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Abstract

In this paper, using the Lyapunov-Krasovskii functional approach, some novel stability
criteria are presented for all solutions of a class of nonlinear neutral differential equations
to tend zero when t → ∞.

Key Words: Neutral differential equation; asymptotic stability; deviating argu-
ment; Lyapunov-Krasovskii functional.
2010 Mathematics Subject Classification: Primary 34K20,
Secondary 34K40.

1 Introduction

The stability analysis of neutral systems that involve time-delay in both state and state deriva-
tive simultaneously has been widely investigated by many researchers and is still being investi-
gated due to the their applications in many scientific and engineering fields, such as, aircraft,
chemical and process control systems, biological systems and economics and so on (see, for exam-
ple, Agarwal and Grace [1], Charitonov and Melechor-Aguilar [2], El-Morshedy and Gopalsamy
[3], Fridman, ([4], [5]), Fridman and Shaked [6], Gopalsamy [7], Gopalsamy and Leung [8], Gu
[9], Gyori and Ladas [10], Hale [11], Hale and Verduyn Lunel [12], Kolamnovskii and Myshkis
[13], Kolmanovskii and Nosov [14], Liao and Wong [15], Logemann and Townley [16], Nam and
Phat [17], P. Park [18], J. H. Park [19], Shaojiang Deng et al. [20], Sun and Wang [21], Tunç
and Sirma [22] and the references cited in these sources).

Besides, in 2000, El-Morshedy and Gopalsamy [3] considered the neutral differential equation
of the form

d

dt
[x(t) + px(t− τ)] = −ax(t) + b tanhx(t− τ), t ≥ 0, (1.1)

where a, b are positive real numbers, τ ≥ 0 and p is a real number such that |p| < 1. For each
solution x(t) of Eq. (1), we assume the initial condition

x(t) = φ(t), t ∈ [−τ, 0], φ ∈ C([−τ, 0], <).



122 Cemil Tunç

In this work, first, instead of Eq. (1.1), we consider a nonlinear neutral differential equation
with constant deviating argument τ of the form

d

dt
[x(t) + px(t− τ)] = −h(x(t))x(t) + q(t) tanhx(t− τ), t ≥ 0, (1.2)

where τ and p are real numbers such that τ ≥ 0 and |p| < 1, h : < → <+, <+ = (0,∞), is a
continuous function.

Here some new sufficient conditions for the asymptotic stability of solutions of Eq. (1.2) are
given by the Lyapunov- Krasovskii functional approach. Our purpose is to study the problem
of asymptotic stability of solutions of Eq. (1.2). The first part of this paper is motivated
by the work of El-Morshedy and Gopalsamy [3] and the papers mentioned above. We obtain
some sufficient conditions for the asymptotic stability of solutions of Eq. (1.2). It is followed
that the equation discussed by El-Morshedy and Gopalsamy [3], Eq. (1.1), is a special case
of our equation, Eq. (1.2). That is, our equation, Eq. (1.2), includes Eq. (1.1) discussed by
El-Morshedy and Gopalsamy [3]. By this work, we first generalize a result in [3].

At the same time, in 2000, Agarwal and Grace [1] considered the neutral differential equation
of the form

d

dt
[x(t) + c(t)x(t− τ)] + p(t)x(t) = q(t) tanhx(t− σ), t ≥ 0, (1.3)

where τ and σ are positive real numbers, σ ≥ τ, c, p, q : [t0,∞)→ [0,∞) are continuous, and
c(t) is differentiable with local bounded derivative.

The asymptotic stability of Eq. (1.3) when c(t) = 0 has also been discussed by many
authors. Here, we referee the readers to the monographs of Gopalsamy [7], the books of Gyori
and Ladas [10], Hale [11] and the references therein.

In this work, second, instead of Eq. (1.3), we consider a nonlinear neutral differential
equation with multiple deviating arguments of the form

d

dt
[x(t) +

2∑
i=1

ci(t)x(t− τi)] + p(t)x(t) = q(t) tanhx(t− σ), t ≥ 0, (1.4)

where τi, (i = 1, 2), and σ are positive real numbers, σ ≥ τi, ci, p, q : [t0,∞) → [0,∞) are
continuous functions, and ci(t) are differentiable with local bounded derivative.

