
Bull. Math. Soc. Sci. Math. Roumanie
Tome 56(104) No. 4, 2013, 497–503

Cohen-Macaulay binomial edge ideals of small deviation
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Abstract

We classify all binomial edge ideals that are complete intersection and Cohen-Macaulay

almost complete intersection. We also describe an algorithm and provide an implementation

to compute the primary decomposition of binomial edge ideals.

Key Words: Binomial ideal, unmixed, Cohen-Macaulay.

2010 Mathematics Subject Classification: Primary 13F55; Secondary 13H10.

Introduction

In 2010, binomial edge ideals were introduced in [4] and appeared independently also in [6]. Let
S = K[x1, . . . , xn, y1, . . . , yn] be the polynomial ring in 2n variables with coefficients in a field
K. Let G be a graph on vertex set [n]. For each edge {i, j} of G with i < j, we associate a
binomial fij = xiyj − xjyi. The ideal JG of S generated by fij = xiyj − xjyi such that i < j , is
called the binomial edge ideal of G. Any ideal generated by a set of 2-minors of a 2× n-matrix of
indeterminates may be viewed as the binomial edge ideal of a graph.

Algebraic properties of binomial edge ideals in terms of properties of the underlying graph were
studied in [4], [2], [5] and [7]. In [5] and [7] the authors considered the Cohen-Macaulay property
of these graphs. However, the classification of Cohen-Macaulay binomial edge ideals in terms of
the underlying graphs is still widely open and, as in the case of monomial edge ideals introduced
in [9], it seems rather hopeless to give a full classification.

In this paper we consider Cohen-Macaulay and unmixed binomial edge ideals JG with small
deviation, namely the difference between the minimum number of the generators and the height
of JG is less than or equal to 2.

Section 1 contains some preliminaries and notions that we use in the paper. In the beginning
of Section 2 we give a complete classification of the complete intersection binomial edge ideals
(Theorem 1), that is the case of deviation 0. This result is a consequence of Corollary 1.2 of [5].
We also observe that in general the almost complete intersection, namely deviation 1, binomial
edge ideals are not unmixed. A nice example is the claw graph (see Example 1). In Theorem 2 we
give a complete classification of Cohen-Macaulay binomial edge ideals that are almost complete
intersection and we show that this set coincides with the set of unmixed binomial edge ideals that
are almost complete intersection.

In Section 3 we describe an algorithm to compute the primary decomposition of JG and provide
an implementation in CoCoA (see [1]) that is freely downloadable (see [8]). Thanks to this we
computed Examples 2 and 3 that are unmixed binomial edge ideals of deviation 2 that are not
Cohen-Macaulay.
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1 Preliminaries

In this section we recall some concepts and notations on graphs and on simplicial complexes that
we will use in the article.

Let G be a simple graph with vertex set V (G) and edge set E(G). A subset C of V (G) is called
a clique of G if for all i and j belonging to C with i 6= j one has {i, j} ∈ E(G). A vertex of a graph
is called a cutpoint if the removal of the vertex increases the number of connected components. A
vertex v is a cutpoint of a graph G if and only if there exist u,w ∈ V (G) such that v is in every
path connecting u and w (see Theorem 3.1 of [3]). A subgraph H of G spans G if V (H) = V (G).
In a connected graph G a chord of a tree T that spans G is an edge of G not in T . The number
of chords of any spanning tree of a connected graph G, namely m(G), is called the cycle rank of
G and is m(G) = |E(G)| − |V (G)| + 1 (see Corollary 4.5(a) of [3]). If G has c components then
m(G) = |E(G)| − |V (G)|+ c (see Corollary 4.5(b) of [3]).

Let v 6∈ V (G). The cone of v on G, namely cone(v,G), is the graph with vertices V (G) ∪ {v}
and edges E(G) ∪ {{u, v} : u ∈ V (G)}.

Let G1 and G2 be graphs. We set G = G1 ∪ G2 (resp. G = G1 ⊔ G2 where ⊔ is disjoint
union) where G is the graph with V (G) = V (G1) ∪ V (G2) (resp. V (G) = V (G1) ⊔ V (G2)) and
E(G) = E(G1) ∪ E(G2) (resp. E(G) = E(G1) ⊔ E(G2)).

Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a collection of subsets of
V such that

(i) {xi} ∈ ∆ for all xi ∈ V ;

(ii) F ∈ ∆ and G ⊆ F imply G ∈ ∆.

