On the Eneström-Kayeya theorem

by Gulshan Singh and Wali Mohammad Shah

Abstract

In this paper, we relax the hypothesis and generalize some results concerning the Eneström-Kakeya theorem. The results so obtained considerably improve the bounds in some cases.

Key Words: Polynomial, zeros, Eneström-Kakeya theorem. **2010 Mathematics Subject Classification**: Primary 30C10; Secondary 30C15.

1. Introduction and Statement of Results

If $P(z) := \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree n such that

$$a_n > a_{n-1} > a_{n-2} > \dots > a_1 > a_0 > 0$$

then P(z) does not vanish in |z| > 1. This is a famous result in the distribution of zeros of a polynomial and is known as Eneström-Kakeya Theorem [5, 4, 6-9].

If we apply this result to the polynomial P(tz), t > 0, then it can be restated as:

Theorem A. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that

$$a_n t^n \ge a_{n-1} t^{n-1} \ge a_{n-2} t^{n-2} \ge \dots \ge a_1 t \ge a_0 > 0,$$

then all the zeros of P(z) lie in $|z| \leq t$.

By using Schwarz's Lemma, Aziz and Mohammad [1] generalized Eneström-Kakeya theorem in a different way and proved the following:

Theorem B. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n with real positive coefficients. If $t_1 > t_2 \ge 0$ can be found such that

$$a_r t_1 t_2 + a_{r-1} (t_1 - t_2) - a_{r-2} \ge 0, r = 1, 2, ..., n+1$$
 $(a_{-1} = a_{n+1} = 0),$

then all the zeros of P(z) lie in $|z| \leq t_1$.

A result of this type was earlier proved by Egervary [3].

Aziz and Zargar [2] relaxed the hypothesis of Eneström-Kakeya theorem in a different way and proved the following result:

Theorem C. Let $P(z) := \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree n such that for some $k \geq 1$,

$$ka_n \ge a_{n-1} \ge a_{n-2} \ge \dots \ge a_1 \ge a_0 > 0$$
,

then all the zeros of P(z) lie in

$$|z+k-1| \le k$$
.

While studying Theorem C, a natural question arises that what happens if we relax the hypothesis of Theorem B in a similar way and only assume that

$$a_r t_1 t_2 + a_{r-1} (t_1 - t_2) - a_{r-2} \ge 0, r = 2, 3, ..., n.$$

In this paper, we study such a case and prove a more general result from which many known results follow on a fairly uniform procedure. In fact we prove:

Theorem 1. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that $a_j = \alpha_j + i\beta_j$, where α_j and β_j , j=0,1,2,...,n are real numbers. If $t_1 > t_2 \ge 0$ can be found such that for r=2,3,...,n

$$\alpha_r t_1 t_2 + \alpha_{r-1} (t_1 - t_2) - \alpha_{r-2} \ge 0,$$

 $\beta_r t_1 t_2 + \beta_{r-1} (t_1 - t_2) - \beta_{r-2} \ge 0,$

and for r=n+1, there exists some $k=k_1+ik_2$ such that

$$(\alpha_n + k_1)(t_1 - t_2) - \alpha_{n-1} \ge 0,$$

 $(\beta_n + k_2)(t_1 - t_2) - \beta_{n-1} \ge 0,$

then all the zeros of P(z) lie in $|z + \frac{k(t_1 - t_2)}{a_n}| \le R$,

where

$$\begin{split} R &= \tfrac{1}{|a_n|} \{ [(\alpha_n + k_1) + (\beta_n + k_2)](t_1 - t_2) + (\alpha_n + \beta_n)t_2 - (\alpha_1 + \beta_1) \tfrac{t_2}{t_1^{n-1}} - (\alpha_0 + \beta_0) \tfrac{1}{t_1^{n-1}} \\ &+ (|\alpha_1 t_1 t_2 + \alpha_0 (t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0 (t_1 - t_2)|) \tfrac{1}{t^n} + (|\alpha_0| + |\beta_0|) \tfrac{t_2}{t^n} \}. \end{split}$$

