
Bull. Math. Soc. Sci. Math. Roumanie
Tome 56(104) No. 4, 2013, 435–486

Lefschetz fibrations, intersection numbers,

and representations of the framed braid group
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Abstract

We examine the action of the fundamental group Γ of a Riemann surface with m punc-
tures on the middle dimensional homology of a regular fiber in a Lefschetz fibration, and
describe to what extent this action can be recovered from the intersection numbers of
vanishing cycles. Basis changes for the vanishing cycles result in a nonlinear action of the
framed braid group B̃ on m strings on a suitable space of m × m matrices. This action
is determined by a family of cohomologous 1-cocycles Sc : B̃ → GLm(ZZ[Γ]) parametrized
by distinguished configurations c of embedded paths from the regular value to the criti-
cal values. In the case of the disc, we compare this family of cocycles with the Magnus
cocycles given by Fox calculus and consider some abelian reductions giving rise to linear
representations of braid groups. We also prove that, still in the case of the disc, the inter-
section numbers along straight lines, which conjecturally make sense in infinite dimensional
situations, carry all the relevant information.
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1 Introduction

Picard–Lefschetz theory can be viewed as a complexification of Morse theory with the stable and
unstable manifolds replaced by vanishing cycles and the count of connecting orbits in the Morse–
Witten complex replaced by the intersection numbers of the vanishing cycles along suitable
paths in the base. Relevant topological information that can be recovered from these data
includes, in Morse theory, the homology of the underlying manifold and, in Picard–Lefschetz
theory, the monodromy action of the fundamental group of the base on the middle dimensional
homology of a regular fiber. That the monodromy action on the vanishing cycles can be
recovered from the intersection numbers follows from the Picard–Lefschetz formula

(ψL)∗α = α− (−1)n(n+1)/2 〈L, α〉L. (1.1)

Here X → Σ is a Lefschetz fibration over a Riemann surface Σ with fibers of complex dimension
n, meaning that X is a complex manifold and the map X → Σ is holomorphic and has only
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nondegenerate critical points. We assume moreover that each singular fiber contains exactly
one critical point, and denote by M a regular fiber over z0 ∈ Σ. In equation (1.1), L ⊂M is an
oriented vanishing cycle associated to a curve from z0 to a singular point z ∈ Σ, ψL ∈ Diff(M)
is the Dehn–Arnold–Seidel twist about L obtained from the (counterclockwise) monodromy
around the singular fiber along the same curve, (ψL)∗ is the induced action on Hn(M) and 〈·, ·〉
denotes the intersection form. Equation (1.1) continues to hold when X → Σ is a symplectic
Lefschetz fibration as introduced by Donaldson [7, 8]. In either case the vanishing cycles are
embedded Lagrangian spheres and so their self-intersection numbers are 2(−1)n/2 when n is
even and 0 when n is odd. See [2, Chapter I] and [3, §2.1] for a detailed account of Picard–
Lefschetz theory and an exhaustive reference list.

The object of the present paper is to study an algebraic setting, based on equation (1.1),
which allows one to describe the monodromy action of the fundamental group in terms of
intersection matrices. This requires the choice of a distinguished basis of vanishing cycles and
the ambiguity in this choice leads to an action of the braid group on distinguished bases [2],
which in turn determines an action on a suitable space of matrices. In the case of the disc,
this action was previously considered by Bondal [5] in the context of mirror symmetry. Our
motivation is different and comes from an attempt of two of the authors (A.O. and D.S.) to
understand complexified Floer homology in the spirit of Donaldson–Thomas theory [9]. In this
theory the complex symplectic action or Chern–Simons functional is an infinite dimensional
analogue of a Lefschetz fibration. While there are no vanishing cycles, one can (conjecturally)
still make sense of their intersection numbers along straight lines and build an intersection
matrix whose orbit under the braid group might then be viewed as an invariant. Another
source of inspiration for the present paper is the work of Seidel [20, 21] about vanishing cycles
and mutations.

We assume throughout this paper that the base Σ of our Lefschetz fibration is a compact
Riemann surface, possibly with boundary, not diffeomorphic to the 2-sphere. (In particular,
Σ is oriented.) Let Z ⊂ Σ \ ∂Σ be the set of critical values and z0 be a regular value. If the
surface Σ is diffeomorphic to the unit disc D = {z ∈ C||z| ≤ 1} we assume that z0 ∈ ∂Σ. To
assemble the intersection numbers into algebraic data it is convenient to choose a collection
c = (c1, . . . , cm) of ordered embedded paths from a regular value z0 ∈ Σ to the critical values
(see Figure 1). Following [2, 20] we call such a collection a distinguished configuration and
denote by C the set of homotopy classes of distinguished configurations. Any distinguished
configuration determines an ordering {z1, . . . , zm} of the set Z of critical values by zi := ci(1).
It also determines m vanishing cycles L1, . . . , Lm ⊂ M as well as m special elements of the
fundamental group

g1, . . . , gm ∈ Γ := π1(Σ \ Z, z0)

(obtained by encircling zi counterclockwise along ci). The orientation of Li is not determined
by the path ci and can be chosen independently. However, when n is even, the monodromy
along gi changes the orientation of Li. Thus, to choose orientations consistently, we fix nonzero
tangent vectors vz ∈ TzΣ for z ∈ Z, choose orientations of the vanishing cycles in the directions
of these vectors, and consider only distinguished configurations c that are tangent to the vectors
−vz at their endpoints. We call these marked distinguished configurations and denote by
C̃ the set of homotopy classes of marked distinguished configurations. The oriented vanishing
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Figure 1: A distinguished configuration.

cycles determine homology classes, still denoted by

L1, . . . , Lm ∈ Hn(M).

These data give rise to a monodromy character NX
c : Γ → ZZ

m×m via

NX
c (g) :=

(
nij(g)

)m
i,j=1

, nij(g) := 〈Li, ρ(g)Lj〉 . (1.2)

Here ρ : Γ → Aut(Hn(M)) denotes the monodromy action of the fundamental group. Any such
function N : Γ → ZZ

m×m satisfies the conditions

nij(g
−1) = (−1)nnji(g),

nii(1) =

{
0, if n is odd,
2(−1)n/2, if n is even,

(1.3)

nij(ggkh) = nij(gh)− (−1)n(n+1)/2nik(g)nkj(h)

for g, h ∈ Γ and i, j, k = 1, . . . ,m. The last equation in (1.3) follows from (1.1). Our convention
for the composition is that a representative loop of gh ∈ Γ first traverses a representative of h,
and then a representative of g.

The part of Hn(M) that is generated by the vanishing cycles under the action of Γ can be
recovered as the quotient

HN := Λ/ ker N , Λ := ZZ[Γ]m.

Here ZZ[Γ] is the group ring of Γ, whose elements are thought of as maps λ : Γ → ZZ with finite
support and whose multiplication is the convolution product (λ1λ2)(h) :=

∑
g λ1(hg

−1)λ2(g);

the map N : Γ → ZZ
m×m is regarded as an endomorphism N : Λ → Λ by the convolution

product λ 7→
(
h 7→

∑
g N (hg−1)λ(g)

)
. The ZZ-module HN is equipped with an intersection

pairing, with a Γ-action ρN : Γ → Aut(HN ), and with special elements L1, . . . ,Lm ∈ HN ,
defined by

〈µ, λ〉 :=
∑

g,h∈Γ

µ(h)TN (hg−1)λ(g), ρN (g)[λ] := [g∗λ], Li := [δi]. (1.4)
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Here Γ acts on Λ by
(g∗λ)(h) := λ(hg),

ei ∈ ZZ
m denotes the standard basis, and δi : Γ → ZZ

m is defined by δi(1) := ei and δi(g) := 0
for g 6= 1. With these structures HN is isomorphic to the submodule of Hn(M) generated by
the vanishing cycles modulo the kernel of the intersection form. The isomorphism is induced
by the map that assigns to every λ ∈ Λ the homology class

∑
g,i λi(g)ρ(g

−1)Li ∈ Hn(M).

The monodromy character NX
c : Γ → ZZ

m×m depends on the choice of a marked distin-
guished configuration c and this dependence gives rise to an action of the framed braid group
B̃ of Σ \ {z0} on m strings, based at Z, on the space of monodromy characters. More precisely,
our distinguished configuration c determines m special elements gi =: gi,c ∈ Γ obtained by
encircling zi := ci(1) counterclockwise along ci. Denote by

Nc :=
{
N = (nij) : Γ → ZZ

m×m | (1.3)
}

the space of monodromy characters on (Γ, g1,c, . . . , gm,c). The framed braid group B̃, interpreted
as the mapping class group of diffeomorphisms in Diff0(Σ, z0) that preserve the set Z and the

collection of vectors {vz}z∈Z , acts freely and transitively on the space C̃ of homotopy classes
of marked distinguished configurations (see Sections 3 and 4). Here Diff0(Σ, z0) denotes the
identity component of the group of diffeomorphisms of Σ that fix z0. The framed braid group
also acts on the fundamental group Γ and, for every τ ∈ B̃ and every c ∈ C̃, the isomorphism
τ∗ : Γ → Γ maps gi,c to gi,τ∗c. This action actually determines the (unframed) braid τ (see
Section 4).

Our first theorem asserts that there is a canonical family of isomorphisms

Tτ,c : Nc → Nτ∗c

which extends the geometric correspondence NX
c 7→ NX

τ∗c between monodromy characters as-
sociated to different choices of the distinguished configuration. It is an open question if every
element N ∈ Nc can be realized by a (symplectic) Lefschetz fibration X → Σ with critical
fibers over Z. This question is a refinement of the Hurwitz problem of finding a branched cover
with given combinatorial data. The isomorphisms Tτ,c are determined by a family of cocycles

Sc : B̃ → GLm(ZZ[Γ])

with values in the group of invertible matrices over the group ring. To describe them we denote
by πσ,c ∈ Sm the permutation associated to the action of σ on the ordering determined by c.
Then the (i, j) entry of the matrix is

sj,c(σ) := c−1
i · σ∗cj ∈ Γ

(first σ∗cj , second c−1
i ) for i = πσ,c(j) and it is zero for i 6= πσ,c(j). We emphasize that

σ∗gj,c = sj,c(σ)
−1gi,csj,c(σ) for i := πσ,c(j). See Figure 2 below for some examples.

In the next theorem we think of an element M ∈ GLm(ZZ[Γ]) as a function M : Γ → ZZ
m×m

with finite support, denote Mt(g) := M(g−1)T , and multiply matrices using the convolution
product (see Section 2).
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Theorem A. (i) The maps Sc : B̃ → GLm(ZZ[Γ]) are injective and satisfy the cocycle and
coboundary conditions

Sc(στ) = Sc(σ)σ∗Sc(τ), Sτ∗c(σ) = Sc(τ)
−1Sc(σ)σ∗Sc(τ). (1.5)

(ii) The maps Sc in (i) determine bijections

Tτ,c : Nc → Nτ∗c, N 7→ Sc(τ)
tNSc(τ).

(iii) Given a Lefschetz fibration X → Σ and elements c ∈ C̃, τ ∈ B̃, we have

NX
τ∗c = Sc(τ)

tNX
c Sc(τ). (1.6)

In terms of Serre’s definition of non-abelian cohomology [22, Appendix to Chapter VII] the

first equation in (1.5) asserts that Sc is a cocycle for every c ∈ C̃. The second equation in (1.5)
asserts that the cocycles Sc are all cohomologous and hence define a canonical 1-cohomology
class

[Sc] ∈ H1(B̃,GLm(ZZ[Γ])).

We call it the Picard–Lefschetz monodromy class.
In the case Σ = D there is another well known cocycle arising from a topological context,

namely the Magnus cocycle

Mc : B → GLm(ZZ[Γ]), c ∈ C.

Here B denotes the usual braid group (with no framing), which we view as a subgroup of B̃ using
the framing determined by a vector field v on Σ whose only singularity is an attractive point at
z0 and such that v(z) = vz for all z ∈ Z (see Section 6). The Magnus cocycle is also related to an
intersection pairing [26, 19] and its dependence on the choice of the distinguished configuration
c ∈ C is similar to the dependence of the Picard–Lefschetz cocycle. The cohomology classes [Mc]
and [Sc|B] are distinct and nontrivial in H1(B,GLm(ZZ[Γ])). After reduction of Γ to the infinite
cyclic group, both cocycles define linear representations of the braid group with coefficients in
ZZ[t, t−1]. In the case of the Magnus cocycle, this is the famous Burau representation [4, 17].
In the case of the Picard–Lefschetz cocycle, this representation was first discovered by Tong–
Yang–Ma [25] and is a key ingredient in the classification of m-dimensional representations
of the braid group B on m strings [23]. For pure braids, i.e. braids which do not permute
the elements of Z, the Tong–Yang–Ma representation is determined by linking numbers (see
Section 6).

We continue our discussion of the planar case Σ = D. The group Γ is then isomorphic to the
free group Γm generated by g1, . . . , gm, and it is convenient to switch from the geometric picture
in Theorem A to generators and relations. We denote by B̃m the abstract group generated by
σ2, . . . , σm, ε1, . . . , εm with relations

σiσi+1σi = σi+1σiσi+1, εiσi = σiεi−1, εi−1σi = σiεi. (1.7)

All other pairs of generators commute. The choice of an element c ∈ C̃ determines an iso-
morphism B̃m → B̃ obtained by identifying the generators σi, εi with the moves depicted in
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Figure 2 ([18], see also Section 4). This gives rise to a contravariant free and transitive action

of B̃m on C̃ denoted by B̃m × C̃ → C̃ : (σ, c) 7→ σ∗c, and to an action of B̃m on Γm via

(σi)∗ :

{
gi−1 7→ gi−1gig

−1
i−1,

gi 7→ gi−1,
(1.8)

(σi)∗gj = gj for j 6= i− 1, i, and (εi)∗ = Id.

si−1,c(σi) = g
−1

i−1,c
σi∗(ci−1)

cici−1

σi
σi∗(ci)

ci

si,c(σi) = 1

z0 z0 z0

z0z0z0

εi

εi∗(ci)

si,c(εi) = gi,c

Figure 2: The generators of B̃m.

The third equation in (1.3) shows that, in the case of the disc, we can switch from matrix
valued functions to actual matrices. More precisely, a monodromy character N : Γm → ZZ

m×m

is uniquely determined by the matrix N := N (1). The latter satisfies

nij = (−1)nnji, nii =

{
0, if n is odd,

2(−1)n/2, if n is even.
(1.9)

We denote by Nm the space of matrices satisfying (1.9). The map N is explicitly given by
N (g) = NρN (g), the homomorphism ρN : Γm → GLm(ZZ) being defined on generators by

ρN (gi) = 1l− (−1)n(n+1)/2EiN. (1.10)

Here Ei ∈ ZZ
m×m is the matrix with the i-th entry on the diagonal equal to one and ze-

roes elsewhere. The representation ρN induces an action of Γm on the quotient module
HN := ZZ

m/ kerN which preserves the intersection form 〈λ, µ〉 := λTNµ. Moreover, the triple
(HN , ρN , 〈·, ·〉) becomes isomorphic to (HN , ρN , 〈·, ·〉): see Section 2. The next result rephrases
Theorem A for the particular case of the disc, and strengthens it with an additional uniqueness
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statement. The first part of (ii) has been already proved by Bondal [5, Proposition 2.1] for
upper triangular matrices instead of (skew-)symmetric ones. For k = 2, . . . ,m we denote by Σk
the permutation matrix of the transposition (k − 1, k) and, for i = 1, . . . ,m, we denote by Di

the diagonal matrix with i-th entry on the diagonal equal to (−1)n+1 and the other diagonal
entries equal to 1.

Theorem B. (i) There is a unique function S : B̃m × Nm → GLm(ZZ) satisfying the following
conditions.

(Cocycle) For all N ∈ Nm and σ, τ ∈ B̃m we have

S(στ,N) = S(σ,N)S(τ, S(σ,N)TNS(σ,N)). (1.11)

(Normalization) For all N ∈ Nm we have S(1, N) = 1l and

S(σk, N) = Σk − (−1)n(n+1)/2nk−1,kEk−1, k = 2, . . . ,m,

S(εi, N) = Di, i = 1, . . . ,m.
(1.12)

(ii) The function S in (i) determines a contravariant group action of B̃m on Nm via

σ∗N := S(σ,N)TNS(σ,N)

for N ∈ Nm and σ ∈ B̃m. This action is compatible with the action of B̃m on the space of
marked distinguished configurations in the sense that, for every Lefschetz fibration X → D with
singular fibers over Z, every σ ∈ B̃m, and every c ∈ C̃, we have

NX
σ∗c = σ∗NX

c ,

where NX
c := NX

c (1).