An element F ∈ ∆ is called a face of ∆. A maximal face of ∆ with respect to inclusion is called a
facet of ∆. A vertex i of ∆ is called a free vertex of ∆ if i belongs to exactly one facet.

If ∆ is a simplicial complex with facets F1, . . . , Fq, we call {F1, . . . , Fq} the facet set of ∆ and
we denote it by F(∆).

The clique complex ∆(G) of G is the simplicial complex whose faces are the cliques of G. Hence
a vertex v of a graph G is called free vertex if it belongs to only one clique of ∆(G).

We need notations and results from [4] (section 3) that we recall for the sake of completeness.

Let T ⊆ [n], and let T = [n]\T . Let G1, . . . , Gc(T ) be the connected components of the induced

subgraph on T , namely GT . For each Gi, denote by G̃i the complete graph on the vertex set V (Gi).
We set

PT (G) = (
⋃

i∈T

{xi, yi}, JG̃1
, . . . , J

G̃c(T )
), (1.1)

PT (G) is a prime ideal. Then JG is a radical ideal and

JG =
⋂

T⊂[n]

PT (G)

is its primary decomposition (see Corollary 2.2 and Theorem 3.2 of [4]). If there is no possible
confusion, we write simply PT instead of PT (G). Moreover, heightPT = n + |T | − c(T ) (see [4,
Lemma 3.1]). We denote by M(G) the set of minimal prime ideals of JG.

If each i ∈ T is a cutpoint of the graph GT∪{i}, then we say that T has the cutpoint property

for G. We denote by C(G) the set of all T ⊂ V (G) such that T has the cutpoint property for G.

Lemma 1. [4] PT (G) ∈ M(G) if and only if T ∈ C(G).

Lemma 2. [7] Let G be a connected graph. Then JG is unmixed if and only if for all T ∈ C(G)
we have c(T ) = |T |+ 1.
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2 Complete intersection and almost complete intersection

Let S be a standard graded polynomial ring over a field K. For a homogeneous ideal J ⊆ S,
J is called a complete intersection ideal (resp. an almost complete intersection ideal) if J is
minimally generated by height J (resp. height J +1) elements. A homogeneous ideal has deviation
dev(J) if it is minimally generated by height I + dev(J) elements. Throughout this section let
S = K[{xi, yi} : i ∈ V (G)], JG be the binomial edge ideal of a graph G and µ(JG) the minimal
number of generators of JG.

A nice combinatorial interpretation of dev(JG) is given by the following

Remark 1. Suppose that height JG = heightP∅. Then height JG = n−c where c are the connected
components of G. Therefore

dev(JG) = µ(JG)− n+ c = m(G).

Theorem 1. Let G be a graph. Then JG is complete intersection if and only if each component
of G is a path graph.

Proof: Let G =
⋃c

i=1 Gi where Gi are the connected components of G. Let ni = |V (Gi)| for
i = 1, . . . , c. Since Gi is connected it has at least ni − 1 edges, namely the number of edges of a
tree. Hence

µ(JG) ≥
c∑

i=1

(ni − 1) = n− c.

Since JG is a complete intersection then it is unmixed, hence height JG = heightP∅. By Remark
1 and since complete intersection implies dev(JG) = 0 we obtain that µ(JG) = n − c. Therefore
every connected component Gi is a tree. Now the proof is a consequence of Corollary 1.2 of [5].

In general almost complete intersection binomial edge ideals are not unmixed as the following
example shows.

Example 1. Let G be the graph on 4 vertices and edges

{{1, 2}, {1, 3}, {1, 4}},

namely the claw graph. We observe that

JG = P∅ ∩ P{1}

where heightP∅ = 3 and heightP{1} = 2.

Remark 2. If JG is an unmixed almost complete intersection binomial edge ideal with c compo-
nents we have that G has c−1 components that are path graphs and 1 that contains only one cycle,
namely a unicyclic graph. The proof is similar to the proof of Theorem 1.

Thanks to Remark 2 we assume from now on that G is a connected unicyclic graph.

Proposition 1. Let G3 be the set of graphs such that for all G ∈ G3 we have

V (G) = {u1, . . . , ur, v1, . . . , vs, w1, . . . , wt}

with r ≥ 1, s ≥ 1, t ≥ 1 and edge set

E(G) ={{ui, ui+1} : i = 1, . . . , r − 1} ∪ {vi, vi+1} : i = 1, . . . , s− 1}∪

∪ {wi, wi+1} : i = 1, . . . , t− 1} ∪ {{u1, v1}, {u1, w1}, {v1, w1}}.