Remark 1. For any real number $\lambda \geq 1$, if we take $k = a_n(\lambda - 1)$ so that $k_1 = \alpha_n(\lambda - 1)$ and $k_2 = \beta_n(\lambda - 1)$, we immediately have the following:

Corollary 1. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that $a_j = \alpha_j + i\beta_j$, where α_j and β_j , j=0,1,2,...,n are real numbers. If $t_1 > t_2 \ge 0$ can be found such that for r=2,3,...,n

$$\alpha_r t_1 t_2 + \alpha_{r-1} (t_1 - t_2) - \alpha_{r-2} \ge 0,$$

$$\beta_r t_1 t_2 + \beta_{r-1} (t_1 - t_2) - \beta_{r-2} \ge 0,$$

and for some $\lambda \geq 1$

$$\lambda \alpha_n(t_1 - t_2) - \alpha_{n-1} \ge 0,$$

$$\lambda \beta_n(t_1 - t_2) - \beta_{n-1} \ge 0,$$

then all the zeros of P(z) lie in $|z + (\lambda - 1)(t_1 - t_2)| \le R^*$,

where

$$R^* = \frac{1}{|a_n|} \{ \lambda(\alpha_n + \beta_n)(t_1 - t_2) + (\alpha_n + \beta_n)t_2 - (\alpha_1 + \beta_1)\frac{t_2}{t_1^{n-1}} - (\alpha_0 + \beta_0)\frac{1}{t_1^{n-1}} + (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|)\frac{1}{t_1^n} + (|\alpha_0| + |\beta_0|)\frac{t_2}{t_1^n} \}.$$

The following interesting result also follows from Theorem 1, if we assume that k and all a_j , j = 0, 1, 2, ..., n are real.

Corollary 2. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n with real coefficients. If $t_1 > t_2 \ge 0$ can be found such that

$$a_r t_1 t_2 + a_{r-1}(t_1 - t_2) - a_{r-2} \ge 0$$
, for $r = 2, 3, ..., n$

and for some real number $k \geq 0$,

$$(k+a_n)(t_1-t_2)-a_{n-1}\geq 0,$$

then all the zeros of P(z) lie in $|z + \frac{k(t_1 - t_2)}{a_n}| \le R_1$,

where

$$R_1 = \frac{1}{|a_n|} \{ (k+a_n)(t_1-t_2) + a_n t_2 - a_1 \frac{t_2}{t_1^{n-1}} - a_0 \frac{1}{t_1^{n-1}} + |a_1 t_1 t_2 + a_0 (t_1-t_2)| \frac{1}{t_1^n} + |a_0| \frac{t_2}{t_1^n} \}.$$

Remark 2. If in particular $P(z) := \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree n with real and positive coefficients satisfying the conditions of Corollary 2, then all the zeros of P(z) lie in

$$|z + \frac{k(t_1 - t_2)}{a_n}| \le t_1 + \frac{k(t_1 - t_2)}{a_n}.$$

Further, in Remark 2, if we take $k = a_n(\lambda - 1)$ so that $\lambda \ge 1$, we get the following:

Corollary 3. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n with real and positive coefficients. If $t_1 > t_2 \ge 0$ can be found such that

$$a_r t_1 t_2 + a_{r-1}(t_1 - t_2) - a_{r-2} \ge 0, r = 2,3,...,n$$

and for some $\lambda > 1$,

$$\lambda a_n(t_1 - t_2) - a_{n-1} \ge 0$$

then all the zeros of P(z) lie in

$$|z + (\lambda - 1)(t_1 - t_2)| \le \lambda t_1 - (\lambda - 1)t_2.$$

Theorem B is a special case of Corollary 3 when $\lambda = 1$. This Theorem also follows from Remark 2, when k=0.