(iii) For every σ ∈ B̃m and every N ∈ Nm the matrix S(σ,N) induces an isomorphism from
Hσ∗N to HN which preserves the bilinear pairings and satisfies

ρσ∗N (g) = S(σ,N)−1ρN (σ∗g)S(σ,N). (1.13)

By Theorem B every symplectic Lefschetz fibration f : X → D with critical fibers over Z
determines a B̃m-equivariant map

C̃ → Nm : c 7→ NX
c

which can be viewed as an algebraic invariant ofX . Our next theorem asserts that this invariant
is uniquely determined by the matrix

QX : Z × Z → ZZ
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of intersection numbers of vanishing cycles along straight lines. Here we assume that no straight
line connecting two points in Z contains another element of Z; such a set Z is called admissible.
Denote by NZ the space of matrices Q : Z × Z → ZZ satisfying

Q(z, z′) = (−1)nQ(z′, z), Q(z, z) =

{
0, if n is odd,

2(−1)n/2, if n is even.
(1.14)

We define a map C̃ × Nm → NZ : (c,N) 7→ Qc,N by

Qc,N(zi, zj) := (NρN (g))ij (1.15)

where z1, . . . , zm is the ordering of Z given by c, Γm is identified with Γ, and

g := c−1
i · sij · cj ∈ Γ.

Here the right hand side denotes the based loop obtained by first traversing cj , then moving
clockwise near zj until reaching the straight line sij from zj to zi, then following sij , then
moving counterclockwise near zi until reaching ci, and finally traversing ci in the opposite
direction (see Figure 3). Geometrically, this means that the matrix QX := Qc,NX

c
assigns to

s

z0

g

zj

zi

ij

Figure 3: Intersection numbers along straight lines.

a pair (z, z′) ∈ Z × Z the intersection number of the vanishing cycles along the straight line
from z to z′, where the orientations at the endpoints are determined by moving the oriented
vanishing cycles in the directions vz and vz′ clockwise towards the straight line. (Given a
marked distinguished configuration c and the loop g as above, the straight line sji from zi to
zj corresponds to the curve cj · g−1 · c−1

i .)

Theorem C. The map (c,N) 7→ Qc,N defined by (1.15) is invariant under the diagonal action

of B̃m on C̃ × Nm. Moreover, for every Q ∈ NZ , there is a unique equivariant map

C̃ → Nm : c 7→ Nc

such that Qc,Nc
= Q for every c ∈ C̃.
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Let f : X → D be a symplectic Lefschetz fibration with critical fibers over an admissible set
Z ⊂ int(D). Let z, z′ ∈ Z and x ∈ f−1(z), x′ ∈ f−1(z′) be the associated critical points of f .
Then the number QX(z, z′) is the algebraic count of negative gradient flow lines

u̇+∇fθ(u) = 0, fθ := cos(θ)Re f + sin(θ)Im f, θ := arg(z′ − z), (1.16)

from x′ = lims→−∞ u(s) to x = lims→∞ u(s). According to Donaldson–Thomas [9] this count
of gradient flow lines is (conjecturally) still meaningful in suitable infinite dimensional settings.
It thus gives rise to an intersection matrix Q and hence, by Theorem C, also to an equivariant
map c 7→ Nc. A case in point, analogous to symplectic Floer theory, is where f is the complex
symplectic action on the loop space of a complex symplectic manifold.

The paper is organized as follows. In Section 2 we explain an algebraic setting for mon-
odromy representations, Section 3 discusses the framed braid group B̃, and in Section 4 we
prove that B̃ acts freely and transitively on the space C̃ of distinguished configurations. Theo-
rem A is contained in Theorem 4 from Section 5. We compare in Section 6 the Picard–Lefschetz
cocycle with the Magnus cocycle, and discuss some related linear representations of the braid
group. Theorem B is proved in Section 7, in Section 8 we introduce monodromy groupoids, in
Section 9 we prove Theorem C, and Section 10 illustrates the monodromy representation by
an example. We include a brief discussion of some basic properties of Lefschetz fibrations in
Section 11, summarizing relevant facts from [2, Chapter I].

2 Monodromy representations

We examine algebraic structures that are relevant in the study of monodromy representations
associated to Lefschetz fibrations.

Definition 1. Fix a positive integer n. Let Γ be a group and g1, . . . , gm be pairwise distinct
elements of Γ \ {1}. A monodromy character on (Γ, g1, . . . , gm) is a matrix valued function
N = (nij) : Γ → ZZ

m×m satisfying

nij(g
−1) = (−1)nnji(g), (2.1)

nii(1) =

{
0, if n is odd,
2(−1)n/2, if n is even,

(2.2)

nij(ggkh) = nij(gh)− (−1)n(n+1)/2nik(g)nkj(h) (2.3)

for all g, h ∈ Γ and i, j, k ∈ {1, . . . ,m}. A monodromy representation of (Γ, g1, . . . , gm) is
a tuple (H, ρ,L1, . . . ,Lm) consisting of a ZZ-module H together with a nondegenerate bilinear
pairing, a representation ρ : Γ → Aut(H) that preserves the bilinear pairing, and elements
L1, . . . ,Lm ∈ H, satisfying

〈L,L′〉 = (−1)n 〈L′,L〉 , (2.4)

〈Li,Li〉 =

{
0, if n is odd,
2(−1)n/2, if n is even,

(2.5)

ρ(gi)L = L − (−1)n(n+1)/2 〈Li,L〉Li (2.6)

for all L,L′ ∈ H and i ∈ {1, . . . ,m}. The automorphisms ρ(gi) are called Dehn twists and
the Li are called vanishing cycles.
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Remark 1. Every monodromy character N : Γ → ZZ
m×m satisfies

nij(gg
−1
k h) = nij(gh)− (−1)n(−1)n(n+1)/2nik(g)nkj(h), (2.7)

nij(gig) = nij(ggj) = (−1)n+1nij(g). (2.8)

Every monodromy representation (H, ρ,L1, . . . ,Lm) satisfies

ρ(g−1
i )L = L − (−1)n(−1)n(n+1)/2 〈Li,L〉Li, (2.9)

ρ(gi)Li = (−1)n+1Li. (2.10)

Equation (2.7) follows from (2.1) and (2.3) by replacing g, h with h−1, g−1 and interchanging
i and j. To prove the second equation in (2.8) use equation (2.3) with k = j and h = 1; then
use (2.2). The proofs of (2.9) and (2.10) are similar.

Every monodromy representation gives rise to a monodromy character and vice versa. If
(H, ρ,L1, . . . ,Lm) is a monodromy representation then the associated monodromy character
Nρ : Γ → ZZ

m×m assigns to every g ∈ Γ the intersection matrix

nij(g) := 〈Li, ρ(g)Lj〉 . (2.11)

Conversely, we obtain that every monodromy character N induces a monodromy representation
(HN , ρN ,L1, . . . ,Lm) as follows.

Denote by ZZ[Γ] the group ring of Γ. One can think of an element λ ∈ ZZ[Γ] either as a
function λ : Γ → ZZ with finite support or as a formal linear combination λ =

∑
g∈Γ λ(g)g.

With the first viewpoint, the multiplication in ZZ[Γ] is the convolution product

(λµ)(h) :=
∑

g∈Γ

λ(g)µ(g−1h).

The group Γ acts on the group ring by the formula (g∗λ)(h) := λ(hg) for λ ∈ ZZ[Γ] and g, h ∈ Γ.
In the formal sum notation we have

g∗λ =
∑

h

λ(hg)h =
∑

h

λ(h)hg−1 = λg−1.

For any function N : Γ → ZZ
m×m we introduce the ZZ-module

HN := Λ/ {λ ∈ Λ | Nλ = 0} , Λ := ZZ[Γ]m, (2.12)

where (Nλ)(h) :=
∑

gN (hg−1)λ(g) is the convolution product. This abelian group is equipped
with a bilinear pairing

〈µ, λ〉 :=
∑

g,h∈Γ

µ(h)TN (hg−1)λ(g) =
∑

h∈Γ

µ(h)T (Nλ)(h) (2.13)

and a group action ρN : Γ → Aut(HN ) defined by

ρN (g)[λ] := [g∗λ], (2.14)
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which preserves the bilinear pairing. The special elements L1, . . . ,Lm ∈ HN are given by

Li := [δi], δi(g) :=

{
ei, if g = 1,
0, if g 6= 1.

(2.15)

These structures are well defined for any function N : Γ → ZZ
m×m. The next lemma asserts that

the tuple (HN , ρN ,L1, . . . ,Lm) is a monodromy representation whenever N is a monodromy
character.

Lemma 1. (i) Assume that N : Γ → ZZ
m×m is a monodromy character. Then the tuple

(HN , ρN ,L1, . . . ,Lm) defined by (2.12-2.15) is a monodromy representation whose associated
character is N .

(ii) Let (H, ρ,L1, . . . ,Lm) be a monodromy representation and N be its character (2.11). Then
the map

Λ → H : λ 7→
∑

g∈Γ

m∑

i=1

λi(g)ρ(g
−1)Li (2.16)

induces an isomorphism of monodromy representations from HN to V/W, where V ⊂ H is the
submodule generated by the vanishing cycles ρ(g)Li and W ⊂ V is the kernel of the intersection
form.

Proof: The ZZ-moduleHN is isomorphic to the image of the homomorphism defined by λ 7→ Nλ
and hence is torsion free. That the bilinear pairing in (2.13) is nondegenerate follows directly
from the definition. That it satisfies (2.4) follows from (2.1) and that it satisfies (2.5) follows
from (2.2) and the identity 〈Li,Li〉 = nii(1). To prove (2.6) fix an index i and an element
λ ∈ Λ. Abbreviate

ε := (−1)n(n+1)/2

and define λ′ ∈ Λ by
λ′ := (gi)∗λ− λ+ ε 〈δi, λ〉 δi.

Then
λ′(h) = λ(hgi)− λ(h) + ε

(∑

g∈Γ

eTi N (g−1)λ(g)
)
δi(h)

and hence

(Nλ′)(k) =
∑

h

N (kh−1)

(
λ(hgi)− λ(h) + ε

∑

g

eTi N (g−1)λ(g)δi(h)

)

=
∑

h

(
N (kgih

−1)−N (kh−1) + εN (k)EiN (h−1)

)
λ(h)

= 0.

The last equation follows from (2.3). Hence the equivalence class of λ′ vanishes and so the
tuple (HN , ρN ,L1, . . . ,Lm) satisfies (2.6). Thus we have proved that (HN , ρN ,L1, . . . ,Lm) is
a monodromy representation. Its character is

〈δi, g∗δj〉 =
∑

h,k

δi(k)
TN (kh−1)δj(hg) = nij(g).
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This proves (i).
We prove (ii). The homomorphism (2.16) is obviously surjective. That the preimage of W

under (2.16) is the subspace {λ ∈ Λ | Nλ = 0} follows from the identity

〈
ρ(h−1)Li,ΦN (λ)

〉
=
∑

g,j

nij(hg
−1)λj(g) = (Nλ)i(h),

where
ΦN (λ) :=

∑

g,j

λj(g)ρ(g
−1)Lj .

Hence (2.16) induces an isomorphism ΦN : HN → V/W and it follows directly from the
definitions that it satisfies the requirements of the lemma.

Remark 2. Our geometric motivation for Lemma 1 is the following. LetN = NX
c : Γ → ZZ

m×m

be the function associated to a Lefschetz fibration X → Σ and a distinguished configuration
c via (1.2). Let V ⊂ Hn(M) be the submodule generated by the vanishing cycles ρ(g)Li and
W ⊂ V be the kernel of the intersection form on V . Then the homomorphism

Λ → V : λ 7→
∑

g,i

λi(g)ρ(g
−1)Li

descends to a Γ-equivariant isomorphism of ZZ-modules ΦN : HN → V/W that identifies the
pairing in (1.4) with the intersection form and maps the element Li defined by (1.4) to the
equivalence class [Li] ∈ V/W .

Example 1. Assume that Γ is generated freely by g1, . . . , gm. In such a case, the function
N : Γ → ZZ

m×m in Definition 1 is completely determined by N := N (1). This matrix satisfies

NT = (−1)nN, nii =

{
0, if n is odd,

2(−1)n/2, if n is even.

It determines a monodromy representation

HN := ZZ
m/ kerN, 〈µ, λ〉 := µTNλ,

with special elements associated to the standard basis of ZZm and the action ρN : Γ → Aut(HN )
uniquely determined by

ρN (gi) = 1l− (−1)n(n+1)/2EiN. (2.17)

Here Ei ∈ ZZ
m×m denotes the matrix with the i-th entry on the diagonal equal to 1 and zeroes

elsewhere. The function N can be recovered from the matrix N via

N (g) = NρN(g),

where ρN : Γ → GLm(ZZ) is defined by equation (2.17). Moreover, the monodromy represen-
tations HN and HN are isomorphic. The isomorphism HN → HN assigns to each [v] ∈ HN

the equivalence class of the function λv : Γ → ZZ
m with value v at 1 and zero elsewhere. The

inverse isomorphism is induced by the map ZZ[Γ]m → ZZ
m : λ 7→

∑
g ρN(g

−1)λ(g).
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The ZZ-module Mm(ZZ[Γ]) of m × m-matrices with entries in the group ring is naturally
an algebra over the group ring. We think of an element M ∈ Mm(ZZ[Γ]) also as a function
M : Γ → ZZ

m×m with finite support. Hence the product is given by

MN (g) =
∑

h∈Γ

M(gh−1)N (h)

and this formula continues to be meaningful when only one of the factors has finite support. The
group ring ZZ[Γ] is equipped with an involution λ 7→ λ̄ given by λ̄(g) := λ(g−1). The conjugate
transpose of a matrix M ∈Mm(ZZ[Γ]) is defined by

Mt(g) := M(g)T = M(g−1)T

and it satisfies (MN )t = N tMt.
Let B be a group that acts covariantly on Γ and denote by B × Γ → Γ : (σ, g) 7→ σ∗g the

action. In the intended application Γ is the fundamental group of a Riemann surface with m
punctures and B is the braid group onm strings in the same Riemann surface with one puncture.
The action of B on Γ extends linearly to an action on ZZ[Γ] by algebra automorphisms given by

σ∗λ =
∑

g∈Γ

(σ∗λ)(g)g :=
∑

g∈Γ

λ(g)σ∗g, (σ∗λ)(g) := λ((σ−1)∗g).

This action extends to the ZZ-module ZZ[[Γ]] of formal sums of elements of Γ with integer coef-
ficients. These correspond to arbitrary integer valued functions on Γ. So B acts on Mm(ZZ[Γ])
componentwise, or equivalently by

σ∗M := M◦ (σ−1)∗ : Γ → ZZ
m×m. (2.18)

We then have
σ∗(MN ) = (σ∗M)(σ∗N ), σ∗(M

t) = (σ∗M)t (2.19)

for M,N ∈ Mm(ZZ[Γ]). The action of B on Mm(ZZ[Γ]) induces an action on the group
GLm(ZZ[Γ]) of invertible elements of Mm(ZZ[Γ]).

The following notion plays a crucial role in this paper. In our intended application G is the
braid group, or the framed braid group, and A is the group GLm(ZZ[Γ]) of invertible matrices
with entries in the group ring of Γ.

Definition 2 (Serre [22]). Let G and A be groups. Suppose that G acts covariantly on A and
denote the action by G×A→ A : (g, a) 7→ g∗a. A map s : G → A is called a cocycle if

s(gh) = s(g)g∗s(h). (2.20)

Two cocycles s0, s1 : G → A are called cohomologous if there is an element a ∈ A such that

s1(g) = a−1s0(g)g∗a. (2.21)

The set of equivalence classes of cocycles is denoted by H1(G, A).
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Remark 3. The semidirect product G⋉A is equipped with the group operation

(g, a) · (h, b) := (gh, ag∗b).

A map s : G → A is a cocycle if and only if the map G → G⋉A : g 7→ (g, s(g)) is a homomor-
phism (and the homomorphisms associated to two cohomologous cocycles are conjugate by the
element (1, a) ∈ G⋉A). Observe that the cocycle condition implies s(1) = 1.

Lemma 2. Every cocycle S : B → GLm(ZZ[Γ]) induces a contravariant action of B on the space
of all functions N : Γ → ZZ

m×m via

σ∗N :=
(
S(σ)tNS(σ)

)
◦ σ∗. (2.22)

Moreover, two cohomologous cocycles induce conjugate actions.

Proof: For σ, τ ∈ B we have

(στ)∗N =
(
S(στ)tNS(στ)

)
◦ (στ)∗

=
(
σ∗(S(τ))

t · S(σ)tNS(σ) · σ∗(S(τ))
)
◦ σ∗ ◦ τ∗

=
(
S(τ)t · σ∗N · S(τ)

)
◦ τ∗ = τ∗σ∗N .

Here we have used the cocycle condition and (2.19).
Assume two cocycles S and S ′ are cohomologous, i.e. there exists a matrix A ∈ GLm(ZZ[Γ])

such that S ′(σ) = A−1S(σ)σ∗A for all σ ∈ B. Denote by σ∗ and σ∗′

the actions defined by S
and S ′ respectively, and denote

CA : Map(Γ,ZZm×m) → Map(Γ,ZZm×m), N 7→ AtNA. (2.23)

A straightforward verification shows that we have σ∗′

= CA ◦ σ∗ ◦ C−1
A .