At the end, we study the asymptotic stability of solutions of Eq. (1.4). The second part of
this paper is motivated by the work of Agarwal and Grace [1] and the papers mentioned above.
We obtain some sufficient conditions for the asymptotic stability of solutions of Eq. (1.4). It is
seen that the equation discussed by Agarwal and Grace [1], Eq. (1.3), is a special case of our
equation, Eq. (1.4). That is, our equation, Eq. (1.4), includes Eq. (1.4) discussed by Agarwal
and Grace [1]. By this work, we improve a result of Agarwal and Grace [1, Theorem 3] for an
equation with multiple deviating arguments, Eq. (1.4).

2 Main results

Theorem 1. In addition to the basic assumption imposed on the functions h and q that
appearing in Eq. (1.2), we assume that there exist constants a0, a, b and p such that the
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conditions

0 < a0 ≤ h(x(t)) ≤ a, 0 < q(t) ≤ b

and

a20 − a2p2 > b2

hold. Then, every solution x(t) of Eq. (1.2) satisfies x(t)→ 0 as t→∞.

Proof: Define the Lyapunov- Krasovskii functional

V1(x(t)) = [x(t) + px(t− τ)]2 +

t∫
t−τ

h(x(s))x2(s)ds. (2.1)

The main tool for the proof of Theorem 1 is the Lyapunov- Krasovskii functional given by (2.1).

One can calculate the time derivative of V1 along solutions of (1.2) as follows

dV1
dt

= 2[x(t) + px(t− τ)][−h(x(t))x(t) + q(t) tanhx(t− τ)]

+h(x(t))x2(t)− h(x(t− τ))x2(t− τ)

= −h(x(t))x2(t) + 2q(t)x(t) tanhx(t− τ)

−2ph(x(t))x(t)x(t− τ) + 2pq(t)x(t− τ) tanhx(t− τ)

−h(x(t− τ))x2(t− τ)

= −h(x(t))

[
x2(t) +

2q(t) tanhx(t− τ)− 2ph(x(t))x(t− τ)

−h(x(t))
x(t)

]
+2pq(t)x(t− τ) tanhx(t− τ)− h(x(t− τ))x2(t− τ)

= −h(x(t))

[
x(t) +

q(t) tanhx(t− τ)− ph(x(t))x(t− τ)

−h(x(t))

]2
+h(x(t))

[
q(t) tanhx(t− τ)− ph(x(t))x(t− τ)

−h(x(t))

]2
+2pq(t)x(t− τ) tanhx(t− τ)− h(x(t− τ))x2(t− τ)

≤ h(x(t))

[
q(t) tanhx(t− τ)− ph(x(t))x(t− τ)

−h(x(t))

]2
+2pq(t)x(t− τ) tanhx(t− τ)− h(x(t− τ))x2(t− τ)

=
q2(t) tanh2 x(t− τ) + p2h2(x(t))x2(t− τ)− 2pq(t)h(x(t))x(t− τ) tanhx(t− τ)

h(x(t))

+2pq(t)x(t− τ) tanhx(t− τ)− h(x(t− τ))x2(t− τ).
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Using the assumptions of Theorem 1 and the estimate tanh2 x(t) ≤ x2(t), we get

dV1
dt

≤ q2(t)x2(t− τ) + p2h2(x(t))x2(t− τ)− 2pq(t)h(x(t))x(t− τ) tanhx(t− τ)

h(x(t))

+2pq(t)x(t− τ) tanhx(t− τ)− h(x(t− τ))x2(t− τ)

=

[
q2(t) + p2h2(x(t))

h(x(t))
− h(x(t− τ))

]
x2(t− τ)

≤
[
b2 + a2p2

a0
− a0

]
x2(t− τ)

≤
[
b2 + a2p2 − a20

a0

]
x2(t− τ) ≤ 0, t > 0. (2.2)

Hence, integrating both sides of (2.2) from 0 to t, it follows that

V1(x(t)) +
a20 − b2 − a2p2

a0

t−τ∫
−τ

x2(s)ds ≤ V (x(0)), t > 0. (2.3)

Since V1(x(t)) ≥ 0 and a20 − a2p2 > b2, then the above estimate leads

∞∫
−τ

x2(s)ds <∞. (2.4)

Using Minkowski’s integral inequality, (2.4) implies

t∫
0

[x(s) + px(s− τ)]2ds ≤


 t∫

0

x2(s)ds


1
2

+ |p|

 t∫
0

x2(s− τ)ds


1
2


2

≤


 ∞∫

0

x2(s)ds

 1
2

+ |p|

 ∞∫
0

x2(s− τ)ds

 1
2


2

.

