1) + #(A2,2),
where A2,1 := {(a3, b1, b2, b3) ∈ A2 : b1 = b2 = 1} and A2,2 := {(a3, b1, b2, b3) ∈ A2 : b1 = b2 =
2}. In A2,2, since, 4a3b3 ≤ n < 4a3 + 4a3b3, this implies, n

4a3
− 1 < b3 ≤ n

4a3
which further

shows that b3 = O (1) .

#(A2,2) = #

({
(a3, b3) : a3 > n3/4,

n

4a3
− 1 < b3 ≤

n

4a3

})
+ #

({
(a3, b3) : 1 ≤ a3 ≤ n3/4,

n

4a3
− 1 < b3 ≤

n

4a3

})

=
∑

1≤b3≤n
1/4

4

(
n

4b3
− n

4(1 + b3)

)
+ O

 ∑
1≤a3≤n3/4

1


= n

∑
b2>1

1

4b3(1 + b3)
− n

∑
b3≥n

1/4

4

1

4b3(1 + b3)
+ O

(
n3/4

)
= C16n+ O

(
n3/4

)
, (4.9)

where C13 is a positive constant. Next as in A3,1, we write A2,1 as, A2,1 = A2,1,1 \A2,1,2 where,
A2,1,1 =: {(a3, b1, b2, b3) ∈ A2,1 : a3b3 ≤ n}, and

A2,1,2 =: {(a3, b1, b2, b3) ∈ A2,1 : a3(1 + 2b3) ≤ n}.
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Using the divisor summatory function ([3]), we obtain,

#(A2,1,1) =
∑
m≤n

d(m) = n log n+ C17n+ O
(√
n
)
. (4.10)

We remark that we could use an estimate of the summatory function of divisor function with
an error term better than O (

√
n) but this does not improve on our estimation of An(3).

#(A2,1,2) =
∑

1≤a3≤n1/2

∑
1≤b3≤ n

2a3
− 1

2

1 +
∑

1≤b3≤
√
n−1
2

∑
1≤a3≤ n

1+2b3

1

−
∑

1≤a3≤
√
n

∑
1≤b3≤

√
n−1
2

1

= C18n log n+ C19n+ O
(√
n
)
.

This along with (4.9) and (4.10) gives,

A2 = C20n log n+ C21n+ O
(
n3/4

)
, (4.11)

where C20 and C21 are constants. Next we estimate A1. Recall that

A1 =

{
x = (c3, b1, b2, b3) : 1 ≤ c3 ≤ n, 1 ≤ b1 < b2 < b3,

c3b1b2b3 ≤ n < c3(b1b2 + b2b3 + b1b3)

}
.

Note that for any x ∈ A1, we have b1 = 1 or b1 = 2. Indeed,

A1,1 = {x ∈ A1 : b1 = 1} ; A1,2 = {x ∈ A1 : b1 = 2},

and
#(A1) = #(A1,1) + #(A1,2). (4.12)

We have, A1,2 = B1,2, where

B1,2 =

{
(a3, b2, b3) : 1 ≤ a3 ≤ n, 2 < b2 < b3,

2a3b2b3 ≤ n < a3(2b2 + 2b3 + b2b3)

}
.

Note that for any (a3, b2, b3) ∈ B1,2 since 2a3b2b3 < a3(2b2 + 2b3 + b2b3), we have, b2b3 <
2b2 + 2b3 < 4b3, and hence b2 < 4 but b2 > 2 and so b2 = 3. Thus, B1,2 = C1,2, where
C1,2 = {(a3, b3) : 1 ≤ c3 ≤ n, b3 > 3, 6a3b3 ≤ n < a3(6 + 5b3)}. Again note that for any
(a3, b3) ∈ C1,2, we have, 6b3 < 6 + 5b3 which together with b3 > 3 implies b3 = 4, 5. Combining
all the above facts, we have,

#(A1,2) =
∑

n
26<c3≤

n
24

1 +
∑

n
31<c3≤

n
30

1 = C22n+ O (1) . (4.13)
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Finally we estimate A1,1. We write A1,1 = D1,1 \ F1,1, where D1,1 = {(a3, b2, b3) : a3 ≤ n, 1 <
b2 < b3, a3b2b3 ≤ n}, and F1,1 = {(a3, b2, b3) : a3 ≤ n, 1 < b2 < b3, a3(b2 + b3 + b2b3) ≤ n}. Now,

D1,1 =
1

2!

∑
m≤n

d3(m)− 1

2

∑
a3≤n

∑
b2=b3

a3b2b3≤n

= C23n log2 n+ C24n log n+ C25n+ O
(
n2/3 log n

)
, (4.14)

where C23, C24 and C25 are constants. Next we write, F1,1 = F1,1,1 ∪ F1,1,2 ∪ F1,1,3 where,
F1,1,1 = {(a3, b2, b3) ∈ F1,1 : 1 < b2 < b3 ≤ a3}, F1,1,2 = {(a3, b2, b3) ∈ F1,1 : 1 < b2 ≤ a3 < b3},
and F1,1,3 = {(a3, b2, b3) ∈ F1,1 : 1 ≤ a3 < b2 < b3}. In order to estimate these we use partial
summation. Note that in F1,1,1, b3 ≤ a3 ≤

n

b2 + b3 + b2b3
. Also, since b2 < b3 ≤ a3, we have

that b2b32 ≤ a3b2b3 ≤ n which implies b3 ≤
√

n
b2

and b2
3 ≤ a3b2b3 ≤ n implies b2 ≤ n1/3.