Proposition 1. Let S : B → GLm(ZZ[Γ]) be a cocycle. For every σ ∈ B and every function
N : Γ → ZZ

m×m, the isomorphism

Λ → Λ : λ 7→ S(σ)(σ∗λ)

descends to an isomorphism
Sσ : Hσ∗N → HN (2.24)

which preserves the bilinear pairings and fits into a commutative diagram

Γ
ρσ∗N

//

σ∗

��

Aut(Hσ∗N )

��

Γ ρN
// Aut(HN )

(2.25)

with the second vertical arrow given by φ 7→ SσφS
−1
σ . Moreover, two cohomologous cocycles

induce equivalent isomorphisms (2.24).
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Proof: For any σ ∈ B and any function M : Γ → ZZ
m×m the isomorphism σ∗ : Λ → Λ descends

to an isomorphism Rσ : HM◦σ∗
→ HM because we have (M◦ σ∗)λ = (σ−1)∗(M · σ∗λ). That

Rσ preserves the bilinear pairings follows from the identity (σ∗µ)
tM(σ∗λ) = σ∗(µ

t(M◦ σ∗)λ)
and the formula 〈λ, µ〉 = (λtMµ)(1) for the pairing (2.13) on HM.

For any σ ∈ B we also have an isomorphism Qσ : HS(σ)tNS(σ) → HN induced by the map
λ 7→ S(σ)λ. This follows from the associativity of the convolution product (StNS)λ = St(NSλ)
and the fact that S(σ) is invertible. That Qσ preserves the bilinear pairing follows from the
identity (Sµ)tN (Sλ) = µt(StNS)λ.

The isomorphism Sσ : Hσ∗N → HN is the composition Sσ := Qσ ◦ Rσ where we take
M := S(σ)tNS(σ). By what we have already proved, this isomorphism preserves the bilinear
pairings. The commutativity of the diagram (2.25) is equivalent to the equation

ρN (σ∗g) ◦ Sσ = Sσ ◦ ρσ∗N (g), g ∈ Γ. (2.26)

To prove (2.26) note that

(ρN (σ∗g) ◦ Sσ)(λ) = ρN (σ∗g)
(
S(σ)σ∗λ

)
=
(
S(σ)σ∗λ

)
(σ∗g)

−1,

and
(Sσ ◦ ρσ∗N (g))(λ) = Sσ(λg

−1) = S(σ)σ∗(λg
−1) =

(
S(σ)σ∗λ

)
(σ∗g)

−1.

To prove the last assertion, we assume that S and S ′ are two cohomologous cocycles. Thus
there is a matrix A ∈ GLm(ZZ[Γ]) such that S ′(σ) = A−1S(σ)σ∗A for all σ ∈ B. Denote by
σ∗ and σ∗′

the actions defined by S and S ′ respectively. We proved in Lemma 2 the relation
σ∗′

= CA ◦ σ∗ ◦ C−1
A , where the map CA is defined by (2.23). We then have a commutative

diagram

Hσ∗′(N )

LA
//

S
′
σ

��

Hσ∗′(N )A−1 = Hσ∗((A−1)tNA−1)

Sσ

��

HN = H(A−1)tN LA

// H(A−1)tNA−1 .

Here the two isomorphisms denoted LA are induced by the left multiplication Λ → Λ : λ 7→ Aλ.
The commutativity of the diagram is checked at the level of Λ using the relation between the
cocycles S ′ and S.

3 The framed braid group

In this section we recall the well known correspondence between the braid group and the
mapping class group (see [4, 17]) and extend it to the framed braid group introduced by Ko
and Smolinsky [18].

Let Σ be a compact oriented 2-manifold, possibly with boundary, let also Z ⊂ Σ \ ∂Σ be a
finite set consisting of m points, and choose a base point z0 ∈ Σ \ Z. We assume throughout
that Σ is not diffeomorphic to the 2-sphere and that z0 ∈ ∂Σ whenever Σ is diffeomorphic



450 Gwénaël Massuyeau, Alexandru Oancea, Dietmar A. Salamon

to the 2-disc. Denote by Diff(Σ, z0) the group of all diffeomorphisms of Σ that fix z0 and by
Diff0(Σ, z0) ⊂ Diff(Σ, z0) the identity component. Define

G := {φ ∈ Diff0(Σ, z0) |φ(Z) = Z} ,

G0 := {φ ∈ G | ∃φt ∈ G s.t. φ0 = id, φ1 = φ} .

Here [0, 1] → Diff(Σ, z0) : t 7→ φt is a smooth isotopy of diffeomorphisms fixing the base point.
Thus G0 is the identity component of G. We refer to the quotient

G/G0 = π0(G)

as the mapping class group. It is naturally isomorphic to the braid group.
Fix an ordering Z = {z1, . . . , zm} and let Sm denote the group of permutations. The braid

group B on m strings in Σ \ {z0} based at Z is defined as the fundamental group of the
configuration space of m unordered distinct points in Σ \ {z0}. Think of a braid as an m-tuple
of smooth paths βi : [0, 1] → Σ, i = 1, . . . ,m, which avoid z0, are pairwise distinct for each
t, and satisfy βi(0) = zi, βi(1) = zπ(i) for some permutation π ∈ Sm. Thus B is the group
of homotopy classes of braids. The composition law is [β] · [α] := [βα], where βα is the braid
obtained by first running through α and then through β.

The isomorphism Φ : B → G/G0 is defined as follows. Given a braid β choose a smooth
isotopy {φt}0≤t≤1 in Diff(Σ, z0) with φ0 = id satisfying φt(zi) = βi(t) for i = 1, . . . ,m and
define Φ([β]) := [φ1]. To see that this map is well defined choose a smooth family of vector
fields vt ∈ Vect(Σ) satisfying vt(z0) = 0 and

vt(βi(t)) = β̇i(t), i = 1, . . . ,m,

and let φt be the isotopy generated by vt via ∂tφt = vt ◦ φt and φ0 = id. The existence
of vt follows from an easy argument using cutoff functions, and that the isotopy class of φ1
is independent of the choices of β and vt follows from a parametrized version of the same
argument respectively from taking convex combinations of vector fields. We claim that Φ is an
isomorphism. (See [4, Theorem 4.3] for a slightly different statement.)

That Φ is a surjective group homomorphism is obvious. Thus we have an exact sequence

π1 (Diff0(Σ, z0), id) −→ B
Φ

−→ G/G0 −→ 1, (3.1)

where the first map sends an isotopy {φt}0≤t≤1 with φ0 = φ1 = id to the braid in Σ \ {z0}
defined by t 7→ φt(Z). Hence the injectivity of Φ follows from the fact that Diff0(Σ, z0) is
simply connected. (This is why we exclude the 2-sphere and the 2-disc with a base point in the
interior: see Remark 4 below.) In fact it is contractible. To see this in the case χ(Σ) < 0 we use
the fact that the identity component Diff0(Σ) of Diff(Σ) is contractible [10, 11] and consider
the fibration

Diff0(Σ, z0) →֒ Diff0(Σ) → Σ̃.

The map Diff0(Σ) → Σ̃ assigns to every diffeomorphism φ ∈ Diff0(Σ) the homotopy class of
the path [0, 1] → Σ : t 7→ φt(z0) with fixed endpoints, where [0, 1] → Diff0(Σ) : t 7→ φt is
a smooth isotopy with φ0 = id and φ1 = φ. This map is well defined because Diff0(Σ) is
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simply connected. If the Euler characteristic is zero Σ is either diffeomorphic to the 2-torus
or to the annulus. In both cases Diff0(Σ, z0) = Diff(Σ, z0) ∩ Diff0(Σ) acts freely on J (Σ)
and there is a diffeomorphism Diff0(Σ, z0) × T (Σ) → J (Σ) where T (Σ) := J (Σ)/Diff0(Σ) is
diffeomorphic to the upper half space H in the case of the torus and to an open interval in
the case of the annulus. In the case of the disc D the group Diff0(D) of orientation preserving
diffeomorphisms acts transitively on J (D) with isotropy subgroup PSL(2,R). This action gives
rise to a diffeomorphism from J (D) to the subgroup of all diffeomorphisms that fix a point on
the boundary and a point in the interior. Hence the group Diff0(D, z0) is contractible for every
point z0 ∈ ∂D.

Remark 4. In the cases Σ = S2 and Σ = D with z0 /∈ ∂D the group Diff0(Σ, z0) is not con-
tractible but homotopy equivalent to the circle. It can be deduced from the exact sequence (3.1)
that Φ is not injective and that, instead, B is in these two cases a central extension of the map-
ping class group G/G0 by an infinite cyclic group Z. If Σ = S2 then B can be interpreted as
the braid group on m strings in C, and the subgroup Z is the center of B for m ≥ 3 [4, 17]. If
Σ = D with z0 /∈ ∂D then B can be interpreted as the subgroup of the braid group on m + 1
strings in D that fixes the point z0, and Z is the center of B for all m ≥ 1.

The framed braid group is an extension of the braid group B. Choose nonzero tangent
vectors vz ∈ TzΣ for z ∈ Z and define

G̃ :=
{
φ ∈ Diff0(Σ, z0) |φ(Z) = Z, dφ(z)vz = vφ(z) ∀z ∈ Z

}
,

G̃0 :=
{
φ ∈ G̃ | ∃φt ∈ G̃ s.t. φ0 = id, φ1 = φ

}
.

Thus G̃0 is the identity component of G̃. The marked mapping class group is the quotient

G̃/G̃0 = π0(G̃).

It is naturally isomorphic to the framed braid group B̃ on m strings in Σ \ {z0}. Fix
again an ordering Z = {z1, . . . , zm} and denote vi := vzi for i = 1, . . . ,m. The framed braid
group is defined as the fundamental group of the configuration space of m unordered points
in the complement of the zero section in the tangent bundle of Σ \ {z0} whose projections
to the base are pairwise distinct. Think of a framed braid as an m-tuple of smooth paths
(βi, ξi) : [0, 1] → TΣ for i = 1, . . . ,m such that (β1, . . . , βm) is a braid in Σ \ {z0} satisfying
βi(0) = zi and βi(1) = zπ(i) for some permutation π ∈ Sm, and each ξi is a nowhere vanishing

vector field along βi such that ξi(0) = vi and ξi(1) = vπ(i). Thus B̃ is the group of homotopy
classes of framed braids.

The isomorphism Φ̃ : B̃ → G̃/G̃0 is defined as follows. Given a framed braid (β, ξ) choose a
smooth isotopy {φt}0≤t≤1 in Diff(Σ, z0) with φ0 = id satisfying

φt(zi) = βi(t), dφt(zi)vi = ξi(t), i = 1, . . . ,m, (3.2)

and define Φ̃([β, ξ]) := [φ1]. To see that this map is well defined choose a smooth family of
vector fields vt ∈ Vect(Σ) satisfying vt(z0) = 0 and

vt(βi(t)) = β̇i(t), ∇ξi(t)vt(βi(t)) = ∇tξi(t), i = 1, . . . ,m. (3.3)
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(Here ∇ is a torsion free connection on TΣ but the second equation in (3.3) is independent of
this choice.) Now let φt be the isotopy generated by vt via ∂tφt = vt ◦ φt and φ0 = id. Then
φt satisfies (3.2). As above, the existence of vt follows from an easy argument using cutoff
functions, and that the isotopy class of φ1 is independent of the choices of β and vt follows from
a parametrized version of the same argument respectively from taking convex combinations of
vector fields. That Φ̃ is a surjective group homomorphism is obvious and that it is injective
follows again from the definitions and the fact that Diff0(Σ, z0) is simply connected.

Remark 5. There is an obvious action of the mapping class group on the braid group induced
by the action of G on B via

φ∗[β1, . . . , βm] := [φ ◦ βπ(1), . . . , φ ◦ βπ(m)],

for φ ∈ G and a braid β = (β1, . . . , βm), where π ∈ Sm is defined by φ(zπ(i)) = zi. On the other
hand we have seen that the mapping class group can be identified with the braid group. The
resulting action of the braid group on itself is given by inner automorphisms. In other words

Φ(α)∗β = αβα−1

for α, β ∈ B. The same holds for the framed braid group.

The framed braid group fits into an exact sequence

0 → ZZ
m → B̃ → B → 1. (3.4)

This extension splits by choosing a nowhere vanishing vector field w on Σ \ {z0} such that
wz = vz at each z ∈ Z. The splitting depends on the homotopy class of w relatively to Z, so
that it is not unique in general. In the following we shall not distinguish in notation between
the mapping class group π0(G) and the braid group B, nor between π0(G̃) and B̃.

4 Distinguished configurations

Let Σ, Z, z0 be as in Section 3. An m-tuple c = (c1, . . . , cm) of smooth paths ci : [0, 1] → Σ is
called a distinguished configuration if

(i) each ci is an embedding with ci(0) = z0 and, for i 6= j, the paths ci and cj meet only at z0;

(ii) {c1(1), . . . , cm(1)} = Z;

(iii) the vectors ċ1(0), . . . , ċm(0) are pairwise linearly independent and are ordered clockwise
in Tz0Σ.

Two distinguished configurations c0 and c1 are called homotopic if there is a smooth homotopy
{cλ}0≤λ≤1 of distinguished configurations from c0 to c1. We write c0 ∼ c1 if c0 is homotopic to c1

and denote the homotopy class of a distinguished configuration c by [c]. The set of homotopy
classes of distinguished configurations will be denoted by C. Note that each distinguished
configuration c determines an ordering Z = {z1, . . . , zm} via zi := ci(1).
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Theorem 1. The braid group B acts freely and transitively on C via

(
[φ], [c1, . . . , cm]

)
7→ [φ ◦ c1, . . . , φ ◦ cm] =: [φ∗c]. (4.1)

Proof: We prove that the action is transitive. Given two distinguished configurations c and
c′ we need to construct an element ψ ∈ Diff0(Σ, z0) such that ψ∗c is homotopic to c′. Up to
homotopy we can assume that there is a constant ε > 0 such that ci(t) = c′i(t) for 0 ≤ t ≤ ε.
Now construct an isotopy [ε, 1] → Diff0(Σ, z0) : λ 7→ φλ satisfying φ1 = id and

φλ(ci(t)) = ci(λt), ε ≤ λ ≤ 1, i = 1, . . . ,m,

by choosing an appropriate family of vector fields. Choose an analogous isotopy φ′λ for c′ and
define

ψ := (φ′ε)
−1 ◦ φε ∈ G.

Then ψ(ci(t)) = c′i(t) as required.
We prove that the action is free when z0 /∈ ∂Σ. The case z0 ∈ ∂Σ is similar. Let c be a

distinguished configuration and φ ∈ G such that φ∗c is homotopic to c. We prove in five steps
that φ ∈ G0.

Step 1. We may assume that dφ(z0) = 1l.

It is enough to prove that, for every matrix A ∈ GL+(n,R), there exists a diffeomorphism
ψ : Rn → R

n, supported in the unit ball and isotopic to the identity through diffeomorphisms
with support in the unit ball, that satisfies ψ(0) = 0 and dψ(0) = A. If A is symmetric and
positive definite we may assume that A is a diagonal matrix and choose ψ in the form

ψ(x) = (ψ1(x1), . . . , ψn(xn))

where each ψi is a suitable monotone diffeomorphism of R. If A is orthogonal we choose a
smooth path [0, 1] → SO(n) : r 7→ Ar, constant near the ends, with A0 = A and A1 = 1l and
define

ψ(x) := A|x|x.

The general case follows by polar decomposition.

Step 2. We may assume that φ agrees with the identity near z0.

Let φ be a diffeomorphism of Rn with φ(0) = 0 and dφ(0) = 1l and choose a smooth nonin-
creasing cutoff function β : [0, 1] → [0, 1] equal to one near zero and vanishing near one. Then,
for ε > 0 sufficiently small, the formula

φλ(x) := λβ(|x|/ε)x + (1− λβ(|x|/ε))φ(x)

defines an isotopy from φ0 = φ to a diffeomorphism φ1 equal to the identity near the origin such
that, for each λ, φλ agrees with φ outside the ball of radius ε. Now choose a local coordinate
chart near z0 to carry this construction over to Σ.

Step 3. We may assume that φ agrees with the identity near z0 and φ∗c = c.
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Assume, by Step 2, that φ agrees with the identity near z0. Then the homotopy λ 7→ cλ from
c0 = c to c1 = φ∗c can be chosen such that cλ(t) is independent of t for t sufficiently small.
Hence there exists a family of vector fields vλ ∈ Vect(Σ) satisfying

vλ(cλi (t)) = ∂λc
λ
i (t)

for all λ, t, i and vλ(z) = 0 for z near z0. Integrating this family of vector fields yields a
diffeomorphism ψ ∈ G0 such that ψ∗φ∗c = c.