In Theorem 1, if we assume that $t_2 = 0$, then we have the following:

Corollary 4. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that $a_j = \alpha_j + i\beta_j$, where α_j and β_j , j=0,1,2,...,n are real numbers. If t>0 can be found such that for some $k=k_1+ik_2$

$$(k_1 + \alpha_n)t^n \ge \alpha_{n-1}t^{n-1} \ge \alpha_{n-2}t^{n-2} \ge \dots \ge \alpha_1t \ge \alpha_0,$$

$$(k_2 + \beta_n)t^n \ge \beta_{n-1}t^{n-1} \ge \beta_{n-2}t^{n-2} \ge \dots \ge \beta_1t \ge \beta_0,$$

then all the zeros of P(z) lie in

$$|z + \frac{kt}{a_n}| \le R_2,$$

where

$$R_2 = \frac{t}{|a_n|} \{ (k_1 + \alpha_n) + (k_2 + \beta_n) - \frac{1}{t^n} [\alpha_0 + \beta_0 - |\alpha_0| - |\beta_0|] \}.$$

In Corollary 4, if we further assume that all the coefficients of P(z) are real, then $\beta_j = 0$, j = 0, 1, 2, ..., n and we get the following:

Corollary 5. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n with real coefficients and for any t > 0, there exists some $k \ge 0$, such that

$$(k+a_n)t^n \ge a_{n-1}t^{n-1} \ge a_{n-2}t^{n-2} \ge \dots \ge a_1t \ge a_0$$

then all the zeros of P(z) lie in

$$|z + \frac{kt}{a_n}| \le \frac{t}{|a_n|} \{ (k + a_n) - \frac{1}{t^n} (a_0 - |a_0|) \}.$$

Remark 3. Theorem C is a special case of Corollary 5, if we take $k = (\lambda - 1)a_n$, t = 1 and $a_0 \ge 0$.

Finally, assuming the hypothesis of Theorem 1, we can write the disc containing all the zeros of the polynomial $P(z) := \sum_{j=0}^{n} a_j z^j$ as

$$|z + \frac{(k_1 + ik_2)(t_1 - t_2)}{a_n}| \le R$$

If we replace k_1 by $(u-1)\alpha_n$ and k_2 by $(v-1)\beta_n$, we immediately get the following result:

Corollary 6. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that $a_j = \alpha_j + i\beta_j$, where α_j and β_j , j=0,1,2,...,n are real numbers. If $t_1 > t_2 \ge 0$ can be found such that for r=2,3,...,n

$$\alpha_r t_1 t_2 + \alpha_{r-1} (t_1 - t_2) - \alpha_{r-2} \ge 0,$$

 $\beta_r t_1 t_2 + \beta_{r-1} (t_1 - t_2) - \beta_{r-2} \ge 0,$

and for some real numbers u and v, $u \ge 1$, $v \ge 1$ such that

$$u\alpha_n(t_1 - t_2) - \alpha_{n-1} \ge 0,$$

 $v\beta_n(t_1 - t_2) - \beta_{n-1} \ge 0,$

then all the zeros of P(z) lie in $|z + (t_1 - t_2)(\frac{u\alpha_n + iv\beta_n}{a_n} - 1)| \le R_1^*$,

where

$$R_1^* = \frac{1}{|a_n|} \{ (u\alpha_n + v\beta_n)(t_1 - t_2) + (\alpha_n + \beta_n)t_2 - (\alpha_1 + \beta_1)\frac{t_2}{t_1^{n-1}} - (\alpha_0 + \beta_0)\frac{1}{t_1^{n-1}} + (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|)\frac{1}{t_1^n} + (|\alpha_0| + |\beta_0|)\frac{t_2}{t_1^n} \}.$$

If in Corollary 6, we take $u = \frac{\alpha_{n-1}}{\alpha_n(t_1-t_2)}$ and $v = \frac{\beta_{n-1}}{\beta_n(t_1-t_2)}$, so that $u \ge 1, v \ge 1$, we get the following:

Corollary 7. Let $P(z) := \sum_{j=0}^{n} a_j z^j$ be a polynomial of degree n such that $a_j = \alpha_j + i\beta_j$, where α_j and β_j , j=0,1,2,...,n are real numbers. If $t_1 > t_2 \ge 0$ can be found such that

$$\alpha_r t_1 t_2 + \alpha_{r-1} (t_1 - t_2) - \alpha_{r-2} \ge 0, \ r = 2, 3, ..., n$$

$$\le 0, \ r = n+1$$

$$\beta_r t_1 t_2 + \beta_{r-1} (t_1 - t_2) - \beta_{r-2} \ge 0, \ r = 2, 3, ..., n$$

