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On the defining equations of the Hankel varieties H(2, n)
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Abstract

We investigate the problem to find the defining equations of the Hankel algebraic variety
H(r, n) of the Hankel r-planes of the projective space Pn. We describe an algorithm which,
provided of a positive output, gives the defining relations of H(2, n), starting from the
binomial relations of the toric deformation of H(2, n).
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Introduction

The initial motivations of this note come from the papers [4] and [5] where we studied the
Hankel variety H(r, n) of r-planes of Pn, introduced in [7], subvarieties and the singular locus.
For the Grassmann variety of r-planes of Pn the defining equations are known, nevertheless
not explicitly written [1]. For the defining equations of H(r, n) the problem is open and more
complicated. The defining equations of the toric deformation of H(r, n), that are binomial
relations, are found by Machado([8]). This approach allows to find definitive results in the
case of H(1, n) by using Sagbi bases([3]). In this paper we describe an algorithm, based on
Sagbi basis theory, to determine the relations of H(r, n) by lifting the binomial relations given
by Machado. Theoretically it may happen that the lifting algorithm stops without giving the
lifted relation. In all the cases considered this never occurred. In Section 1 we recall the
Machado relations for r = 2, and in Section 2 we provide a Sagbi basis criterion which is a
variation of the Robbiano-Sweedler criterion ([9]). Section 3 is devoted to describe the lifting
algorithm for the Machado relations. Finally in Section 4 we provide partial liftings for H(2, n).
In the case H(2, 5) the relations are determined. Some of the results of this paper have been
conjectured after explicit computations performed by using the software CoCoA ([2]).1

1The author wishes to thank Professor Jürgen Herzog for the valuable conversations concerning this paper
and for the pleasure atmosphere during the period she spent at University of Duisburg-Essen. The author wishes
also to thank Prof. Salvatore Giuffrida for the encouragement to continue the study of this research.
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1 Machado’s standard relations

Let R be a commutative ring. A matrix of the of the form

Hr,n =













x1 x2 · · · · · · xn
x2 x3 · · · xn xn+1

· · · · · · · · · · · · · · ·
xr−1 xr · · · · · · xn+r−1

xr xr+1 · · · xn+r−1 xn+r













with coefficients in R is called Hankel matrix. In this paper we consider generic Hankel matrices
Hr,n, in other words, Hankel matrices whose entries are indeterminates. Let K be a field and
S = K[x1, x2, . . . , xn+r] the polynomial ring over K in n + r indeterminates. We denote by
[i1i2 . . . ir] the r-minor with columns i1 < i2 < . . . ir, r ≤ n. Let < be the lexicographical order
induced by x1 > x2 > . . . > xn+r. Then

in<[i1i2 . . . ir] = xi1xi2+1 . . . xir+r−1.

Notice that xi1xi2+1 . . . xir+r−1 is the product of monomials corresponding to the main diagonal
of the minor [i1i2 . . . ir].
In this section we study the K-algebra A2,n over K generated by the initial monomials
xi1xi2+1xi3+2 with 1 ≤ i1 < i2 < i3 ≤ n of the 3−minors of H3,n. We will show that A2,n is
the initial algebra of the coordinate ring of the Hankel variety H(2, n) for n = 5.
Let T = K[yi1i2i3 : 1 ≤ i1 < i2 < i3 ≤ n] be the polynomial ring in the variables yi1i2i3 and let
ψ : T → A2,n be the K-algebra homomorphism with yi1i2i3 7→ xi1xi2+1xi3+2. Each monomial
of degree d in T can be identified with a d× 3 matrix











i11 i12 i13
i21 i22 i23
...

...
...

id1 id2 id3











such that (i11i12i13) ≥ (i21i22i23) ≥ · · · ≥ (id1id2id3) in the lexicographical order. In particular
a monomial of degree two in d corresponds to a matrix of the form

(

a b c

d e f

)

with a < b < c, d < e < f and (a, b, c) ≥ (d, e, f).

The kernel J = kerψ has been determined by Machado([8]), even for generalized Hankel ma-
trices of arbitrary size. In our case J is generated by the following type of relations

(

a b c

d e f

)

−

(

a e c

d b f

)

with e < b, c ≤ f,

(

a b c

d e f

)

−

(

a e f

d b c

)

with e < b, f < c,
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(

a b c

d e f

)

−

(

a b f

d e c

)

with b ≤ e, f < c,

and assuming that a ≤ d, b ≤ e, c ≤ f one has the following relations:

(

a b c

d e f

)

−

(

a d− 1 c

b+ 1 e f

)

with b << d, e− c ≤ 1, d− 1 < c

(

a b c

d e f

)

−

(

a b e− 1
d c+ 1 f

)

with d− b ≤ 1, c << e, c+ 1 < f

(

a b c

d e f

)

−

(

a d− 1 e− 1
b+ 1 c+ 1 f

)

with b << d, c << e.

Here we set i << j if j − i ≥ 2.