Step 4. We may assume that φ agrees with the identity near the union of the images of the ci.

Assume, by Step 3, that φ(ci(t)) = ci(t) for all t and i and that φ agrees with the identity
near z0. If dφ(ci(t)) = 1l for all i and t we can use an interpolation argument as in Step 2 to
deform φ to a diffeomorphism that satisfies the requirement of Step 4. To achieve the condition
dφ(ci(t)) = 1l via a prior deformation we must solve the following problem. Given two smooth
functions a : [0, 1] → R and b : [0, 1] → (0,∞) find a diffeomorphism ψ : R2 → R

2 that is equal
to the identity outside a small neighborhood of the set [0, 1]× {0} and satisfies

ψ(x, 0) = (x, 0), dψ(x, 0) =

(
1 a(x)
0 b(x)

)
, 0 ≤ x ≤ 1.

It suffices to treat the cases a(x) ≡ 0 and b(x) ≡ 1. For b(x) ≡ 1 one can use an interpolation
argument as in the proof of Step 2. For a(x) ≡ 0 one can use a parametrized version of the
argument for the positive definite case in the proof of Step 1.

Step 5. We prove that φ ∈ G0.

Assume, by Step 4, that there exists a coordinate chart u : D → Σ such that ci(t) ∈ u(D) for
all i and t and φ ◦ u = u. Choose any isotopy

[0, 1] → Diff0(Σ, z0) : λ 7→ φλ

from φ0 = id to φ1 = φ. By a parametrized version of the argument in Step 1 we may assume
that dφλ(z0) = 1l for every λ. By a parametrized version of the argument in Step 2 we may
assume that there is an ε > 0 such that φλ ◦ u agrees with u on the disc of radius ε for every
λ. Choose a diffeomorphism ψ : Σ → Σ, supported in u(D), such that

ψ(u({z ∈ D | |z| ≤ 1− ε})) = u({z ∈ D | |z| ≤ ε}).

Then λ 7→ ψ−1 ◦ φλ ◦ ψ is an isotopy in G and so φ = ψ−1 ◦ φ ◦ ψ ∈ G0. This concludes the
proof of the theorem.

Recall from the Introduction that every distinguished configuration c determines elements
g1,c, . . . , gm,c of the fundamental group Γ = π1(Σ \ Z, z0), where gi,c is the homotopy class of
the loop obtained by traversing ci, encircling zi counterclockwise, and then traversing ci in the
opposite direction. Clearly, the gi,c depend only on the homotopy class of c. Conversely, we
have the following theorem.
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Theorem 2. If c, c′ ∈ C satisfy gi,c = gi,c′ for i = 1, . . . ,m then c ∼ c′.

The proof relies on the classical result of Baer, Dehn and Nielsen asserting that, in dimension
two, isotopy coincides with homotopy. Specifically, we need the following theorem due to
Epstein [12, Theorem 3.1] and Feustel [13] about embedded arcs in 2-manifolds.

The Epstein–Feustel Theorem. Let S be a compact 2-manifold with boundary and let
α, β : [0, 1] → S be smooth embeddings such that

α(0) = β(0), α(1) = β(1), α−1(∂S) = β−1(∂S) = {α(0), α(1)} .

If α and β are smoothly homotopic with fixed endpoints then there is a smooth ambient isotopy
[0, 1]× S → S : (λ, p) 7→ φλ(p) such that

φ0 = id, φ1 ◦ α = β

and φλ|∂S = id for all λ ∈ [0, 1].

In the work of Epstein and Feustel the 2-manifold S is triangulated and the isotopy can
be chosen piecewise linear whenever the arcs are piecewise linear. In Feustel’s theorem the
homeomorphism φλ : S → S fixes the endpoints of the arcs. In Epstein’s theorem S need not
be compact and the φλ have uniform compact support and are equal to the identity on the
boundary of S. To obtain the smooth isotopy in the above formulation, we first approximate
the embedded arcs by piecewise linear arcs, then use Epstein’s version of the theorem in the
piecewise linear setting, then approximate the piecewise linear isotopy by a smooth isotopy, and
finally connect two nearby smooth arcs by a smooth isotopy.

Proof of Theorem 2: Let ζz ⊂ Γ be the conjugacy class determined by a small loop encircling
the puncture z ∈ Z. Since Σ 6= S2 we have ζz 6= ζz′ whenever z 6= z′. Since gi,c ∈ ζci(1) and
gi,c′ ∈ ζc′

i
(1) for i = 1, . . . ,m, we deduce that c and c′ determine the same ordering of Z:

Z = {z1, . . . , zm}, zi := ci(1) = c′i(1).

Performing an isotopy of the distinguished configuration c′, if necessary, we may assume that
c′i agrees with ci on the interval [1 − 2ε, 1] for some ε > 0. Next we denote by B2ε ⊂ C the
disc of radius 2ε centered at zero and choose embeddings ψi : B2ε → Σ with disjoint images
Ui := ψi(B2ε) such that ψi(t) = ci(1 − t) for 0 ≤ t < 2ε and ci|[0,1−2ε] takes values in the
complement of U1 ∪ · · · ∪ Um for every i. Let Di := ψi(Bε) and denote

D := D1 ∪ · · · ∪Dm ⊂ Σ.

Then Σ \D is a manifold with boundary and the inclusion Σ \D →֒ Σ \ Z induces an isomor-
phism of fundamental groups π1(Σ \D, z0) ∼= Γ. We prove in four steps that the distinguished
configurations c and c′ are homotopic.

Step 1. For i = 1, . . . ,m let hi ∈ Γ be the homotopy class of the based loop that traverses
ci|[0,1−ε] and then c′i|[0,1−ε] in the reverse direction. Then, for every i, there is a ki ∈ ZZ such

that hi = gkii,c.
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By definition of hi we have
higi,ch

−1
i = gi,c′ = gi,c ∈ Γ

for i = 1, . . . ,m. Thus hi commutes with gi,c. Moreover, Γ is a free group. If m > 1 or ∂Σ 6= ∅
we can choose a basis of Γ such that gi,c is one of the generators and the assertion follows.

If m = 1 and ∂Σ = ∅ then Σ has genus g ≥ 1, by assumption. Hence the group Γ is free of
rank 2g and we can choose generators α1, . . . , αg, β1, . . . , βg such that b := g1,c =

∏g
j=1[αj , βj ].

Let h := h1. Since Γ is free and b commutes with h, the subgroup of Γ generated by b and h
is free, by the Nielsen–Schreier theorem, and abelian and hence has rank one. Thus there is a
d ∈ Γ such that b = dr and h = dk for some r, k ∈ ZZ. Since b 6= 1 we must have r 6= 0. We
claim that r = ±1. To see this, let Γ =: Γ1 ⊃ Γ2 ⊃ · · · be the lower central series of Γ, with
Γℓ+1 := [Γℓ,Γ1] for ℓ ≥ 1. The quotient H := Γ1/Γ2 is free abelian of rank 2g with generators
[α1], . . . , [αg], [β1], . . . , [βg]. In this quotient the identity dr = b becomes r · [d] = [b] = 0. Since
r 6= 0 and H has no torsion we obtain [d] = 0 in H , i.e. d ∈ Γ2. Since b ∈ Γ2 we can consider
the identity dr = b in the quotient Γ2/Γ3. This quotient is canonically isomorphic to the second
exterior power of H , by identifying the equivalence class of a commutator [u, v] with [u] ∧ [v],
for all u, v ∈ Γ. In Λ2H the equivalence class of b is equal to

∑g
j=1[αj ]∧ [βj ]. This is a primitive

element, and the equation r · [d] = [b] implies r = ±1. Thus Step 1 is proved.

Step 2. We may assume without loss of generality that, for each i, the paths ci|[0,1−ε] and
c′i|[0,1−ε] are smoothly homotopic with fixed endpoints in Σ \ D. Moreover, the path ci|[1−ε,1]
agrees with the path c′i|[1−ε,1] for each i.

Let ki be as in Step 1 and choose a smooth cutoff function ρ : [0, 2ε] → R such that ρ(r) = 1
for r ≤ ε and ρ(r) = 0 for r ≥ 3ε/2. Define the diffeomorphism φ : Σ → Σ by setting
φ(ψi(z)) := ψi(e

−2πikiρ(|z|)z) for z ∈ B2ε and i = 1, . . . ,m and by φ(p) := p for p /∈ U1∪· · ·∪Um.
Replacing c′ by the equivalent distinguished configuration φ∗c

′ and constructing hi as in Step 1,
we obtain hi = 1 and this proves Step 2.

Step 3. If z0 /∈ ∂Σ we may assume without loss of generality that there is a smooth embedding
ψ0 : B2ε → Σ and real numbers 2π > θ1 > · · · > θm ≥ 0 such that the following holds.

(a) The closure of U0 := ψ0(B2ε) is disjoint from U i for i = 1, . . . ,m.

(b) For each i we have ci(t) = c′i(t) = ψ0(e
iθit) for 0 ≤ t < ε,

∣∣ψ−1
0 (ci(t))

∣∣ =
∣∣ψ−1

0 (c′i(t))
∣∣ = t

for ε ≤ t < 2ε, and ci(t), c
′
i(t) /∈ U0 for 2ε ≤ t ≤ 1.

(c) The curves ci|[ε,1−ε] and c
′
i|[ε,1−ε] are smoothly homotopic with fixed endpoints in the sub-

manifold Σ \ (D0 ∪D), where D0 := ψ0(Bε).

If z0 ∈ ∂Σ we may assume the same with a smooth embedding ψ0 : {z ∈ B2ε | Im z ≥ 0} → Σ of
a half disc and with π > θ1 > · · · > θm > 0.

Assume z0 /∈ ∂Σ and choose any embedding ψ0 : B2ε → Σ such that ψ0(0) = z0 and con-
dition (a) holds. Reparametrizing ci near t = 0 we may assume that

∣∣∂t(ψ−1
0 ◦ ci)(0)

∣∣ = 1.
Rotating the embedding, if necessary, we may assume that there are real numbers

2π > θ1 > θ2 > · · · > θm ≥ 0

such that
∂t(ψ

−1
0 ◦ ci)(0) = eiθi , i = 1, . . . ,m.
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Shrinking ε, if necessary, we can deform ci to a curve that satisfies ci(t) = ψ0(e
iθit) for any

0 ≤ t < 2ε. Shrinking ε again we may assume that ci(t) /∈ U0 for 2ε ≤ t ≤ 1. Applying the
same argument to the c′i, using partial Dehn twists supported in U0, and shrinking ε again, we
may assume that the arcs c′i satisfy the same two properties. Thus condition (b) is fulfilled.

By Step 2 the curves ci|[0,1−ε] and c′i|[0,1−ε] are homotopic with fixed endpoints in Σ \ D.
Now consider the loop γi in Σ\(D0∪D) obtained by first traversing ci|[ε,1−ε] and then traversing
c′i|[ε,1−ε] in the reverse direction. This loop is contractible in Σ \D and hence, as a based loop

in Σ \ (D0 ∪ D) with basepoint ci(ε), is homotopic to a multiple of ∂D0. Using a suitable
multiple of a Dehn twist in the annulus U0 \ D0 (as we did in Step 2), we can replace c′

by an equivalent distinguished configuration which still satisfies (b) and such that γ1 is now
contractible in Σ \ (D0 ∪D). Hence the curves c1|[ε,1−ε] and c

′
1|[ε,1−ε] are homotopic with fixed

endpoints in Σ \ (D0 ∪D). For i ≥ 2 the curves ci([ε, 1− ε]) and c′i([ε, 1− ε]) in Σ \ (D0 ∪D)
have endpoints different from c1(ε) and c1(1 − ε). Hence they have well defined intersection
numbers with c1|[ε,1−ε]. By what we have just proved these agree with the intersection numbers
with c′1|[ε,1−ε]. Since ci([ε, 1− ε]) is disjoint from c1([ε, 1− ε]) and c′i([ε, 1− ε]) is disjoint from
c′1([ε, 1−ε]) we deduce that both intersection numbers are zero. Hence the intersection number
of c1|[ε,1−ε] with γi is zero for i ≥ 2. Since the loop γi is a multiple of ∂D0, we deduce that it
is contractible in Σ \ (D0 ∪D) for i ≥ 2. This proves Step 3 in the case z0 /∈ ∂Σ. The proof in
the case z0 ∈ ∂Σ is similar, assertion (c) being simpler to prove.

Step 4. The distinguished configurations c and c′ are homotopic.

We prove by induction on ℓ ∈ {1, . . . ,m} that there exists an ambient isotopy

[0, 1]× Σ → Σ : (λ, p) 7→ φλ(p)

such that each φλ is the identity on D0 ∪D and φ1(ci(t)) = c′i(t) for 0 ≤ t ≤ 1 and i = 1, . . . , ℓ.
For ℓ = 1 the existence of the isotopy follows immediately from Step 3, the Epstein–Feustel
theorem, and the second assertion of Step 2.

Now suppose by induction that ℓ ∈ {2, . . . ,m} and that c′i = ci for any i = 1, . . . , ℓ− 1. By
Step 3 the curves cℓ|[ε,1−ε] and c

′
ℓ|[ε,1−ε] are homotopic with fixed endpoints in Σ \ (D0 ∪ D).

Choose a smooth open disc U ⊂ Σ (respectively half disc in the case z0 ∈ ∂Σ) such that U is
an embedded closed disc (respectively half disc) and

D0 ∪D1 ∪ · · · ∪Dℓ−1 ⊂ U,
⋃ℓ−1
i=1 ci([0, 1]) ⊂ U,

(Dℓ ∪ · · · ∪Dm) ∩ U = ∅,
⋃m
i=ℓ ci((ε, 1]) ∩ U = ∅.

Then the inclusion of Σ\ (U ∪D) into Σ\ (D0∪D) induces an injection of fundamental groups.
Hence the curves cℓ|[ε,1−ε] and c′ℓ|[ε,1−ε] are homotopic with fixed endpoints in Σ \ (U ∪ D).
Hence the existence of an ambient isotopy satisfying the assertion for ℓ follows from the Epstein–
Feustel theorem. This proves Step 4 and the theorem.

Corollary 1. Let N be the kernel of the homomorphism Γ → π1(Σ, z0) induced by the inclusion
Σ \ Z →֒ Σ. Then the homomorphism

B → Aut(N) : σ 7→ σ∗ (4.2)
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obtained by composing Φ : B → G/G0 with the canonical action of G/G0 on the subgroup N , is
injective.

Proof: That the canonical action of G/G0 on Γ leaves the subgroupN globally invariant follows
from the definition of G. To prove the injectivity, we consider a braid σ ∈ B such that σ∗ is the
identity of N . For an arbitrary configuration c ∈ C, we have

gi,σ∗c = σ∗gi,c = gi,c, i = 1, . . . ,m.

Hence it follows from Theorem 2 that c and σ∗c are equivalent distinguished configurations. By
Theorem 1 this implies that σ is trivial.

Remark 6. Assume Σ = D with z0 ∈ ∂D. We have N = Γ in this case and the map (4.2) is
known as the Artin representation. A classical theorem by Artin [1, 4, 17] asserts that it is
injective and that its image consists of all automorphisms φ : Γ → Γ that satisfy the following
two conditions:

(i) φ permutes the m conjugacy classes in Γ determined by small loops encircling the m punc-
tures;

(ii) φ preserves the homotopy class of ∂D.

Thus Corollary 1 is the injectivity part of Artin’s theorem.

Let us choose a nonzero tangent vector vz ∈ TzΣ at each puncture z ∈ Z. A marked
distinguished configuration is a distinguished configuration c = (c1, . . . , cm) satisfying

ċi(1) = −vci(1), i = 1, . . . ,m.

Observe that the configuration c induces an ordering on the set {vz}z∈Z defined by vi := vci(1)
for i = 1, . . . ,m. The notion of homotopy carries over to marked distinguished configurations
and the set of homotopy classes will be denoted by C̃. Now the proof of Theorem 1 carries over
word by word to the present situation and shows the following.

Theorem 3. The framed braid group B̃ acts freely and transitively on the set C̃ via (4.1).

Remark 7. Given a marked distinguished configuration c ∈ C̃, one can define elements
σ2,c, . . . , σm,c, ε1,c, . . . , εm,c in B̃ as follows.