Then S/JG is Cohen-Macaulay for all G ∈ G3.
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Proof: If r = s = t = 1 then G is a complete graph, hence it is Cohen-Macaulay. Since u1, v1 and
w1 are free vertices in ∆(G), by Theorem 2.7 of [7] the assertion follows easily.

Lemma 3. Let G be the graph with vertex set V (G) = {1, . . . , 6} and edge set

E(G) = {{1, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {4, 5}, {5, 6}}.

Then S/JG is Cohen-Macaulay.

Proof: Let H1 be the graph with one vertex, V (H1) = {1}, H2 the path graph with edges {3, 4}
and {4, 5} and let G1 = cone(2, H1 ⊔H2). By Theorem 3.8 of [7] G1 is Cohen-Macaulay. Now let
G2 be the complete graph on the vertices V (G2) = {5, 6}. Then 5 is a free vertex in ∆(G1) and
∆(G2). By Theorem 2.7 of [7] the assertion follows.

Proposition 2. Let G4 be the set of graphs such that for all G ∈ G4 we have

V (G) = {u1, u2, u3, . . . , ur, v1, v2, v3, . . . , vs}

with r ≥ 3 and s ≥ 3 and edge set

E(G) ={{ui, ui+1} : i = 1, . . . , r − 1} ∪ {{vi, vi+1} : i = 1, . . . , s− 1}∪

∪ {{u1, v1}, {u2, v2}}.

Then S/JG is Cohen-Macaulay for all G ∈ G4.

Proof: Let s = r = 3. We observe that

C(G) = {∅, {u2}, {v2}, {u2, v1}, {u1, v2}, {u2, v2}}

and JG ⊂ S = K[{xi, yi} : i ∈ V (G)] is unmixed with dimS/JG = 7. We need to show that
depthS/JG ≥ 7. Let

JH = P∅ ∩ P{u2} ∩ P{v2} ∩ P{u2,v1} ∩ P{u2,v2}

and
JH′ = P∅ ∩ P{u2} ∩ P{v2} ∩ P{u1,v2} ∩ P{u2,v2}

be binomial edge ideals on S. The graphs H and H ′ are both isomorphic to the graph described
in Lemma 3. Hence S/JH and S/JH′ are Cohen-Macaulay with dimension equal to 7. Let

JH′′ = JH + JH′ ⊂ S.

We observe thatH ′′ = G1∪G2∪G3 where G1 is the complete graph on the vertex set {u1, u2, v1, v2}
and G2 (resp. G3) is the complete graph on the vertex set {u2, u3} (resp. {v2, v3}). By Theorem
2.7 of [7], applied twice (or by Theorem 1.1 of [5]) S/JH′′ is Cohen-Macaulay with dimension equal
to 7. Thanks to depth Lemma applied to the following exact sequence

0 −→ S/JG −→ S/JH ⊕ S/JH′ −→ S/JH′′ −→ 0

we obtain that depth S/JG is greater than or equal to 7. Hence S/JG is Cohen-Macaulay, too.
The assertion follows by Theorem 2.7 of [7] observing that u3 and v3 are free vertices in ∆(G).

Theorem 2. Let G be a graph such that JG is an almost complete intersection binomial edge ideal.
The following conditions are equivalent:

1. G is in G3 ∪ G4 defined as in Propositions 1 and 2;

2. S/JG is CM;
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3. S/JG is unmixed.

Proof: 1) ⇒ 2). It follows by Propositions 1 and 2.
2) ⇒ 3). Always true.
3) ⇒ 1). Suppose that JG is unmixed. By Lemma 2 if G is unicyclic then

G = Cl ∪

(
r⋃

i=1

Pi

)
(2.1)

with 0 ≤ r ≤ l, where Cl is a cycle of length l and for all 1 ≤ i ≤ r, Pi is a path graph,
|V (Pi)∩ V (Cl)| = 1 and |V (Pi)∩ V (Pj)| = 0 for all j 6= i. Suppose that G is not in G3 ∪G4. Then
G is an element of one of the following sets:

G′
3 = {G satisfies (2.1) with l = 3} \ G3;

G′
4 = {G satisfies (2.1) with l = 4} \ G4;

G′
> = {G satisfies (2.1) with l ≥ 5}.