2 Sagbi basis criterion

This section contains a new approach to the problem to determine the defining equations
of H(2, n), ”via” the Sagbi bases theory. We start by considering a formulation of a Sagbi
basis criterion which will be used later to determine Hankel relations. Let K be a field, S =
K[x1, · · · , xn] the polynomial ring in n variables and A ⊆ S a finitely generated K-subalgebra
of S. We fix a monomial order < on S, then theK-algebraK[in<(a) : a ∈ A] is called the initial
algebra of A and denoted by in<(A). In general this algebra is not finitely generated. A finite
set of generators a1, . . . , am of A is called Sagbi basis of A if in<(A) = K[in<(a1), . . . , in<(am)].
Sagbi basis does not always exist. In the following theorem we give a criterion for the existence
of a Sagbi basis which is a variation of the known criterion ([9]).

Theorem 2.1. Let T = K[y1, . . . , ym] be the polynomial ring over K in the variables y1, . . . , ym,

and let ϕ : T → A the K-algebra homomorphism with yi 7→ ai and ψ : T → in<(A) the K-

algebra homomorphism with yi 7→ in<(ai) for i = 1, . . . ,m. Let I = Ker ϕ and f1, . . . , fr be a

set of binomial generators of J = Ker ψ. Then the following conditions are equivalent:

(a) a1, . . . , am is a Sagbi basis of A.

(b) For each j, there exist monomials m1, . . . ,ms ∈ T and c1, . . . , cs ∈ K such that

(i) fj +
∑s

i cimi ∈ I.

(ii) in<(ϕ(mi+1)) = in<(ϕ(fj +
∑i

k=1 ckmk)) < in<(ϕ(mi)),
in<(ϕ(fj + c1m1)) < in<(ϕ(fj)).
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Proof: (a) ⇒ (b) By the criterion of Robbiano-Sweedler ([9]), a set a1, . . . , am of generators of
A is a Sagbi basis if and only if for each binomial generator fj(y1, . . . , ym) of Ker ψ we have:

(1) fj(a1, . . . , am) =
∑

λ(j)ν aν

for all λjν 6= 0, where, as usual, aν = aν1

1 . . . aνn

1 and

(2) in<(a
ν) < in<fj(a1, . . . , am), in<(a

ν) 6= in<(a
µ) for ν 6= µ.

From (1), fj(a1, . . . , am) −
∑

λ
(j)
ν aν = 0 and it follows that there exist monomials m1, . . . ,ml

in the variables y1, . . . , ym such that

(3) ϕ



fj(y1, . . . , ym) +
∑

r=1,...,l

crmr



 = 0.

Hence

(4) fj(y1, . . . , ym) +
∑

r=1,,l

crmr ∈ I.

This is the first assertion. Now, we can order the monomialsm1, . . . ,ml such that in<(ϕ(mi+1)) <
in<(ϕ(mi)). Then, in particular by (3) we obtain:

in<(ϕ(mi+1)) = in<ϕ



fj(y1, . . . , ym) +
∑

r=1,...,l,r 6=i+1

crmr



 =

in<ϕ



fj(y1, . . . , ym) +
∑

r=1,...,i

crmr





because all monomials ml, with l > i+ 1, are such that in<ϕ(ml) < in<ϕ(mi+1).

(b) ⇒ (a):we have to prove (1) and (2). The assertion (1) follows by (4). To obtain (2), by (b)
we see that

in<(ϕ(mi+1)) = in<(ϕ(fj(y1, . . . , ym) +
∑

r=1,...,i

crmr)) ≤ in<(ϕ(fj(y1, . . . , ym))),

being in<(ϕ(mi+1)) < in<(ϕ(mi)).

If the equivalent conditions are satisfied, we call fj +
∑s

i cimi a lifting of fj .

Remark 2.2. In the criterion of Robbiano-Sweedler([9], or [3], Prop.1.3) only the equivalent
conditions (a) and (b)(i) appear. In our criterion we prove, in addition, the condition (b)(ii),
that concerns a constraint on the initial terms of elements of the ring S with respect to the fixed
monomial order <. We need the previous condition (ii) in a crucial way in the algorithm that
we shall introduce in the next section to find the partial and the complete liftings of Machado
relations.
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3 An algorithm to compute the lifting of Machado relations

We shall make essential use of Theorem 2.1 in order to describe when the maximal minors of
the Hankel matrix H3,n form a Sagbi basis of the coordinate ring of the Hankel variety H(2, n).
According to Theorem 2.1, we describe an algorithm to determine when a Machado relation is
liftable.

The imput of our algorithm is a Machado relation, given by the generators of A2,n.
Step 1: Take one of the binomial Machado’s relations and replace in the relation the initial

terms by the corresponding minors to obtain the element m1 ∈ A2,n, and determine its initial
term.

Step 2: If in<m1 is a product of the initial terms of two minorsM1,M2, then m1 is partially
liftable and we add a suitable multiple of M1M2 to m1 to obtain m2 with the property that
in<m2 < in<m1 or m2 = 0. Consider all the possible partial lifting of m1 and go to Step 3.