• For i = 2, . . . ,m we define the framed braid σi,c as follows. We choose an embedded arc
si : [0, 1] → Σ \ {z0} from zi−1 = ci−1(1) = si(0) to zi = ci(1) = si(1) by catenating(
ci−1|[ε,1]

)−1
with a clockwise arc from ci−1(ε) to ci(ε) and with ci|[ε,1]. Given si we

choose a braid β = (β1, . . . , βm) such that βi−1 runs from zi−1 to zi on the left of si, βi
runs from zi to zi−1 on the right of si, and βj ≡ zj = cj(1) for j 6= i− 1, i. The framing
is determined by a vector field near the union of the curves cj which is tangent to the
curves cj and has z0 as an attracting fixed point. The mapping class associated to σi,c is
represented by a diffeomorphism supported in an annulus around the geometric image of
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βi−1 and βi; it consists of two opposite half Dehn twists, one in each half of this annulus,
followed by localized counterclockwise half turns centered at zi−1 and zi. In terms of its
action on c, the braid σi,c preserves the curves cj for j 6= i − 1, i and replaces the pair
(ci−1, ci) by (cig

−1
i−1,c, ci−1).

• For i = 1, . . . ,m the framed braid εi,c is the trivial braid with the framing given by a
counterclockwise turn about zi = ci(1) and the trivial framing over zj for j 6= i. In terms
of its action on c, the braid εi,c preserves the curves cj for j 6= i and replaces ci by cigi,c.

In the case Σ = D there is an isomorphism φc : B̃m → B̃, where B̃m is the abstract braid group
with generators σ2, . . . , σm and ε1, . . . , εm subject to the relations (1.7), as introduced in the
Introduction. The isomorphism sends σi to σi,c for i = 2, . . . ,m and εj to εj,c for j = 1, . . . ,m.
We refer to Figure 2 on page 440 for a pictorial representation of these generators.

5 The Picard–Lefschetz monodromy cocycle

The main result of this section is Theorem 4, which contains Theorem A. We use the notations
of the Introduction.

A marked distinguished configuration c and a framed braid σ = [φ] ∈ B̃ with φ ∈ G̃ determine
a permutation πσ,c ∈ Sm such that φ(zi) = zπσ,c(i) for all i = 1, . . . ,m. These permutations
satisfy

πστ,c = πσ,c ◦ πτ,c, πσ,τ∗c = π−1
τ,c ◦ πσ,c ◦ πτ,c. (5.1)

For c ∈ C̃ and j = 1, . . . ,m define the function sj,c : B̃ → Γ by

sj,c(σ) := c−1
i · σ∗cj , i := πσ,c(j). (5.2)

Here the right hand side denotes the catenation of the paths σ∗cj and c−1
i pushed away from

zi in the common tangent direction vi.

Remark 8. Recall the elements σ2,c, . . . , σm,c ∈ B̃ and ε1,c, . . . , εm,c ∈ B̃ defined in Remark 7.
For σ = σk,c the permutation πσ,c is the transposition of k − 1 and k, for σ = εi,c it is the
identity. Figure 2 shows that

sj,c(σk,c) =

{
1, j 6= k − 1,
g−1
k−1,c, j = k − 1,

sj,c(εi,c) =

{
1, j 6= i,
gi,c, j = i.

Lemma 3. The functions sj,c : B̃ → Γ defined by (5.2) satisfy the conjugation condition

σ∗gk,c = sk,c(σ)
−1gi,csk,c(σ), i := πσ,c(k), (5.3)

the cocycle condition

sk,c(στ) = sj,c(σ)σ∗sk,c(τ), j := πτ,c(k), (5.4)

and the coboundary condition

sk,c(στ) = sℓ,c(τ)sk,τ∗c(σ), ℓ := πσ,τ∗c(k) (5.5)

for σ, τ ∈ B̃ and k = 1, . . . ,m.
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Proof: To prove (5.3) we denote i := πσ,c(k). Then

σ∗gk,c = gk,σ∗c = (σ∗ck)
−1 · ci · gi,c · c

−1
i · σ∗ck,

where the middle term ci · gi,c · c
−1
i represents a counterclockwise turn about zi. To prove (5.4)

we denote j := πτ,c(k) and i := πσ,c(j) = πστ,c(k). Then

sj,c(σ)σ∗sk,c(τ) = c−1
i · σ∗cj · σ∗(c

−1
j · τ∗ck)

= c−1
i · σ∗τ∗ck

= sk,c(στ).

To prove (5.5) we denote ℓ := πσ,τ∗c(k) and i := πτ,c(ℓ) = πστ,c(k). Then

sℓ,c(τ)sk,τ∗c(σ) = c−1
i · τ∗cℓ · (τ∗c)

−1
ℓ · σ∗(τ∗c)k

= c−1
i · σ∗τ∗ck

= sk,c(στ).

This proves the lemma.

Remark 9. It follows from the definition of the mapping class group G̃/G̃0
∼= B̃ that σ∗gk,c is

conjugate to gi,c for some i. (When Σ is the disc, this condition appears in Artin’s theorem: see
Remark 6.) Thus Lemma 3 gives an explicit formula for a conjugating group element, namely
the element sk,c(σ).

For every marked distinguished configuration c, we define the map Sc : B̃ → GLm(ZZ[Γ]) by

(Sc(σ))ij :=

{
sj,c(σ), if i = πσ,c(j),
0, if i 6= πσ,c(j).

(5.6)

Remark 10. By Remark 8 we have

Sc(σk,c) :=




1lk−2 0 0 0
0 0 1 0

0 g−1

k−1,c
0 0

0 0 0 1lm−k


 , Sc(εi,c) :=

(
1li−1 0 0
0 gi,c 0
0 0 1lm−i

)
.

When Σ is the disc, these conditions uniquely determine the cocycle Sc.

The next theorem contains the statement of Theorem A. The notion of cocycle has been
introduced in Definition 2.

Theorem 4. The maps Sc with c ∈ C̃ satisfy the following conditions.

(Homotopy) If c is homotopic to c′ then Sc = Sc′ .

(Injectivity) Each map Sc : B̃ → GLm(ZZ[Γ]) is injective.

(Cocycle) For all c ∈ C̃ and σ, τ ∈ B̃ we have

Sc(στ) = Sc(σ)σ∗Sc(τ). (5.7)
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(Coboundary) For all c ∈ C̃ and σ, τ ∈ B̃ we have

Sτ∗c(σ) = Sc(τ)
−1Sc(σ)σ∗Sc(τ). (5.8)

(Monodromy) For each c ∈ C̃ the formula

σ∗N :=
(
Sc(σ)

tNSc(σ)
)
◦ σ∗ (5.9)

defines a contravariant group action of B̃ on Nc. For c ∈ C̃ and τ ∈ B̃ the formula

Tτ,c(N ) := Sc(τ)
tNSc(τ) (5.10)

defines an equivariant isomorphism from Nc to Nτ∗c. The isomorphisms satisfy the composition
rule Tσ,τ∗c ◦ Tτ,c = Tστ,c.

(Representation) For all c ∈ C̃ and τ ∈ B̃ the matrix Sc(τ) ∈ GLm(ZZ[Γ]) induces a collection
of isomorphisms

Sc(τ) : HTτ,c(N ) → HN , N ∈ Nc,

that preserve the structures (2.13-2.15).

(Lefschetz) If X → Σ is a Lefschetz fibration with singular fibers over Z then

Tτ,c(N
X
c ) = NX

τ∗c

for all c ∈ C̃ and τ ∈ B̃. Moreover, if ΦXc : HNX
c

→ V/W denotes the isomorphism of Remark 2,

then ΦXτ∗c = ΦXc ◦ Sc(τ) : HNX
τ∗c

→ V/W.

(Odd) If n is odd then the contravariant action of B̃ on Nc descends to B.

Proof: The (Homotopy) condition is obvious. To prove the (Cocycle) condition (5.7) we denote
j := πτ,c(k) and i := πσ,c(j) = πστ,c(k). Then

(Sc(σ)σ∗Sc(τ))ik =

m∑

ν=1

(Sc(σ))iνσ∗((Sc(τ))νk)

= (Sc(σ))ijσ∗(Sc(τ))jk

= sj,c(σ)σ∗sk,c(τ)

= sk,c(στ)

= (Sc(στ))ik .

Here we have used (5.4) and (5.6). For i 6= πστ,c(k) the (i, k) entry of both matrices Sc(στ)
and Sc(σ)σ∗Sc(τ) is zero. Thus we have proved (5.7).
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To prove the (Coboundary) condition (5.8) we set ℓ := πσ,τ∗c(k) and i := πτ,c(ℓ) = πστ,c(k).
Then

(Sc(τ)Sτ∗c(σ))ik =
m∑

ν=1

(Sc(τ))iν (Sτ∗c(σ))νk

= (Sc(τ))iℓ(Sτ∗c(σ))ℓk

= sℓ,c(τ)sk,τ∗c(σ)

= sk,c(στ)

= (Sc(στ))jℓ .

Here we have used (5.5) and (5.6). For i 6= πστ,c(k) the (i, k) entry of both matrices Sc(στ)
and Sc(τ)Sτ∗c(σ) is zero. Thus we have deduced (5.8) from (5.7).

To prove the (Injectivity) condition we assume that c ∈ C̃ is a marked distinguished config-

uration and σ ∈ B̃ is a framed braid such that Sc(σ) = 1l. Then the permutation πσ,c is the
identity and we deduce from (5.3) that

gi,σ∗c = σ∗gi,c = si,c(σ)
−1gi,csi,c(σ) = gi,c, i = 1, . . . ,m.

Hence it follows from Theorem 2 that c and σ∗c descend to equivalent distinguished configura-
tions in C. By Theorem 1 this implies that σ is a lift of the trivial braid in B. Thus

σ = εk11,c · · · ε
km
m,c

for some integer vector (k1, . . . , km) ∈ ZZ
m. Using again the fact that Sc(σ) = 1l we obtain that

k1 = · · · = km = 0 and hence σ = 1. Thus we have proved that, for every c ∈ C̃ and every
σ ∈ B̃, we have

Sc(σ) = 1l =⇒ σ = 1.

Now let c ∈ C̃ and σ, τ ∈ B̃ be given such that

Sc(στ) = Sc(τ).

Then it follows from the coboundary and cocycle conditions that

Sc(τ) = Sc(στ) = Sc(σ)σ∗Sc(τ) = Sc(τ)Sτ∗c(σ).

Hence Sτ∗c(σ) = 1l and so, by what we have already proved, it follows that σ = 1. This shows

that the map Sc : B̃ → GLm(ZZ[Γ]) is injective, as claimed.

To prove the (Monodromy) condition let N = (nij) ∈ Nc and τ ∈ B̃. We must prove that
Tτ,c(N ) := Sc(τ)tNSc(τ) ∈ Nτ∗c. To see this denote the entries of Tτ,c(N ) by ñij and observe
that

ñij(g) = ni′j′
(
si,c(τ)gsj,c(τ)

−1
)
, i′ := πτ,c(i), j′ := πτ,c(j). (5.11)
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That the functions ñij satisfy (2.1) and (2.2) is obvious from this formula. To prove (2.3) we
abbreviate ε := (−1)n(n+1)/2, k′ := πτ,c(k), and compute

ñij(ggk,τ∗ch) = ni′j′
(
si,c(τ)g(τ∗gk,c)hsj,c(τ)

−1
)

= ni′j′
(
si,c(τ)gsk,c(τ)

−1gk′,csk,c(τ)hsj,c(τ)
−1
)

= ni′j′
(
si,c(τ)ghsj,c(τ)

−1
)

−εni′k′
(
si,c(τ)gsk,c(τ)

−1
)
nk′j′

(
sk,c(τ)hsj,c(τ)

−1
)

= ñij(gh)− εñik(g)ñkj(h).

Here the first and last equations follow from (5.11), the second equation follows from (5.3), and
the third follows from (2.3) for ni′j′ . Thus we have proved that Tτ,c(N ) ∈ Nτ∗c, as claimed,
and hence also

τ∗N = Tτ,c(N ) ◦ τ∗ ∈ Nc.

That equation (5.9) defines a contravariant group action of B̃ on Nc for every c ∈ C̃ is a

consequence of Lemma 2. That the map Tτ,c : Nc → Nτ∗c is equivariant under the action of B̃
follows from (5.8). The composition rule follows from the definitions as well as (5.7) and (5.8).
This proves the (Monodromy) condition.

The (Representation) condition follows from the proof of Proposition 1. In order to prove
the (Lefschetz) condition we fix a symplectic Lefschetz fibration f : X → Σ with critical fibers

over Z as well as a marked distinguished configuration c ∈ C̃ and a framed braid τ ∈ B̃. To
emphasize the dependence of the vanishing cycles on the choice of distinguished configuration c,
we denote their homology classes by L1,c, . . . , Lm,c. Let ρ : Γ → Aut(Hn(M)) be the associated
monodromy representation and, for g ∈ Γ, let

nij(g) := 〈Li,c, ρ(g)Lj,c〉

denote the entries of the intersection matrix NX
c (g). Then

Li,τ∗c = ρ(si,c(τ)
−1)Li′,c, i′ := πτ,c(i).

Hence the entries of the matrix NX
τ∗c(g) =: (ñij(g)) are

ñij(g) = 〈Li,τ∗c, ρ(g)Lj,τ∗c〉

=
〈
ρ
(
si,c(τ)

−1
)
Li′,c, ρ

(
gsj,c(τ)

−1
)
Lj′,c

〉

=
〈
Li′,c, ρ

(
si,c(τ)gsj,c(τ)

−1
)
Lj′,c

〉

= ni′j′
(
si,c(τ)gsj,c(τ)

−1
)
.

Hence it follows from (5.11) that NX
τ∗c = Tτ,c(NX

c ) as claimed. Thus we have proved the
(Lefschetz) condition.

Now assume that n is odd. Then it follows from (2.8) that

nij(g) = nij(gi,cg) = nij(ggj,c) (5.12)

for N = (nij) ∈ Nc. Moreover, if τ ∈ B̃ belongs to the kernel of the homomorphism B̃ → B

then πτ,c = id ∈ Sm and si,c(τ) = gkii,c for some ki ∈ ZZ. Hence equations (5.11) and (5.12)
show that any such element τ acts trivially on Nc. This proves the theorem.
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6 Comparison with the Magnus cocycle

Let Γ be a free group of finite rank and denote by Aut(Γ) its group of automorphisms. Any
choice of a basis g1, . . . , gm ∈ Γ determines a Magnus cocycle

M : Aut(Γ) → GLm(ZZ[Γ])

defined by

M(ψ) :=

(
∂ψ(gj)

∂gi

)

i,j=1,...,m

. (6.1)

This formula is to be understood in the following way. A derivation is a 1-cocycle d : Γ → ZZ[Γ],
i.e. a map that satisfies the equation

d(gh) = d(g) + gd(h)

for all g, h ∈ Γ. In particular we have d(1) = 0 and d(g−1) = −g−1d(g) for every g ∈ Γ.
Examples of derivations are the Fox derivatives [15]

∂

∂gi
: Γ → ZZ[Γ], i = 1, . . . ,m,

characterized by the condition

∂gj
∂gi

= δji , i, j = 1, . . . ,m.

Recall that the conjugation ZZ[Γ] → ZZ[Γ] : λ 7→ λ̄ is the ring anti-homomorphism defined by
ḡ := g−1 for all g ∈ Γ ⊂ ZZ[Γ]. This explains the right hand side of (6.1).

The map M : Aut(Γ) → GLm(ZZ[Γ]) satisfies the cocycle condition

M(ψ ◦ φ) = M(ψ) · ψ∗M(φ) (6.2)

for φ, ψ ∈ Aut(Γ). This is proved in Birman [4] as a consequence of the chain rule for Fox
calculus. Fox calculus has its origin in the theory of covering spaces. The matrix M(φ)
represents the action of φ on the twisted homology of a bouquet of m circles relative to a base
point with coefficients in ZZ[Γ]. The resulting map is a cocycle (instead of a homomorphism)
because the lift of a continuous map of the bouquet of circles to its universal cover is not
Γ-equivariant.

This construction applies to the braid group of the disc as follows. We return to the geo-
metric setting of Section 3 with Σ = D. Thus Z ⊂ D is a set of m points in the interior, Γ is
the fundamental group of D \ Z based at z0 ∈ ∂D, and B is the braid group on m strings in D

based at Z. The choice of a distinguished configuration c ∈ C determines a basis g1,c, . . . , gm,c
of Γ. Since B acts on Γ we obtain a Magnus cocycle

Mc : B → GLm(ZZ[Γ])

for every distinguished configuration c ∈ C.
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Proposition 2. The maps Mc : B → GLm(ZZ[Γ]) are injective and satisfy the cocycle and
coboundary conditions

Mc(στ) = Mc(σ)σ∗Mc(τ), Mτ∗c(σ) = Mc(τ)
−1Mc(σ)σ∗Mc(τ) (6.3)

for all c ∈ C and σ, τ ∈ B.

Proof: The first equation in (6.3) follows immediately from (6.2) and the second equation can
also be derived from the chain rule in Fox calculus. For the sake of completeness we give the
details. The chain rule in Fox calculus has the following form. If g1, . . . , gm and h1, . . . , hm are
two basis of Γ and a ∈ Γ is an arbitrary element then

∂a

∂gi
=

m∑

j=1

∂a

∂hj

∂hj
∂gi

, i = 1, . . . ,m.