Using this and the estimate

∑
n≤x

1

n
= log x+ γ + O

(
1

x

)
,

we obtain,

#(F1,1,1) =
∑

1<b2≤n1/3

∑
b2<b3≤

√
n
b2

⌊
n

b2 + b3 + b2b3
− b3

⌋

=
∑

1<b2≤n1/3

∑
b2<b3≤

√
n
b2

n

b2 + b3 + b2b3

−
∑

1<b2≤n1/3

∑
b2<b3≤

√
n
b2

b3 + O

 ∑
1<b2≤n1/3

∑
b2<b3≤

√
n
b2

1
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And so,

#(F1,1,1) =
∑

1<b2≤n1/3

∑
b2<b3≤

√
n
b2

(
n

(b2 + 1)(b3 + 1)

)

+
∑

1<b2≤n1/3

∑
b2<b3≤

√
n
b2

(
n

(b2 + 1)(b3 + 1)(b2 + b3 + b2b3)

)

−
∑

1<b2≤n1/3

(
n

b2
− b22

)
+ O

 ∑
1<b2≤n1/3

√
n

b2


= n

∑
1<b2≤n1/3

1

b2 + 1

∑
b2<b3≤

√
n
b2

1

b3 + 1

+
∑
b2>1

∑
b2<b3

n

(b2 + 1)(b3 + 1)(b2 + b3 + b2b3)
+ O

(
n2/3

)
− C26n log n− C27n+ O

(
n2/3

)
= n

∑
1<b2≤n1/3

1

b2 + 1
log


√

n
b2

+ 1

b2 + 1

+ C28n log n+ C29n+ O
(
n2/3

)
= C30n log2 n+ C31n log n+ C32n+ O

(
n2/3

)
, (4.15)

where in order to estimate the sum
∑

1<b2≤n1/3

1

b2 + 1
log


√

n
b2

+ 1

b2 + 1

 , we use summation by

parts formula [5] with a(n) = 1
n+1 , f(m) = log

(√
n
m+1

m+1

)
and A(t) =

∑
n≤t a(n). Next consider

the sum F1,1,2.

Here we have, a3 < b3 ≤
n
a3

+ 1

1 + b2
− 1, a3

2b2 < a3b3b2 ≤ n and b2 ≤ n1/3.

#(F1,1,2) =
∑

1<b2≤n1/3

∑
b2≤a3<

√
n
b2

⌊ n
a3

+ 1

1 + b2
− 1− a3

⌋

=
∑

1<b2≤n1/3

∑
b2≤a3<

√
n
b2

n

a3(1 + b2)
−

∑
1<b2≤n1/3

∑
b2≤a3<

√
n
b2

1

1 + b2

−
∑

1<b2≤n1/3

∑
b2≤a3<

√
n
b2

a3 + O

 ∑
1<b2≤n1/3

∑
b2≤a3<

√
n
b2

1

 .
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Employing summation by parts we get,

#(F1,1,2) = n
∑

1<b2≤n1/3

1

1 + b2
log


√

n
b2

b2

− ∑
1<b2≤n1/3

√
n
b2
− b2

1 + b2

−
∑

1<b2≤n1/3

(
n

b2
− b22

)
+ O

 ∑
1<b2≤n1/3

√
n

b2


= C33n log2 n+ C34n log n+ C35n+ O

(
n2/3

)
. (4.16)

And finally we estimate F1,1,3, where, b2 < b3 ≤
n
a3

+ 1

1 + b2
− 1, a3

2b2 < a3b3b2 ≤ n and a3 ≤ n1/3.

#(F1,1,3) =
∑

1≤a3≤n1/3

∑
a3<b2≤

√
n
a3

⌊ n
a3

+ 1

1 + b2
− 1− b2

⌋

Note that the above sum is similar to the sum in (4.16) and so,

#(F1,1,3) = #(F1,1,2).

This along with (4.14), (4.15) and (4.16) gives,

#(A1,1) = C36n log2 n+ C37n log n+ C38n+ O
(
n2/3 log n

)
.

Using this with (4.12) and (4.13), we obtain,

#(A1) = C39n log2 n+ C40n log n+ C41n+ O
(
n2/3 log n

)
. (4.17)

We are left to estimate the cardinalities of T1
(3), T2

(3) and T3
(3) in (4.3). Observe that b1 being

the smallest in T1
(3), T2

(3) and T3
(3), we have, a3b1

3 ≤ n in all the three sets. And so proceeding
as above we have, #(T1

(3)) = C43n log n + C44n + O
(
n3/4

)
,#(T2

(3)) = C45n log n + C46n +

O
(
n3/4

)
and #(T3

(3)) = O
(
n1/2

)
.

Finally from (4.3), (4.4), (4.5), (4.6), (4.8), (4.11), (4.17) and above, we obtain

An
(3) =

n log3 n

(3!)2
+B1n log2 n+B2n log n+B3n+ O

(
n3/4 log n

)
,

where B1, B2 and B3 are constants. This completes the proof of the theorem.
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