Hence, we get
∞∫
0

[x(s) + px(s− τ)]2ds <∞.

On the other hand, we conclude from (2.3) that V1(x(t)) is bounded. Therefore, there exists a
positive real number M such that

[x(t) + px(t− τ)]2 < M2 for all t ≥ 0.

Hence,
|x(t) + px(t− τ)| < M forall t ≥ 0,
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which implies

|x(t)| < |p| |x(t− τ)|+M forall t ≥ 0. (2.5)

We claim that |x(t)| is bounded. Suppose that |x(t)| is not bounded. Then there exists a
subsequence {tk}, tk →∞ as k →∞ such that

|x(tk)| = sup{|x(t)| : t ≤ tk}, k = 1, 2, ... .

Clearly, it follows that

lim
k→∞

|x(tk)| =∞ and |x(tk)| ≥ |x(tk − τ)| for k = 1, 2, ... .

Hence, (2.5) leads

|x(tk)| < |p| |x(tk − τ)|+M < |p| |x(tk)|+M,k = 1, 2, ... .

Then, we have

|x(tk)| < M

1− |p|
.

Thus

∞ <
M

1− |p|
, when k →∞.

This case is a contradiction, and implies that |x(t)| is bounded. On the other hand, we observe

d

dt
[x(t) + px(t− τ)]2 = 2[x(t) + px(t− τ)] [−h(x(t))x(t) + q(t) tanhx(t− τ)].

Then d
dt [x(t)+px(t−τ)]2 is bounded, which means that [x(t)+px(t−τ)]2 is uniform continuous.

This completes all the requirements of Barbalat’s lemma [7, Lemma 1.2.2]. Hence

lim
t→∞

(x(t) + px(t− τ))2 = 0

or, equivalently,

lim
t→∞

x(t) + px(t− τ) = 0.

Since the assumptions of Theorem 1 implies that |p| < 1 , by Lemma 1.5.1 of [10] and the
foregoing limit, we conclude

lim
t→∞

x(t) = 0

which is our desired conclusion.

Finally, some new sufficient conditions for the asymptotic stability of solutions of Eq. (1.4)
are established by the Lyapunov- Krasovskii functional approach.
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Theorem 2. In addition to the basic assumption imposed on thefunctions ci, p and q that
appearing in Eq. (1.4), we assume that there exist positive constants α, βi and non-negative
real numbers ci, p1, p2, q1 and q2 such that the following conditions hold:

p1 ≤ p(t) ≤ p2, q1 ≤ q(t) ≤ q2, ci ≤ ci(t) ≤ ci+1 < 1, α, βi > q2ci+1

and

2p1 ≥ 2α+ β1 + β2 +
p22c2

α− q2c2
+

p22c2
α− q2c3

+
q22

2∑
i=1

βi − q2
2∑
i=1

ci+1

.

Then, every solution x(t) of Eq. (1.4) satisfies x(t)→ 0 as t→∞.

Proof: Define the Lyapunov- Krasovskii functional

V2(t) = [x(t) +

2∑
i=1

ci(t)x(t− τi)]2 + α

2∑
i=1

t∫
t−τi

x2(s)ds+

2∑
i=1

βi

t∫
t−σ

tanh2 x(s)ds, (2.6)

where α > 0 and βi > 0 are some real numbers.

The main tool for the proof of Theorem 2 is the Lyapunov- Krasovskii functional mentioned
above, in (2.6).