To prove the first formula in (6.3) we take

gi := gi,c, hj := σ∗gj,c, a := σ∗τ∗gk,c.

Then the chain rule asserts that

∂(στ)∗gk,c
∂gi,c

=

m∑

j=1

∂σ∗τ∗gk,c
∂σ∗gj,c

∂σ∗gj,c
∂gi,c

=

m∑

j=1

(
σ∗
∂τ∗gk,c
∂gj,c

)
∂σ∗gj,c
∂gi,c

.

The first equation in (6.3) follows by conjugation. To prove the second equation in (6.3) we
choose

gi := gi,c, hj := τ∗gj,c, a := σ∗τ∗gk,c.

Then the chain rule asserts that

∂(στ)∗gk,c
∂gi,c

=
m∑

j=1

∂σ∗τ∗gk,c
∂τ∗gj,c

∂τ∗gj,c
∂gi,c

=
m∑

j=1

∂σ∗gk,τ∗c
∂gj,τ∗c

∂τ∗gj,c
∂gi,c

.

Hence conjugation gives Mc(στ) = Mc(τ)Mτ∗c(σ) and so the second equation in (6.3) follows
from the first.

Injectivity of Mc is a consequence of the fundamental formula in Fox calculus [15]. It has
the form

a− 1 =

m∑

i=1

∂a

∂gi,c
(gi,c − 1) (6.4)

for all a ∈ Γ. Applying this formula to a = σ∗gj,c and a = τ∗gj,c we see that Mc(σ) = Mc(τ)
if and only if σ∗g = τ∗g for all g ∈ Γ, which is equivalent to σ = τ by Artin’s theorem (see
Remark 6). This proves the proposition.
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The Magnus cocycle Mc is connected to the Reidemeister intersection pairing (in its relative
version)

〈·, ·〉 : H1(D \ Z, z0;ZZ[Γ])×H1(D \ Z, z0;ZZ[Γ]) → ZZ[Γ]

or, equivalently, to the homotopy intersection pairing

ω : Γ× Γ → ZZ[Γ]

introduced by Turaev [26] and Perron [19]. Let Ωc be the m ×m-matrix with coefficients in
ZZ[Γ] which represents ω in the basis (g1,c, . . . , gm,c). Perron shows that

Mc(τ)
t · Ωc ·Mc(τ) = Ωτ∗c (6.5)

for any c ∈ C and τ ∈ B. This identity can be deduced from the topological interpretation of
the Magnus cocycle, according to which Mc(τ) is (after conjugation) the matrix representing
the homomorphism

τ∗ : H1(D \ Z, z0;ZZ[Γ]) → H1(D \ Z, z0;ZZ[Γ])

with respect to a basis given by lifts of g1,c, . . . , gm,c.

Remark 11. By the definition of Fox derivatives we have

∂(gi−1,cgi,cg
−1
i−1,c)

∂gi−1,c
= 1− gi−1,cgi,cg

−1
i−1,c,

∂(gi−1,cgi,cg
−1
i−1,c)

∂gi,c
= gi−1,c.

Hence the Magnus cocycle satisfies

Mc(σi,c) :=




1li−2 0 0 0

0 1 − gi−1,cg
−1

i,c
g−1

i−1,c
1 0

0 g−1

i−1,c
0 0

0 0 0 1lm−i




for all i = 2, . . . ,m.

In order to compare the Magnus cocycle with the Picard–Lefschetz cocycle, we need to
restrict the latter to an embedded image of B in B̃. For this we fix, as in the previous sections,
a non-zero tangent vector vz at each z ∈ Z. Moreover we fix a contractible neighborhood U
of z0 in Σ = D whose closure does not meet Z, and we fix a vector field v on U whose only
singularity is an attractive point at z0. Relative homotopy classes of nowhere vanishing vector
fields on Σ that restrict to v on Z ∪U are parametrized by H1(Σ, U ∪Z;ZZ) ∼= ZZ

m. We choose
such a relative homotopy class ξ. The class ξ defines a section

B
ξ
→֒ B̃

of the short exact sequence (3.4), which assigns to every braid the framing defined by any repre-

sentative w of ξ. Furthermore, we can associate to each γ ∈ C the homotopy class [c] ∈ C̃ where
c is a distinguished configuration representing γ which is tangent to w for some representative
w of ξ. This defines a section

C
ξ
→֒ C̃
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of the canonical projection C̃ → C. The free and transitive action of B̃ on C̃ restricts to a
free and transitive action of ξ(B) on ξ(C). In the sequel, we shall identify B and C with their
respective images by ξ.

For every c ∈ C, the cocycles Mc show similarities with the cocycles Sc|B. Both of them are
injective maps B → GLm(ZZ[Γ]) and, according to the formulas (1.5) and (6.3), they behave in
the same way under change of c ∈ C. Moreover, the formulas (1.6) and (6.5) show that they
can both be interpreted as matrices of basis change for certain geometrically defined bilinear
forms. However, in contrast to Mc, the entries of Sc are elements of Γ ⊂ ZZ[Γ]. The framed

braids σ2,c, . . . , σm,c belong to the embedded image of B in B̃ defined by the homotopy class
of vector fields ξ. We see from the formulas in Remarks 10 and 11 that Mc(σi,c) differs from
Sc(σi,c) exactly in one entry.

The Magnus cocycle gives a unified framework for the definition of various linear represen-
tations of mapping class groups, including the Burau and Gassner representations [4]. These
representations are obtained by reducing Γ to an abelian quotient. Let us apply the same
reductions to the Picard–Lefschetz cocycle.

There is a natural homomorphism Γ → ZZ which assigns to every loop g in D \ Z the total
winding number around the punctures. If we identify ZZ with the free group on one gener-
ator t−1, then gi,c is mapped to t−1. This induces a ring homomorphism ZZ[Γ] → ZZ[t, t−1],
and hence a group homomorphism GLm(ZZ[Γ]) → GLm(ZZ[t, t−1]). Composition with this ho-
momorphism turns every cocycle into a representation, and turns cohomologous cocycles into
conjugate representations. The compositions of Sc|B and Mc with the group homomorphism
GLm(ZZ[Γ]) → GLm(ZZ[t, t−1]) will be denoted by

Sc : B → GLm(ZZ[t, t−1]), Mc : B → GLm(ZZ[t, t−1]).

On the generators σ2,c, . . . , σm,c of B we have

Sc(σi,c) :=

(
1li−2 0 0 0
0 0 1 0
0 t 0 0
0 0 0 1lm−i

)
, Mc(σi,c) :=

(
1li−2 0 0 0
0 1 − t 1 0
0 t 0 0
0 0 0 1lm−i

)
.

These representations of the braid group are well known: Mc is the Burau represen-
tation [6, 4, 17] and Sc is the Tong–Yang–Ma representation introduced in [25]. The
Burau representation plays an important role in knot theory because of its deep connection
with the Alexander polynomial [4, 17]. In contrast to the Burau representation, the Tong–
Yang–Ma representation is irreducible. Furthermore, Sysoeva shows in [23] that any irreducible
m-dimensional complex representation of the braid group on m ≥ 9 strings is equivalent to the
tensor product of a 1-dimensional representation with a specialization of the latter for some
t ∈ C \ {0, 1}. (See also [14] for the cases m ∈ {5, 6, 7, 8}.)

Proposition 3. The cocycles Mc and Sc|B define distinct and nontrivial cohomology classes
in H1(B,GLm(ZZ[Γ])).

Proof: We have tr(Sc(σi,c)) = m− 2 and tr(Mc(σi,c)) = m− 1 − t for all i = 2, . . . ,m, while
tr(Id) = m. Thus Sc and Mc are neither conjugate to each other nor conjugate to the trivial
representation.
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Remark 12. Since the cocycle Sc is defined on B̃, it gives rise by reduction to an extension

Sc : B̃ → GLm(ZZ[t, t−1])

of the Tong–Yang–Ma representation to the framed braid group. Explicitly, we have

Sc(εi,c) :=

(
1li−1 0 0

0 t−1 0
0 0 1lm−i

)
, i = 1, . . . ,m.

In particular, this formula implies that the Picard–Lefschetz monodromy class in the quotient
set H1(B̃,GLm(ZZ[Γ])) is nontrivial.

Fix an ordering Z = {z1, . . . , zm} of the punctures. A pure braid is a braid σ ∈ B whose
associated permutation of Z is trivial. We denote by PB ⊂ B the subgroup of pure braids.
The ordering of Z induces a natural isomorphism between the abelianization of Γ and ZZ

m and
hence a natural homomorphism from Γ to ZZ

m. If we identify ZZ
m with the free abelian group

on m generators t−1
1 , . . . , t−1

m , this homomorphism sends gi,c to t−1
i for every distinguished

configuration c that determines the given ordering of Z. Thus, there is an induced group
homomorphism GLm(ZZ[Γ]) → GLm(ZZ[t±1

1 , . . . , t±1
m ]). The compositions of Sc|PB and Mc|PB

with this homomorphism will be denoted by

Ŝc : PB → GLm(ZZ[t±1
1 , . . . , t±1

m ]), M̂c : PB → GLm(ZZ[t±1
1 , . . . , t±1

m ]).

These are representations of the pure braid group and M̂c is called the Gassner represen-
tation [16, 4]. Observe that the embedding of the subgroup PB in B̃ is canonical (i.e. it does

not depend on the choice of ξ) and, furthermore, the representation Ŝc does not depend on c

but only on the chosen ordering of Z. Indeed, using equation (5.8) and the fact that Ŝc(τ) is a
diagonal matrix for all τ ∈ PB, we obtain

Ŝτ∗c(σ) = Ŝc(τ)
−1Ŝc(σ)Ŝc(τ) = Ŝc(σ)

for all σ ∈ PB.
The next proposition gives an explicit formula for Ŝc and shows that this representation is

completely determined by the linking numbers.

Proposition 4. For every σ ∈ PB we have

Ŝc(σ) = Diag


∏

j 6=1

t
−ℓk(1,j)
j , . . . ,

∏

j 6=m

t
−ℓk(m,j)
j


 (6.6)

where ℓk(i, j) denotes the linking number of the i-th and j-th components of the closed braid.

Here the closure of the braid σ is defined in the usual way [4, 17] by connecting the top and
the bottom of D× [0, 1] without twisting (see Figure 4 for an illustration).
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Figure 4: Closure of a pure braid.

Proof of Proposition 4: By definition Sc(σ) is a diagonal matrix with diagonal entries

sj,c(σ) = c−1
j · σ∗cj ∈ Γ

(see equation (5.6)). To understand the corresponding diagonal entry ŝj,c(σ) of Ŝc(σ) we must
express sj,c(σ) as a word in the generators gi,c and their inverses. The exponent of ti is then
the total occurence of the factor g−1

i,c in this word and we claim that this number is −ℓk(i, j)
for i 6= j and is zero for i = j. Equivalently, if we denote by ĝ ∈ H1(D \ Z;ZZ) the homology
class of an element g ∈ Γ, we must prove that

ŝj,c(σ) =
∑

i6=j

ℓk(i, j)ĝi,c. (6.7)

To see this, let N ⊂ D× [0, 1] be the complement of the braid σ, viewed as a collection of strings
running from D × {0} to D × {1}. There is a deformation retract r : N → D \ Z such that,
for every z ∈ D \ Z, we have r(z, 0) = z and r(z, 1) = φ−1(z) with φ ∈ G a diffeomorphism
representing the element in the mapping class group corresponding to the braid σ. This map
induces an isomorphism

r∗ : H1(N ;ZZ) → H1(D \ Z;ZZ).

The oriented meridians of the strings of σ form a basis µ1, . . . , µm of H1(N ;ZZ) and their images
under r∗ are represented by small loops encircling the elements of Z counterclockwise; thus we
have

r∗(µi) = ĝi,c, i = 1, . . . ,m.

Using the distinguished configuration c, we can view the closure of the braid inside N . We
denote its components by K1, . . . ,Km, and the corresponding homology classes in H1(N ;ZZ)

by K̂1, . . . , K̂m. By the homological definition of the linking numbers, we have

K̂j =
∑

i6=j

ℓk(i, j)µi.
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The image by r of the knot K̂j is the loop that first traverses cj|[0,1−ε] and then φ−1 ◦ cj |[0,1−ε]
in the reverse direction (for some small ε > 0). Hence we obtain that r∗(K̂j) = ŝj,c(σ) for all
j ∈ {1, . . . ,m} and equation (6.7) follows.

Alternatively, one can prove (6.7) as follows. This identity is equivalent to the formula

w(sj,c(σ), zi) =

{
ℓk(i, j) if i 6= j
0 if i = j

(6.8)

where w(γ, z) denotes the winding number of a loop γ about z. We choose a representative
of the braid σ in which zi is constant. Then the j-th component of the braid has the same
winding number about zi as sj,c(σ), and this winding number agrees with ℓk(i, j) by definition
of the linking number as an intersection number.

Remark 13. Proposition 4 implies, by specializing to t1 = · · · = tm = t, that the Tong–Yang–
Ma representation Sc is trivial on the commutator subgroup PB′ := [PB,PB]. Thus Sc factors
through the quotient B/PB′, which is an instance of the extended Coxeter group in the
sense of Tits [24]. In this case the Coxeter group is the symmetric group Sm, and B/PB′ is an

extension of the latter by the abelian group PB/PB′ ∼= ZZ
m(m−1)/2.

7 Proof of Theorem B

We still specialize to the case where Σ = D is the closed unit disc. In this case Γ is isomorphic
to the free group Γm generated by g1, . . . , gm and B̃ is isomorphic to the abstract framed braid
group B̃m with generators σ2, . . . , σm, ε1, . . . , εm and relations (1.7). The isomorphisms depend

on the choice of a marked distinguished configuration c ∈ C̃ and will be denoted by

ιc : Γm → Γ, φc : B̃m → B̃.

The isomorphism ιc assigns to gi the special element gi,c obtained by encircling zi counter-

clockwise along ci. The isomorphism φc assigns to σi and εi the generators σi,c and εi,c of B̃

associated to c, as defined in Remark 7. Recall the action of B̃m on Γm by (1.8).

Lemma 4. (i) The isomorphisms ιc and φc satisfy

ιψ∗c(g) = ψ∗ιc(g), φψ∗c(σ) = ψφc(σ)ψ
−1,

for g ∈ Γm, σ ∈ B̃m, c ∈ C̃, and ψ ∈ B̃.

(ii) For every c ∈ C̃ and every σ ∈ B̃m there is a commutative diagram

Γm
σ∗

//

ιc
��

Γm

ιc
��

Γ
φc(σ)∗

// Γ

.
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(iii) The formula

σ∗c := φc(σ)∗c

defines a free and transitive contravariant action of B̃m on C̃ and

ισ∗c = ιc ◦ σ∗

for every σ ∈ B̃m and every c ∈ C̃.

Proof: Assertions (i) and (ii) follow immediately from the definitions by checking them on the
generators. To prove (iii) we use (i) with ψ := φc(σ) to obtain

φc(στ) = φc(σ)φc(τ) = φφc(σ)∗c(τ)φc(σ)

for σ, τ ∈ B̃m and c ∈ C̃. Hence

(στ)∗c = φc(στ)∗c = φφc(σ)∗c(τ)∗φc(σ)∗c = φσ∗c(τ)∗(σ
∗c) = τ∗σ∗c.

That the action is free and transitive follows from Theorem 3. To prove the last equation in (iii)
let g ∈ Γm. Then, by (i) and (ii), we have

ισ∗c(g) = ιφc(σ)∗c(g) = φc(σ)∗ιc(g) = ιc(σ∗g).

This proves the lemma.

Proof of Theorem B:. Uniqueness is clear. To prove existence, fix a marked distinguished
configuration c ∈ C̃, let

Sc : B̃ → GLm(ZZ[Γ])

be the cocycle of Theorem A, and define S : B̃m × Nm → GLm(ZZ) by

S(σ,N) :=
(
ρN · (Sc(φc(σ)) ◦ ιc)

)
(1) (7.1)

for σ ∈ B̃m and N ∈ Nm. Here we have Sc(φc(σ)) ◦ ιc ∈ GLm(ZZ[Γm]), the representation
ρN : Γm → GLm(ZZ) is given by (1.10), and the term ρN · (Sc(φc(σ)) ◦ ιc) is understood as the
convolution product.

We prove that S satisfies (1.12). For 2 ≤ k ≤ m we have, by Remark 10,

S(σk, N) =
(
ρN (Sc(σk,c) ◦ ιc)

)
(1)

= ρN (1)Sc(σk,c)(1) + ρN (gk−1)Sc(σk,c)(g
−1
k−1,c)

= (Σk − Ek,k−1) + (1l− εEk−1N)Ek,k−1

= Σk − εnk−1,kEk−1.
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Here ε := (−1)n(n+1)/2 and Ek,k−1 is the matrix whose entries are all zero except for the entry
(k, k − 1) which is equal to 1. For 1 ≤ i ≤ m we have

S(εi, N) =
(
ρN (Sc(εi,c) ◦ ιc)

)
(1)

= ρN (1)Sc(εi,c)(1) + ρN (g−1
i )Sc(εi,c)(gi,c)

= (1l− Ei) + (1l− (−1)nεEiN)Ei

= 1l− (−1)nεniiEi

= Di.