$$\le 0, \ r = n+1,$$

then all the zeros of P(z) lie in $|z + \frac{a_{n-1}}{a_n} - (t_1 - t_2)| \le R_2^*$,

where

$$R_2^* = \frac{1}{|a_n|} \{ (\alpha_n + \beta_n) t_2 + (\alpha_{n-1} + \beta_{n-1}) - (\alpha_1 + \beta_1) \frac{t_2}{t_1^{n-1}} - (\alpha_0 + \beta_0) \frac{1}{t_1^{n-1}} + |\alpha_1 t_1 t_2 + \alpha_0 (t_1 - t_2)| \frac{1}{t_1^n} + |\beta_1 t_1 t_2 + \beta_0 (t_1 - t_2)| \frac{1}{t_1^n} + (|\alpha_0| + |\beta_0|) \frac{t_2}{t_1^n} \}.$$

In particular, if

$$\begin{aligned} \alpha_r t_1 t_2 + \alpha_{r-1} (t_1 - t_2) - \alpha_{r-2} &\geq 0, \, \text{r=1,2,...,n} \\ &\leq 0, \, \text{r=n+1,} \\ \beta_r t_1 t_2 + \beta_{r-1} (t_1 - t_2) - \beta_{r-2} &\geq 0, \, \text{r=1,2,...,n} \\ &\leq 0, \, \text{r=n+1,} \end{aligned}$$

then

$$\alpha_1 t_1 t_2 + \alpha_0 (t_1 - t_2) \ge 0,$$

 $\beta_1 t_1 t_2 + \beta_0 (t_1 - t_2) \ge 0$

and we get in this case all the zeros of P(z) lie in

$$|z + \frac{a_{n-1}}{a_n} - (t_1 - t_2)| \le \frac{1}{|a_n|} \{ (\alpha_n + \beta_n)t_2 + (\alpha_{n-1} + \beta_{n-1}) \}.$$

Remark 4. A result of Shah and Liman [7, Theorem 1] is a special case of Corollary 7, if we assume that all the coefficients of P(z) are real.

Many other known results and generalizations similarly follows from Theorem 1 with suitable substitutions and we leave to the readers.

2. Proof of the Theorem 1

Consider the polynomial

$$\begin{split} f(z) &= (t_2 + z)(t_1 - z)P(z) \\ &= -a_n z^{n+2} + (a_n(t_1 - t_2) - a_{n-1})z^{n+1} + (a_n t_1 t_2 + a_{n-1}(t_1 - t_2) - a_{n-2})z^n + \dots \\ &+ (a_2 t_1 t_2 + a_1(t_1 - t_2) - a_0)z^2 + (a_1 t_1 t_2 + a_0(t_1 - t_2))z + a_0 t_1 t_2 \\ &= -a_n z^{n+2} - k(t_1 - t_2)z^{n+1} + ((k + a_n)(t_1 - t_2) - a_{n-1})z^{n+1} \\ &+ (a_n t_1 t_2 + a_{n-1}(t_1 - t_2) - a_{n-2})z^n + \dots \\ &+ (a_2 t_1 t_2 + a_1(t_1 - t_2) - a_0)z^2 + (a_1 t_1 t_2 + a_0(t_1 - t_2))z + a_0 t_1 t_2 \\ &= -a_n z^{n+2} - k(t_1 - t_2)z^{n+1} + ((k_1 + \alpha_n)(t_1 - t_2) - \alpha_{n-1})z^{n+1} \\ &+ (\alpha_n t_1 t_2 + \alpha_{n-1}(t_1 - t_2) - \alpha_{n-2})z^n + \dots \\ &+ (\alpha_2 t_1 t_2 + \alpha_1(t_1 - t_2) - \alpha_0)z^2 + (\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2))z + \alpha_0 t_1 t_2 \\ &+ i[((k_2 + \beta_n)(t_1 - t_2) - \beta_{n-1})z^{n+1} + (\beta_n t_1 t_2 + \beta_{n-1}(t_1 - t_2) - \beta_{n-2})z^n + \dots \\ &+ (\beta_2 t_1 t_2 + \beta_1(t_1 - t_2) - \beta_0)z^2 + (\beta_1 t_1 t_2 + \beta_0(t_1 - t_2))z + \beta_0 t_1 t_2]. \end{split}$$