One can calculate the time derivative of V2 along solutions of Eq. (1.4) as follows

dV2(t)

dt
= 2[x(t) +

2∑
i=1

ci(t)x(t− τi)][q(t) tanhx(t− σ)− p(t)x(t)]

+2αx2(t)− α
2∑
i=1

x2(t− τi) +

2∑
i=1

βi tanh2 x(t)−
2∑
i=1

βi tanh2 x(t− σ)

= 2q(t)x(t) tanhx(t− σ)− 2p(t)x2(t) + 2q(t) tanhx(t− σ)

2∑
i=1

ci(t)x(t− τi)

−2p(t)x(t)

2∑
i=1

ci(t)x(t− τi) + 2αx2(t)− α
2∑
i=1

x2(t− τi)

+

2∑
i=1

βi tanh2 x(t)−
2∑
i=1

βi tanh2 x(t− σ)

= [−2p(t) + 2α]x2(t) +

2∑
i=1

βi tanh2 x(t)− 2p(t)x(t)

2∑
i=1

ci(t)x(t− τi)

−α
2∑
i=1

x2(t− τi)− q(t)c1(t)[x(t− τ1)− tanhx(t− σ)]2
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−q(t)c2(t)[x(t− τ2)− tanhx(t− σ)]2 + q(t)

2∑
i=1

ci(t)x
2(t− τi)

+q(t) tanh2 x(t− σ)

2∑
i=1

ci(t) + 2q(t)x(t) tanhx(t− σ)

−
2∑
i=1

βi tanh2 x(t− σ).

Subject to the assumptions of the theorem and the estimate tanh2 x(t) ≤ x2(t), it follows that

dV2(t)

dt
≤ [−2p(t) + 2α+

2∑
i=1

βi]x
2(t)− 2p(t)x(t)

2∑
i=1

ci(t)x(t− τi) (2.7)

−α
2∑
i=1

x2(t− τi) + q(t)

2∑
i=1

ci(t)x
2(t− τi)

+q(t) tanh2 x(t− σ)

2∑
i=1

ci(t) + 2q(t)x(t) tanhx(t− σ)

−
2∑
i=1

βi tanh2 x(t− σ)

= [−2p(t) + 2α+ β1 + β2]x2(t)

−{
2∑
i=1

(α− q(t)ci(t))x2(t− τi) + 2p(t)x(t)

2∑
i=1

ci(t)x(t− τi)}

−{[
2∑
i=1

βi − q(t)
2∑
i=1

ci(t)] tanh2 x(t− σ)− 2q(t)x(t) tanhx(t− σ)}

= [−2p(t) + 2α+ β1 + β2]x2(t)−

[√
α− q(t)c1(t) x(t− τ1)− p(t)c1(t)x(t)√

α− q(t)c1(t)

]2

−

[√
α− q(t)c2(t) x(t− τ2)− p(t)c2(t)x(t)√

α− q(t)c2(t)

]2
+

p2(t)c21(t)

α− q(t)c1(t)
x2(t) +

p2(t)c22(t)

α− q(t)c2(t)
x2(t)
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−


√√√√ 2∑

i=1

βi − q(t)
2∑
i=1

ci(t) tanhx(t− σ) + q(t)x(t)


√√√√ 2∑

i=1

βi − q(t)
2∑
i=1

ci(t)

−1

2

+
q2(t)

2∑
i=1

βi − q(t)
2∑
i=1

ci(t)

x2(t)

≤
(
−2p(t) + 2α+ β1 + β2 +

p2(t)c21(t)

α− q(t)c1(t)
+

p2(t)c22(t)

α− q(t)c2(t)

)
x2(t)

+
q22

2∑
i=1

βi − q(t)
2∑
i=1

ci(t)

x2(t)

≤

−2p1 + 2α+ β1 + β2 +
p22c2

α− q2c2
+

p22c3
α− q2c3

+ q22

(
2∑
i=1

βi − q1
2∑
i=1

ci+1

)−1x2(t)

for all t ≥ T ≥ t0.
Integrating both sides of (2.7) from T to t, we obtain

V2(t) + [2p1 − {2α+

2∑
i=1

βi +
p22c2

α− q2c2
+

p22c3
α− q2c3

+ q22

(
2∑
i=1

βi − q2
2∑
i=1

ci+1

)−1
}]

t∫
T

x2(s)ds

≤ V2(T ) <∞.

Hence, we conclude that V2(t) is bounded on [T,∞) and x(t) ∈ L2[T,∞). The rest of proof is
similar to that of Theorem 1 in Agarwal and Grace [1]. Therefore, we omit the details.
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