Here the second equation uses the identity

ρN (g−1
i ) = 1l− (−1)nεEiN

and the fourth equation follows from (1.9). We also have (ρN · (Sc(1) ◦ ιc))(1) = ρN(1) = 1l,
and the (Normalization) condition (1.12) is proved.

We prove that S satisfies (1.11) and (1.13) for all σ, τ ∈ B̃m and N ∈ Nm. The proof is by
induction on the word length of σ. The induction step relies on the following two observations.

Claim 1. If (1.13) holds for σ and N , then (1.11) holds for every τ .

Claim 2. If (1.11) holds for σ, τ , and N and (1.13) holds for the pairs (σ,N) and (τ, σ∗N),
then (1.13) also holds for the pair (στ,N).

To carry out the induction argument we first observe that (1.13) holds for the generators σk
and εi by direct verification. Hence, by Claim 1, (1.11) also holds whenever σ is a generator.
Assume, by induction, that (1.11) and (1.13) hold whenever σ is a word of length at most
k. Let σ be a word of length k + 1. That (1.13) holds for every N follows from Claim 2 by
decomposing σ as a product of two words of length at most k. Hence, by Claim 1, (1.11) holds
for every τ . Thus it remains to prove Claims 1 and 2.

To prove Claim 1 it is convenient to abbreviate

Mτ := Sc(φc(τ)) ◦ ιc ∈ GLm(ZZ[Γm])

for τ ∈ B̃m. Then it follows from Lemma 4 (ii) that the (Cocycle) condition (5.7) for Sc takes
the form

Mστ = Mσ(σ∗Mτ )

for σ, τ ∈ B̃m. Moreover, equation (1.13) can be written in the form

σ∗(ρσ∗N ) = S(σ,N)−1ρNS(σ,N).

This implies

S(τ, σ∗N) =
(
ρσ∗NMτ

)
(1)

=
(
(σ∗ρσ∗N )(σ∗Mτ )

)
(1)

= S(σ,N)−1
(
ρNS(σ,N)(σ∗Mτ )

)
(1).
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On the other hand we have

S(στ,N) =
(
ρNMστ

)
(1)

=
(
ρNMσ(σ∗Mτ )

)
(1)

=
(
ρNS(σ,N)(σ∗Mτ )

)
(1).

Here the third equation follows from the definition of the convolution product and the fact that
ρN is a group homomorphism. This proves Claim 1.

To prove Claim 2, we first observe that equation (1.11) for the triple (σ, τ,N) implies that
(στ)∗N = τ∗σ∗N. With this understood Claim 2 follows immediately from the definitions.
Thus we have proved assertions (i) and (iii) of Theorem B.

To prove assertion (ii), we first recall from Example 1 that any monodromy character
N : Γm → ZZ

m×m is uniquely determined by the matrix N := N (1) via

N = NρN

where ρN : Γm → GLm(ZZ) is given by (1.10). This implies that, for every Lefschetz fibration
f : X → D with critical fibers over Z, we have

NX
c = NX

c (ρNX
c
◦ ι−1

c )

Hence assertion (ii) follows from Theorem 4 and the identity

σ∗N =
(
Tφc(σ),c(N )

)
(1), N := N(ρN ◦ ι−1

c ), (7.2)

for c ∈ C̃ and σ ∈ B̃m. To prove (7.2) we observe that

ρN (g)TNρN(g) = N

for g ∈ Γm (as can be checked on the generators g1, . . . , gm), and that

S(σ,N) =
∑

g∈Γm

ρN (g−1)Sc(φc(σ))(ιc(g))

for σ ∈ B̃m. Hence

σ∗N = S(σ,N)TNS(σ,N)

=
∑

g,h∈Γm

Sc(φc(σ))(ιc(g))
T ρN (g−1)TNρN (h−1)Sc(φc(σ))(ιc(h))

=
∑

g,h∈Γm

Sc(φc(σ))(ιc(g))
TNρN(gh

−1)Sc(φc(σ))(ιc(h))

=
∑

g,h∈Γ

Sc(φc(σ))(g)
TN (gh−1)Sc(φc(σ))(h)

=
(
Sc(φc(σ))

tNSc(φc(σ))
)
(1)

=
(
Tφc(σ),c(N )

)
(1).

This proves (7.2) and Theorem B.
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8 The monodromy groupoid

Let Z ⊂ int(D) be a finite set and v : Z → S1 be a collection of unit tangent vectors v(z) ∈ S1

for z ∈ Z. The pair (Z, v) is called admissible if no three elements lie on a straight line and

v(z) 6= |z′ − z|−1
(z′ − z) for all z, z′ ∈ Z with z 6= z′. We assume throughout that (Z, v) is an

admissible pair. Associated to this pair is a groupoid whose objects are the elements of Z and
the morphisms from z0 to z1 are homotopy classes of paths γ : (0, 1) → D \ Z satisfying

γ(t) = z0 + tv(z0), γ(1− t) = z1 + tv(z1), 0 ≤ t ≤ δ, (8.1)

for δ > 0 sufficiently small. (This condition is required to hold for a uniform constant δ > 0
along a homotopy.) Composition is given by catenation, pushed away from the intermediate
point by the corresponding tangent vector. Denote the set of morphisms from z0 to z1 by
P(z0, z1) and write

P :=
⊔

z0,z1∈Z

P(z0, z1).

It is convenient to present the groupoid P in terms of generators and relations. The generators
are

s(z, z′) ∈ P(z′, z), ε(z) ∈ P(z, z)

for z, z′ ∈ Z with z 6= z′. Geometrically, ε(z) represents a counterclockwise rotation about
z and s(z, z′) ∈ P(z′, z) represents the straight line from z′ to z, modified at each end by
a counterclockwise turn to match the boundary conditions (see Figure 5). To describe the

(z)ε

z’

z
z s(z,z’)

Figure 5: Generators of the groupoid P .

relations we need some definitions. An ordered triangle is a triple z0, w, z1 of pairwise distinct
elements of Z; it is called local if its convex hull contains no other elements of Z. Associated
to every ordered triangle is an index

µ(z0, w, z1) :=

{
0, if v(w) points out of the triangle,

±1, if v(w) points into the triangle.

Here we choose +1 if z0, w, z1 are ordered counterclockwise around the boundary of their convex
hull, and−1 if they are ordered clockwise. We have µ(z1, w, z0) = −µ(z0, w, z1) and, when w = e
is an extremal point of Z, i.e. when e does not belong to the interior of the convex hull of Z,
we have

µ(z0, e, z1) + µ(z1, e, z2) = µ(z0, e, z2). (8.2)

Theorem 5. Let (Z, v) be an admissible pair. Then the groupoid P is generated by the mor-
phisms s(z, z′) and ε(z) subject to the relations

s(z0, z1)s(z1, z0) = 1 (8.3)
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and, for every local triangle z0, z1, z2,

s(z0, z1)ε(z1)
µ1s(z1, z2)ε(z2)

µ2s(z2, z0)ε(z0)
µ0 = 1, (8.4)

where µ1 := µ(z0, z1, z2), µ2 := µ(z1, z2, z0), µ0 := µ(z2, z0, z1).

Proof: That the generators satisfy these relations follows by inspection of local triangles (see
Figure 6). To prove that there are no further relations and that every morphism is a composition

z

zs(z ,z )0

s(z ,z )

s(z ,z )

z1

2
2

21

10

0

Figure 6: A positive local triangle.

of the generators, we choose a triangulation of the disc such that each element of Z is a vertex
and all other vertices are on the boundary. Any path γ : (0, 1) → D \ Z satisfying (8.1) can
then be approximated by a smooth path γ′ intersecting the edges transversally and avoiding the
vertices. Next one can homotop the path to a composition of the morphisms associated to the
edges of the triangulation connecting two vertices in Z and suitable rotations ε(z). To prove
that there are no other relations one can study the combinatorial pattern of intersection points
between the path γ′ and the edges of the triangulation. First, the ambiguity in the choice of the
word associated to the path γ′ is governed by the local triangle relation. Second, every word
representing γ can be obtained by a suitable choice of γ′. Third, in a generic homotopy of γ′

there are two kinds of phenomena occuring at discrete times. Either two adjacent intersection
points are created on the same edge or, conversely, two adjacent intersection points cancel. One
can then check that these phenomena are again governed by the local triangle relation. This
completes the sketch of the proof.

A monodromy character on P is a map χ : P → ZZ satisfying

χ(γ−1) = (−1)nχ(γ), χ(1) =

{
0, if n is odd,
2(−1)n/2, if n is even,

(8.5)

for all γ ∈ P and

χ(γ01ε1γ12) = χ(γ01γ12)− (−1)n(n+1)/2χ(γ01)χ(γ12) (8.6)

for all γ01 ∈ P(z1, z0) and γ12 ∈ P(z2, z1), where ε1 := ε(z1) ∈ P(z1, z1) denotes the counter-
clockwise turn about z1. As in Remark 1 one finds that every monodromy character satisfies

χ(γ01ε
−1
1 γ12) = χ(γ01γ12)− (−1)n(−1)n(n+1)/2χ(γ01)χ(γ12), (8.7)
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χ(ε0γ01) = χ(γ01ε1) = (−1)n+1χ(γ01). (8.8)

We refer to the equations (8.6) and (8.7) as the reflection formulas. The next theorem
asserts that a monodromy character is uniquely determined by its values on the straight lines.
Recall from the Introduction the definition of NZ as the set of all matrices Q : Z × Z → ZZ

satisfying (1.14).

Theorem 6. For every Q ∈ NZ there exists a unique monodromy character χQ : P → ZZ such
that

χQ(s(z, z′)) = Q(z, z′) (8.9)

for all z, z′ ∈ Z with z 6= z′.

Remark 14. By the reflection formulas (8.6) and (8.7), the value of χ on any product of the
form

γ = γ01ε
m1

1 γ12 · · · ε
mk−1

k−1 γk−1,k

is uniquely determined by the values of χ on the products γi,i+1 · · · γj−1,j for i < j, regardless
in which order we apply (8.6) and (8.7). An example is the identity

χ(γ01ε1γ12ε2γ23) = χ(γ01γ12γ23) + χ(γ01)χ(γ12)χ(γ23)

− (−1)n(n+1)/2χ(γ01)χ(γ12γ23)

− (−1)n(n+1)/2χ(γ01γ12)χ(γ23).

Remark 15. Equations (8.5) and (8.6) are consistent in the following sense. Suppose the values
of χ on the morphisms γ01, γ12, γ01γ12 and their inverses all satisfy the first equation in (8.5)
and that χ also satisfies the second equation in (8.5) on each identity morphism. Suppose
further that the values of χ on γ := γ01ε1γ12 and its inverse are both given by (8.6) and (8.7).
Then we have χ(γ−1) = (−1)nχ(γ).

Proof of Theorem 6: The proof is by induction on the number N := #Z of elements of Z.
If N = 1 there is only one monodromy character χ given by χ(εm) = (−1)m(n+1)χ(1) and so
the assertion is obvious. In the case N = 2 with Z = {z0, z1} every morphism involving both
vertices can be expressed as a composition of morphisms of the form

α(k) := s(z1, z0)ε(z0)
k, β(ℓ) := s(z0, z1)ε(z1)

ℓ

where k, l ∈ ZZ. Hence the map χ is uniquely determined by χ(s(z0, z1)). Namely, the value
of χ on the product α(k1)β(ℓ1)α(k2)β(ℓ2) · · · is obtained by applying equations (8.6) and (8.7)
inductively. By Remark 14, the answer does not depend on the order in which we apply this
formula, and hence the resulting function χ satisfies (8.6). That it also satisfies (8.5) follows
from Remark 15. Thus χ is a monodromy character.

Now let N ≥ 3 and denote by E ⊂ Z the set of extremal points of the convex hull of Z.
Then E has at least three elements, because N ≥ 3 and Z is admissible. For every e ∈ E
denote Ze := Z \ {e} and let Pe be the space of all morphisms γ ∈ P that can be expressed as
compositions of generators involving only vertices in Ze. Then the induction hypothesis takes
the following form.
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Induction hypothesis. For every e ∈ E there is a unique monodromy character χe : Pe → ZZ

that satisfies (8.9) for all z, z′ ∈ Ze with z 6= z′. Moreover, for all e1, e2 ∈ E, the functions χe1
and χe2 agree on Pe1 ∩ Pe2 .

Assuming this we wish to prove that there exists a unique monodromy character χ : P → ZZ

satisfying (8.9). This monodromy character will necessarily restrict to χe on Pe for every e ∈ E,
so that the uniqueness of χ is granted. To prove the existence of χ it is convenient to introduce
another category with the same set Z of objects, and whose morphisms from a to z are sequences

γ̃ = (z0,m0, z1,m1, . . . , zk,mk)

with mi ∈ ZZ, zi ∈ Z such that zi 6= zi+1 for all i, and zk = a, z0 = z. In this category the

space of morphisms of length at most k will be denoted by P̃k(a, z) and we write

P̃(a, z) :=
⋃

k

P̃k(a, z), P̃ :=
⊔

a,z∈Z

P̃(a, z).

The notion of a monodromy character extends to the category P̃ (with γ−1 in (8.5) replaced

by the sequence γ̃# := (zk,−mk, . . . , z0,−m0)). There is a functor π : P̃ → P given by

π(γ̃) := ε(z0)
m0s(z0, z1)ε(z1)

m1 · · · s(zk−1, zk)ε(zk)
mk . (8.10)

By Theorem 5, this functor is surjective and two morphisms in P̃(a, z) give the same morphism
in P(a, z) if and only if they are related by a sequence of elementary moves corresponding to
the relations (8.3) and (8.4). If χ : P → ZZ is a monodromy character then so is the composition

χ̃ := χ ◦ π : P̃ → ZZ. We shall construct a monodromy character χ̃ : P̃ → ZZ and then show
that it descends to P . The proof has three steps.

Step 1. If e is an extremal point and a, z ∈ Ze, then we have s(z, e)ε(e)µs(e, a) ∈ Pe where
µ := µ(z, e, a) ∈ {−1, 0, 1}.

When z, e, a is a local triangle then it follows from the local triangle relation (8.4) that, for
suitable integers µa, µz ∈ {−1, 0, 1}, we have

s(z, e)ε(e)µs(e, a) = ε(z)µzs(z, a)ε(a)µa ∈ Pe(a, z).

In general we can find a sequence z = z0, . . . , zk = a in Ze such that zi−1, e, zi is a local triangle
and hence

γi−1,i := s(zi−1, e)ε(e)
µis(e, zi) ∈ Pe(zi, zi−1)

for µi := µ(zi−1, e, zi). Composing these morphisms we obtain

s(z, e)ε(e)µ
′

s(e, a) = γ01γ12 · · · γk−1,k ∈ Pe(a, z), µ′ := µ1 + · · ·+ µk.

Hence the assertion of Step 1 follows from (8.2) which implies that µ = µ′.

Step 2. There is a unique monodromy character χ̃ : P̃ → ZZ satisfying the following conditions.

(i) If z0 6= z1 and s̃(z0, z1) := (z0, 0, z1, 0) then χ̃(s̃(z0, z1)) = Q(z0, z1).
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(ii) If a, z ∈ Z, e ∈ E \ {a, z}, and

γ̃ = (z0,m0, . . . , zk,mk) ∈ P̃(a, z), zk = a, z0 = z,

such that

zi = e =⇒ mi = µi :=

{
µ(zi−1, zi, zi+1), if zi−1 6= zi+1,
0, if zi−1 = zi+1,

(8.11)

then χ̃(γ̃) := χe(π(γ̃)). (In this case π(γ̃) ∈ Pe by Step 1.)

We prove uniqueness of the value χ̃(γ̃) by induction on the length k. For k = 0 we must have

χ̃(z0,m0) = (−1)m0(n+1)

{
0, if n is odd,

2(−1)n/2, if n is even,

and for k = 1 we can argue as in the case N = 2 above. Now let k ≥ 2 and suppose, by
induction, that uniqueness of χ̃(α̃) has been verified for every morphism of length at most
k − 1. Fix two elements a, z ∈ Z, an extremal point e ∈ E \ {a, z}, and a morphism

γ̃ = (z0,m0, . . . , zk,mk) ∈ P̃(a, z), zk = a, z0 = z.