G does not belong to G′
3 since G′

3 is empty. Let G ∈ G′
4. Then there are two vertices v and

v′ in C4 that are not adjacent and have the same degree, that is either 2 or 3. We observe that
T = {v, v′} has the cutpoint property. If the degree is 2 then c(T ) = |T |, while if the degree is 3
we have c(T ) = |T |+ 2. In both cases JG is not unmixed by Lemma 2. Contradiction.

Let G ∈ G′
> and let V (Cl) = {i1, i2, . . . , il} such that {ij , ij+1} is an edge of G with j =

1, . . . , l − 1 and {i1, il} is an edge of G, too. Since G is unicyclic then {i1, i3} has the cutpoint
property. In fact GV \{i1,i3} has at least two connected components, one containing the vertex
i2 and another one containing the vertices {i4, . . . , il}. Since JG is unmixed there are exactly 3
connected components in GV \{i1,i3}. We may assume without loss of generality that i1 has degree
3 and i3 has degree 2.

By the same argument also {i2, i4} has the cutpoint property and either i2 or i4 has degree 3.
Suppose i4 has degree 3. Then {i1, i4} has the cutpoint property and GV \{i1,i4} has 4 connected
components. Contradiction. Hence i2 must have degree 3. Also {i3, il} has the cutpoint property
and since i3 has degree 2, then il has degree 3. Since {i2, il} has the cutpoint property and
GV \{i2,il} has 4 connected components we obtain a contradiction.

3 An algorithm to compute primary decomposition

In this section we describe the Algorithm 1 that summarizes the results of Lemma 1 and Proposition
2.1 of [7] and provide an implementation in CoCoA (see [1]) that is freely downloadable (see [8]).
This tool helps the research of unmixed binomial edge ideals of deviation greater than or equal to
2.

Algorithm 1 (Computation of C(G)).

Input A simple connected graph G with V (G) = [n].

Output The set C(G).

1. S := {1, . . . , n} \ {free vertices of ∆(G)}

2. C(G) = {∅}

3. For each T ⊂ S and 1 ≤ |T | ≤ n− 2 with T = {v1, . . . , vr} do

3.1 If c(T ) > 1 then
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i := 1

3.1.1 While c(T \ {vi}) < c(T ) and i ≤ r do

i := i+ 1

3.1.2 If i > r then

C(G) := C(G) ∪ {T}

4. Return C(G)

We give a description of the Algorithm 1.

• Line 1. By Proposition 2.1 of [7] we can avoid all the free vertices of ∆(G) in the computation
of C(G).

• Line 2. The empty set is always in C(G) by Lemma 1.

• Line 3. T can be any subset of S by Lemma 1. Nevertheless, since T has the cutpoint
property, c(T ) ≥ 2 (see line 3.1). Therefore the maximum cardinality of T is n− 2 where the
2 connected components are isolated vertices (if such T exists).

• Line 3.1. We observe that if c(T ) = 1 then c(T \ {vi}) = c(T ) for all vi ∈ T . Hence we
discard such T .

• Lines 3.1.1-3.1.2. We check if there exists a vi ∈ T that does not satisfy the condition
c(T \ {vi}) < c(T ). If such vi exists interrupt the current computation. Otherwise add the
new set to C(G) (line 3.1.2).

Thanks to Algorithm 1 we found some unmixed binomial edge ideals of deviation 2 that are
not Cohen-Macaulay. We provide two examples. The first one is interesting since it is a bipartite
graph. The second one since it has induced 5-cycle subgraphs.
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Figure 1:

Example 2. Let JG the binomial edge ideal associated to the graph with 7 vertices in figure 1.
Then

C(G) = {∅, {2}, {6}, {2, 6}, {3, 5}, {2, 4, 6}}

and is unmixed with dimS/JG = 8. Using CoCoA (see [1]) depthS/JG = 7.

Example 3. Let JG the binomial edge ideal associated to the graph with 9 vertices in figure 1.
Then

C(G) ={∅, {2}, {6}, {7}, {2, 6}, {2, 7}, {3, 5}, {3, 7}, {5, 6}, {6, 7},

{2, 3, 7}, {2, 4, 6}, {2, 4, 7}, {2, 5, 6}, {2, 6, 7}, {3, 5, 6}, {3, 5, 7},

{2, 4, 6, 7}}

and is unmixed with dimS/JG = 10. Using CoCoA (see [1]) depthS/JG = 9.
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