This gives

$$\begin{split} |f(z)| &\geq |a_n||z|^{n+1}|z + \frac{k(t_1-t_2)}{a_n}| - |(k_1+\alpha_n)(t_1-t_2) - \alpha_{n-1}||z|^{n+1} \\ &- |\alpha_n t_1 t_2 + \alpha_{n-1}(t_1-t_2) - \alpha_{n-2}||z|^n - \dots \\ &- |\alpha_2 t_1 t_2 + \alpha_1(t_1-t_2) - \alpha_0||z|^2 - |\alpha_1 t_1 t_2 + \alpha_0(t_1-t_2)||z| - |\alpha_0 t_1 t_2| \\ &- [|(k_2+\beta_n)(t_1-t_2) - \beta_{n-1}||z|^{n+1} + |\beta_n t_1 t_2 + \beta_{n-1}(t_1-t_2) - \beta_{n-2}||z|^n + \dots \\ &+ |\beta_2 t_1 t_2 + \beta_1(t_1-t_2) - \beta_0||z|^2 + |\beta_1 t_1 t_2 + \beta_0(t_1-t_2)||z| + |\beta_0 t_1 t_2|] \end{split}$$

$$= |z|^{n+1} \{|z + \frac{k(t_1-t_2)}{a_n}||a_n| - (|(k_1+\alpha_n)(t_1-t_2) - \alpha_{n-1}| \\ &+ |(k_2+\beta_n)(t_1-t_2) - \beta_{n-1}|) - (|\alpha_n t_1 t_2 + \alpha_{n-1}(t_1-t_2) - \alpha_{n-2}| \\ &+ |\beta_n t_1 t_2 + \beta_{n-1}(t_1-t_2) - \beta_{n-2}|)\frac{1}{|z|} - \dots \\ &- (|\alpha_2 t_1 t_2 + \alpha_1(t_1-t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1-t_2)|)\frac{1}{|z|^n} - (|\alpha_0 t_1 t_2| + |\beta_0 t_1 t_2|)\frac{1}{|z|^{n+1}} \}. \end{split}$$

For $|z| > t_1$, we have by using hypothesis

$$\begin{split} |f(z)| &\geq |z|^{n+1}\{|z + \frac{k(t_1 - t_2)}{a_n}||a_n| - (|(k_1 + \alpha_n)(t_1 - t_2) - \alpha_{n-1}| \\ &+ |(k_2 + \beta_n)(t_1 - t_2) - \beta_{n-1}|) - (|\alpha_n t_1 t_2 + \alpha_{n-1}(t_1 - t_2) - \alpha_{n-2}| \\ &+ |\beta_n t_1 t_2 + \beta_{n-1}(t_1 - t_2) - \beta_{n-2}|)\frac{1}{t_1} - \dots \\ &- (|\alpha_2 t_1 t_2 + \alpha_1(t_1 - t_2) - \alpha_0| + |\beta_2 t_1 t_2 + \beta_1(t_1 - t_2) - \beta_0|)\frac{1}{t_1^{n-1}} \\ &- (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|)\frac{1}{t_1^n} - (|\alpha_0 t_1 t_2| + |\beta_0 t_1 t_2|)\frac{1}{t_1^{n+1}}\} > 0, \end{split}$$

if

$$|z + \frac{k(t_1 - t_2)}{a_n}||a_n| > (k_1 + \alpha_n)(t_1 - t_2) + (k_2 + \beta_n)(t_1 - t_2) + \alpha_n t_2 + \beta_n t_2 - \alpha_1 \frac{t_2}{t_1^{n-1}} - \beta_1 \frac{t_2}{t_1^{n-1}} - \frac{\alpha_0}{t_1^{n-1}} - \frac{\beta_0}{t_1^{n-1}} + (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|) \frac{1}{t_1^n} + |\alpha_0| \frac{t_2}{t_1^n} + |\beta_0| \frac{t_2}{t_1^n}.$$