If γ̃ and e satisfy (8.11) then χ̃(γ̃) is determined by condition (ii). If there is precisely one
value i with zi = e and mi 6= µi then the value χ̃(γ̃) is determined inductively by (ii) and
equation (8.6) for χ̃. Namely, with

α̃ := (z0,m0, . . . , zi,mi), β̃ := (zi, 0, zi+1,mi+1, . . . , zk,mk),

and ε̃i := (zi, 1) we have γ̃ = α̃β̃ and

γ̃′ := α̃ε̃iβ̃ = (z0,m0, . . . , zi,mi + 1, . . . , zk,mk),

χ̃(γ̃′) = χ̃(γ̃)− (−1)n(n+1)/2χ̃(α̃)χ̃(β̃). (8.12)

This proves uniqueness when (8.11) fails for precisely one value of i. In general one can repeat
this argument inductively for all i.

The same argument can be used to construct the value χ̃(γ̃) by induction on the length

k. The induction hypothesis is that χ̃k−1 : P̃k−1 → ZZ has been constructed as to satisfy (i)
and (ii) as well as (8.5) and (8.6) (the latter for compositions of two morphisms with total

length at most k − 1). We must extend this map to one on P̃k with the same properties. For

this we fix a morphism γ̃ ∈ P̃(a, z) of length k and use the above induction argument with the
auxiliary choice of an extremal point e to define χ̃k(γ̃). Assume there are two such extremal
points e, e′ ∈ E \ {a, z}. If

zi ∈ {e, e′} =⇒ mi = µi (8.13)

then π(γ̃) ∈ Pe ∩ Pe′ and our value χ̃(γ̃) is independent of e by (ii). In general, the same
induction argument as above, using (8.6) repeatedly for those values of i for which (8.13)
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fails, shows that the two definitions of χ̃(γ̃) (associated to e and e′) agree for all values of the
multiplicities mi. Thus our definition of χ̃k(γ̃) is independent of e.

It remains to show that χ̃k satisfies the conditions (8.5) and (8.6) (for compositions of two
morphisms with total length equal to k). Let

α̃ ∈ P̃ i(a, b), β̃ ∈ P̃k−i(b, c)

be two such morphisms. We must prove that (8.12) holds. If there is an extremal point
e ∈ E \ {a, b, c} we can argue as above and verify (8.12) for this pair by using Remark 14 and

reducing the discussion to the case where both α̃ and β̃ satisfy (8.11). In this case equation (8.12)
follows from the fact that χe is a monodromy character. If E = {a, b, c} we may choose e = b

and use the definition of χ̃(α̃β̃) and χ̃(α̃ε̃(b)β̃) given above to establish the reflection formula.
This shows that χ̃k satisfies (8.6). That it also satisfies (8.5) follows from Remark 15. This
proves Step 2.

Step 3. Let χ̃ : P̃ → ZZ be as in Step 2. Then there is a unique monodromy character χ : P → ZZ

such that χ̃ = χ ◦ π.

We must prove that χ̃ descends to P . This means that for all a, z ∈ Z and all γ̃, γ̃′ ∈ P̃(a, z)
we have

π(γ̃) = π(γ̃′) =⇒ χ̃(γ̃) = χ̃(γ̃′). (8.14)

To see this fix an extremal point e ∈ Z \ {a, z}. If both γ̃ and γ̃′ satisfy condition (8.11)
then (8.14) follows immediately from (ii) in Step 2. In general, we must lower or raise the
indices mi with zi = e. Inserting a term s(zi, w)s(w, zi) into the word associated to γ̃ does
not affect this induction. When w = e this is obvious and when zi = e the total number of
induction steps on the left and right of the inserted term agrees with the number of steps at zi
before inserting, because

µ(zi−1, e, zi+1) = µ(zi−1, e, w) + µ(w, e, zi+1).

Replacing a term s(zi, zi+1) with the product

s(zi, zi+1) = ε(zi)
µ(zi+1,zi,w)s(zi, w)ε

µ(zi,w,zi+1)s(w, zi+1)ε(zi+1)
µ(w,zi+1,zi)

for a local triangle zi, w, zi+1 also does not affect this induction for a similar reason. Here at most
one of the terms zi, w, zi+1 can be equal to e. If w = e then the exponent µ(zi, w, zi+1) already
satisfies (8.11). If zi = e we use the fact that µ(zi−1, e, zi+1) + µ(zi+1, e, w) = µ(zi−1, e, w) and
similarly in the case zi+1 = e.

Thus we have proved that χ̃ descends to P . That the resulting map χ : P → ZZ is a mon-
odromy character is obvious and that it satisfies (8.9) follows from the fact that we have
π(s̃(z0, z1)) = s(z0, z1) for all z0, z1 ∈ Z with z0 6= z1. Uniqueness follows immediately from
the uniqueness statement in Step 2. This completes the proof of Theorem 6.
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9 Proof of Theorem C

Fix an admissible pair (Z, v) and let P be the groupoid of Section 8. Recall from Section 4

the notion of marked distinguished configurations c = (c1, . . . , cm) ∈ C̃ with m = #Z such that
{c1(1), . . . , cm(1)} = Z and ċi(1) = −v(ci(1)) for all i = 1, . . . ,m.

Lemma 5. (i) For every c ∈ C̃ and every N = (nij)
m
i,j=1 ∈ Nm there is a unique monodromy

character χc,N : P → ZZ such that

χc,N (ci · c
−1
j ) = nij

for all i and j.

(ii) For all c ∈ C̃, N ∈ Nm, and σ ∈ B̃m we have

χc,N = χσ∗c,σ∗N .

Proof: We prove (i). Let z1, . . . , zm be the ordering of Z determined by c. Uniqueness follows
from the definition of a monodromy character and from the fact that any element γ ∈ P(zi, zj)
can be expressed uniquely as ci ·g ·c

−1
j for some g ∈ Γm ∼= Γ, and g can be expressed uniquely in

reduced form as a product of the generators g1, . . . , gm and their inverses. To prove existence,
let c ∈ C̃ and N = (nij)

m
i,j=1 ∈ Nm be given and define

χc,N (γ) =
(
NρN(ι

−1
c (c−1

i · γ · cj))
)
ij

(9.1)

for γ ∈ P(zi, zj). Denote nij(g) :=
(
NρN (ι−1

c (g))
)
ij

for g ∈ Γ. These functions define a

monodromy character on Γ in the sense of Definition 1 (see Example 1). Let γij ∈ P(zj , zi)
and γjk ∈ P(zk, zj) and denote

g := c−1
i · γij · cj, h := c−1

j · γjk · ck.

Abbreviate χ := χc,N . Then

χ(γijεjγjk) = nik(c
−1
i · γijεjγjk · ck)

= nik((c
−1
i · γij · cj) · (c

−1
j · εj · cj) · (c

−1
j · γjk · ck))

= nik(ggjh)

= nik(gh)− (−1)n(n+1)/2nij(g)njk(h)

= χ(γijγjk)− (−1)n(n+1)/2χ(γij)χ(γjk).

Hence χ is a monodromy character. Moreover, by (9.1) we have

χ(ci · c
−1
j ) =

(
NρN (ι−1

c (1))
)
ij
= nij

for all i and j. This proves (i).
We prove (ii). Abbreviate τ := φc(σ) and

ni′j′(g) :=
(
NρN (ι−1

c (g))
)
i′j′
, ñij(g) :=

(
(σ∗N)ρσ∗N (ι−1

σ∗c(g))
)
ij
.
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Let i, j ∈ {1, . . . ,m} and i′ = πτ,c(i), j
′ := πτ,c(j). Let γ ∈ P(zj′ , zi′). Then

χσ∗c,σ∗N (γ) = ñij((σ
∗ci)

−1 · γ · (σ∗cj))

= ñij((τ∗ci)
−1 · ci′ · c

−1
i′ · γ · cj′ · c

−1
j′ · (τ∗cj))

= ñij(si,c(τ)
−1 · c−1

i′ · γ · cj′ · sj,c(τ))

= ni′j′ (c
−1
i′ · γ · cj′)

= χc,N(γ).

Here the third equation follows from (5.2) and the fourth equation is a consequence of (5.11).
This proves the lemma.

Proof of Theorem C:. The invariance of the map (c,N) 7→ Qc,N follows from Lemma 5 (ii)
and the fact that

Qc,N(z, z
′) = χc,N(s(z, z

′)).

Given Q ∈ NZ , the existence of an equivariant map c 7→ Nc with Qc,Nc
= Q follows from

Lemma 5 and Theorem 6. We define

Nc := (nij)
m
i,j=1, nij := χQ(ci · c

−1
j ).

Then it follows from uniqueness in Lemma 5 that χc,Nc
= χQ and hence

Qc,Nc
(zi, zj) = χc,Nc

(s(zi, zj)) = χQ(s(zi, zj)) = Q(zi, zj).

Here the first equation follows from the definition of Qc,Nc
in the Introduction, and the last

equation follows from the definition of χQ in Theorem 6. This proves existence. To prove
uniqueness, let c 7→ N ′

c = (n′
ij)

m
i,j=1 be another equivariant family satisfying Qc,N ′

c
= Q, so that

χc,N ′
c
(s(z, z′)) = Qc,N ′

c
(z, z′) = Qc,Nc

(z, z′) = χc,Nc
(s(z, z′)).

By uniqueness in Theorem 6 we have χc,N ′
c
= χc,Nc

= χQ, and therefore

n′
ij = χc,N ′

c
(ci · c

−1
j ) = χc,Nc

(ci · c
−1
j ) = nij

for all i, j. This completes the proof of Theorem C.

10 An Example

Let f : Σ → T2 be a degree 3 branched cover of a genus 3 surface over the torus with 4 branch
points of branching order 2 (see Figure 7). The map f is a covering over the complement of
the two slits from z1 to z3 and z2 to z4 depicted in the figure. The surface Σ is obtained by
gluing the three sheets labeled 1, 2 and 3 along the slits as indicated. We identify the fiber M
over z0 with the set {1, 2, 3}. Each vanishing cycle is an oriented 0-sphere, i.e. consists of two
points labeled by opposite signs (which can be chosen arbitrarily). The marked distinguished
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Figure 7: A 3-sheeted branched cover over the torus.

configuration indicated in the figure determines the vanishing cycles up to orientation. We
choose the orientations as follows:

L1 = {1−, 2+}, L2 = L4 = {1+, 3−}, L3 = {1+, 2−}.

The fundamental group Γ of the 4-punctured torus is generated by the elements a, b, g1, g2, g3, g4
where the gi are determined by the distinguished configuration and a and b are the horizon-
tal and vertical loops indicated in Figure 7. These generators are subject to a single relation
b−1a−1ba = g1g2g3g4. Understood as permutations, the generators g1, g3 and a act by the trans-
position (1, 2), while g2 and g4 act by the transposition (1, 3), and b acts by the transposition
(2, 3). Note that the commutator

b−1a−1ba = g1g2g3g4 = (231)

is not the identity.
The intersection matrix of the Li is

Nc(1) =




2 −1 −2 −1
−1 2 1 2
−2 1 2 1
−1 2 1 2


 .

Moreover, the images of the Li under a are

a(L1) = {1+, 2−}, a(L2) = a(L4) = {2+, 3−}, a(L3) = {1−, 2+}

and hence

Nc(a) =




−2 1 2 1
1 1 −1 1
2 −1 −2 −1
1 1 −1 1


 .
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Similarly,

Nc(g2) =




1 1 −1 1
1 −2 −1 −2

−1 −1 1 −1
1 −2 −1 −2


 , Nc(b) =




1 −2 −1 −2
−2 1 2 1
−1 2 1 2
−2 1 2 1


 ,

Nc(ab) =




−1 2 1 2
−1 −1 1 −1
1 −2 −1 −2

−1 −1 1 −1


 , Nc(ba) =




−1 −1 1 −1
2 −1 −2 −1
1 1 −1 1
2 −1 −2 −1


 .

Note that Nc(g1) = Nc(g3) = Nc(a) and Nc(g4) = Nc(g2). The matrix Nc(gi) can also be
obtained from Nc(1) via the gluing formula

Nc(gi) = Nc(1)−Nc(1)EiNc(1).

The action of the fundamental group on the homology of the fiber M = {1, 2, 3} obviously
factors through the permutation group S3 and hence the function Nc : Γ → ZZ

4×4 is uniquely
determined by its values on 1, g2, a, b, ab and ba. One can verify directly that Nc satisfies the
relations (2.1-2.3), for example Nc(ba) = Nc(ab)

T and

Nc(b) = Nc(ag1b) = Nc(ab)−Nc(a)E1Nc(b).

11 Appendix: Lefschetz fibrations

In this section we review some basic facts about Lefschetz fibrations (see [2, Chapter I]). Let
X be a compact Kähler manifold of complex dimension n + 1 and f : X → Σ be a Lefschetz
fibration with a finite set Z ⊂ Σ of critical values. Let m := #Z be the number of critical
values. We assume that each critical fiber f−1(z) contains precisely one (Morse) critical point
xz . Choose a regular value z0 ∈ Σ and denote M := f−1(z0). Then the fundamental group

Γ := π1(Σ \ Z, z0)

acts on the middle dimensional homology

Hn(M) := Hn(M ;ZZ)/torsion

via parallel transport. We denote the action by

ρ : Γ → Aut(Hn(M)).

Each path c : [0, 1] → Σ connecting z0 = c(0) to a critical value z = c(1), avoiding critical values
for t < 1, and satisfying ċ(1) 6= 0, determines a vanishing cycle L ⊂ M and an element g ∈ Γ.
Geometrically, L is the set of all points in M that converge to the critical point xz ∈ f−1(z)
under parallel transport along c. The orientation of L is not determined by the path and can be
chosen independently. The element g is the homotopy class of the path obtained by following
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c, encircling z once counterclockwise, and then following c−1. Thus ρ(g) acts on Hn(M) by the
Dehn–Arnold–Seidel twist ψL about L with its framing as a vanishing cycle. (The framing is a
choice of a diffeomorphism from L to the n-sphere, see Seidel [20].) Now choose m such paths
ci, i = 1, . . . ,m, connecting z0 to the critical values, denote by Li ∈ Hn(M) the homology
classes of the resulting vanishing cycles with fixed choices of orientations, and by gi ∈ Γ the
resulting elements of the fundamental group.

Remark 16. For i = 1, . . . ,m the action of gi on Hn(M) is given by

ρ(gi)α = α− (−1)n(n+1)/2 〈Li, α〉Li, (11.1)

where 〈·, ·〉 denotes the intersection form. The intersection numbers

nij(g) := 〈Li, ρ(g)Lj〉 , i, j = 1, . . . ,m,

satisfy (2.1-2.3). Equation (2.1) follows from the (skew-)symmetry of the intersection form,
equation (2.2) is a general fact about the self-intersection numbers of Lagrangian spheres,
and (2.3) follows from (11.1). Equation (11.1) follows from Example 2 below.

Remark 17. The intersection number nij(g) = 〈Li, ρ(g)Lj〉 can be interpreted as the algebraic
number of horizontal lifts of the path cjg

−1c−1
i (first c−1

i then g−1 then cj) connecting the
critical points xi and xj . That these numbers continue to be meaningful (at least conjecturally)
in certain infinite dimensional settings (where the vanishing cycles only exist in some heuristic
sense) is one of the key ideas in Donaldson–Thomas theory [9].

Example 2. The archetypal example of a Lefschetz fibration is the function f : Cn+1 → C
given by

f(z0, . . . , zn) := z20 + z21 + · · ·+ z2n.

Denote the fiber over 1 by

M := f−1(1) =
{
x+ iy ∈ Cn+1 | |x|2 − |y|2 = 1, 〈x, y〉 = 0

}
.

The vanishing cycle obtained by parallel transport along the real axis from 0 to 1 is the unit
sphere L := M ∩ R

n+1. The manifold M is symplectomorphic to the cotangent bundle of the
n-sphere

T ∗Sn =
{
(ξ, η) ∈ R

n+1 × R
n+1 | |ξ| = 1, 〈ξ, η〉 = 0

}

via M → T ∗Sn : (x, y) 7→ (x/ |x| , |x| y). Then the monodromy around the loop t 7→ e2πit is the
symplectomorphism ψ : T ∗Sn → T ∗Sn given by

ψ(ξ, η) =

(
− cos(θ)ξ − sin(θ)

η

|η|
, sin(θ) |η| ξ − cos(θ)η

)
(11.2)

where θ := 2π|η|/
√
1 + 4|η|2. Let M̄ be the sphere bundle over Sn obtained by the one

point compactification of each fiber of the cotangent bundle. Its middle dimensional homology
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Hn(M̄ ;ZZ) has two generators, namely the homology class of the zero section and the homology
class of the fiber, and ψ acts on Hn(M̄ ;ZZ) by the formula

ψ∗α = α− (−1)n(n+1)/2 〈L, α〉L.

To see this fix ξ in (11.2) and project to Sn to get a map of degree (−1)n+1. An additional
factor (−1)n(n−1)/2 arises by comparing the orientation of the cotangent bundle T ∗L with the
complex orientation of M . In the even case the value of the factor follows from the observation
that the self-intersection number of the vanishing cycle is 〈L,L〉 = 2(−1)n/2.
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