Therefore, for $|z| \ge t_1$, |f(z)| > 0, if

$$|z + \frac{k(t_1 - t_2)}{a_n}| > \frac{1}{|a_n|} \{ [(\alpha_n + k_1) + (\beta_n + k_2)](t_1 - t_2) + (\alpha_n + \beta_n)t_2 - (\alpha_1 + \beta_1)\frac{t_2}{t_1^{n-1}} - (\alpha_0 + \beta_0)\frac{1}{t_1^{n-1}} + (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|)\frac{1}{t_1^n} + (|\alpha_0| + |\beta_0|)\frac{t_2}{t_1^n} \}.$$

Hence all the zeros of f(z) whose modulus is greater than t_1 lie in the circle

$$\begin{aligned} |z + \frac{k(t_1 - t_2)}{a_n}| &\leq \frac{1}{|a_n|} \{ [(\alpha_n + k_1) + (\beta_n + k_2)](t_1 - t_2) + (\alpha_n + \beta_n)t_2 - (\alpha_1 + \beta_1)\frac{t_2}{t_1^{n-1}} \\ &- (\alpha_0 + \beta_0)\frac{1}{t_1^{n-1}} + (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|)\frac{1}{t_1^n} + (|\alpha_0| + |\beta_0|)\frac{t_2}{t_1^n} \}. \end{aligned}$$

Since those zeros of f(z) whose modulus is less than t_1 already lie in this circle, we conclude that all the zeros of f(z) and therefore P(z) lie in

$$\begin{split} |z + \tfrac{k(t_1 - t_2)}{a_n}| & \leq \tfrac{1}{|a_n|} \{ [(\alpha_n + k_1) + (\beta_n + k_2)](t_1 - t_2) + (\alpha_n + \beta_n)t_2 - (\alpha_1 + \beta_1) \tfrac{t_2}{t_1^{n-1}} \\ & - (\alpha_0 + \beta_0) \tfrac{1}{t_1^{n-1}} + (|\alpha_1 t_1 t_2 + \alpha_0(t_1 - t_2)| + |\beta_1 t_1 t_2 + \beta_0(t_1 - t_2)|) \tfrac{1}{t_1^n} + (|\alpha_0| + |\beta_0|) \tfrac{t_2}{t_1^n} \}. \end{split}$$

This proves Theorem 1 completely.

Acknowledgement

The authors are highly thankful to the referee for his/her suggestions, which turned out to be very useful for the present format of the paper.

References

- [1] A. Aziz and Q. G. Mohammad, Zero-free regions for polynomials and some generalizations of Eneström-Kakeya Theorem, Canad. Math. Bull. 27, (1984), 265-272.
- [2] A. Aziz and B. A. Zargar, Some extensions of Eneström-Kakeya Theorem, Glasnik Matematički, 31, (1996), 239-244.
- [3] E. Egervary, On a generalization of a theorem of Kakeya, Acta Sci. Math.(Szeged) 5, (1931), 78-82.
- [4] N. K. Govil and Q. I. Rahman, On the Eneström-Kakeya Theorem II, Tohoku Math. J. 20, (1968), 126-136.
- [5] M. Marden, Geometry of polynomials, IInd Ed. Math. Surveys 3, Amer. Math. Soc., Providence, R.I. (1966).
- [6] Q. I. Rahman and G. Schmeisser, *Analytic theory of polynomials*, Oxford University Press, Oxford (2002).

- [7] W. M. Shah and A. Liman, On the zeros of a certain class of polynomials and related analytic functions, Mathematicka Balkanicka, New Series, 19, (2005):Facs., 3-4.
- [8] W. M. Shah, A. Liman and Shamim Ahmad Bhat, On the Eneström-Kakeya Theorem, International Journal of Mathematical Science, 7, (1-2)(2008), 111-120.
- [9] T. Sheil-Small, Complex polynomials, Cambridge University Press, Cambridge (2002).

Received: 29.10.2010, Revised: 31.01.2012, Accepted: 11.02.2012.

> Bharathiar University, Coimbatore-641046 Tamil Nadu, India E-mail: gulshansingh1@rediffmail.com

Department of Mathematics, Kashmir University, Srinagar-190006 India E-mail:wmshah@rediffmail.com