If in<m1 is not a product of the initial terms of two minors of H3,n, then the relation m1

is not liftable and STOP (In this case the minors of Hankel matrix do not form a Sagbi basis).
Step 3: Apply the same procedure of Step 2 until the complete lifting of the Machado

relation is determined for at least one of partial liftings computed OR stop when you find an
initial term that is not partially liftable.

The following example demonstrates our method. We denote the product of two minors
[abc][def ] and we write

[

a b c

d e f

]

We begin with the relation

(

1 2 3
4 5 6

)

−

(

1 3 4
3 4 6

)

.

Replacing the monomials in this relation by the corresponding minors

m1 =

[

1 2 3
4 5 6

]

−

[

1 3 4
3 4 6

]

= −x1x3x4x5x
2
7 + · · · .

Here we see that the initial term x1x3x4x5x
2
7 can be written as the product of the minors

[135] and [345]. This is the first partial lifting. Next we consider

m2 =

[

1 2 3
4 5 6

]

−

[

1 3 4
3 4 6

]

+

[

1 3 5
3 4 5

]

= −x22x4x5x6x7 + · · · .

This new initial term can be decomposed. Proceeding in this way we obtain the following
lifting of our binomial:

[

1 2 3
4 5 6

]

−

[

1 3 4
3 4 6

]

+

[

1 3 5
3 4 5

]

+

[

2 3 4
2 4 6

]

+

[

2 3 5
2 4 5

]

+

[

2 3 4
3 4 5

]

.

We observe that in this case each initial term computed admits only one partial lifting and
then the complete lifting of Machado relation is unique. In the next example we see that a initial
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term can admit more than one partial lifting. Starting by a Machado relation and replacing it
with the corresponding minors we have:

[

1 2 4
4 6 7

]

−

[

1 3 5
3 5 7

]

= −x1x3x4x6x
2
8 + · · ·

that we can write

[

1 3 6
3 5 6

]

or

[

1 2 6
4 5 6

]

.

Then we have two partial liftings. Applying the algorithm to each of them we will obtain always
one partial lifting in the other steps. Then we have two complete liftings for this Machado
relation:

[

1 2 4
4 6 7

]

−

[

1 3 5
3 5 7

]

+

[

1 2 6
4 5 6

]

+

[

1 4 6
3 4 6

]

+

[

2 3 4
2 6 7

]

+

[

2 3 6
2 5 6

]

+

[

2 4 5
2 4 7

]

− 2

[

2 4 6
2 4 6

]

−

[

2 4 5
2 5 6

]

+

[

2 3 6
3 4 6

]

+

[

2 3 4
4 5 6

]

or

[

1 2 4
4 6 7

]

−

[

1 3 5
3 5 7

]

+

[

1 3 6
3 5 6

]

+

[

1 4 5
3 5 6

]

−

[

1 3 5
4 5 6

]

+

[

2 3 4
2 6 7

]

+

−

[

2 3 6
2 5 6

]

−

[

2 4 5
2 5 6

]

+

[

2 3 5
3 4 7

]

−

[

2 3 6
3 4 6

]

−

[

2 3 4
3 5 7

]

+

[

2 3 5
3 5 6

]

+

−

[

2 3 5
4 5 6

]

.

It is useful to give a scheme of the algorithm in a graphic form. We take a tree where the
binomial relation is the root and the set of the partial liftings, that we find during the research,
appears in the interior nodes. In the figure we have the trees for the liftings described before:
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Now we want to lift the binomial relations in general which is of the form

(

a b c

d e f

)

−

(

g h k

l m n

)

where each of the entries in the second matrix coincide up to constant with one of the entries
of the first matrix. All Machado’s relations are of this type. The monomials in the support of
[

a b c

d e f

]

are all of the form xa+i1xb+i2xc+i3xd+j1xe+j2xf+j3 . A similar statement for the

second matrix. Therefore all monomials in the support of the difference are product of variables
whose indices are the entries of the first matrix up to constant. Therefore if this difference can
be lifted, we will obtain

f2 =

(

a b c

d e f

)

−

(

g h k

l m n

)

±

(

o p q

r s t

)

,

where the entries of

(

o p q

r s t

)

coincide with those of

(

a b c

d e f

)

up to position and up a

difference by one.

4 On the relations of H(2, n)

In the following theorem we apply the algorithm and we find the general expression of the first
and second lifting of the binomial relations of Machado.

Theorem 4.1. The binomial relations of the K−algebra A2,n, have lifting polynomials of length

≥ 3 if they are Plücker relations and of length ≥ 4 if they are Hankel relations. More precisely,

depending on the Machado inequalities, we have the following liftings and partial liftings:

(I) e < b, c ≤ f

(IA) c = f , a < d < e < b < c

[

a b c

d e f

]

−

[

a e c

d b c

]

+

[

a d c

e b c

]

(IB) c < f , a < d < e < b < c < f

[

a b c

d e f

]

−

[

a e c

d b f

]

+

[

a e b

d c f

]

+

[

a d c

e b f

]

+ · · ·
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(II) e < b, f < c, a < d < e < b ≤ f < c

[

a b c

d e f

]

−

[

a e f

d b c

]

+

[

a d f

e b c

]

+

[

a d e

b f c

]

+ · · ·

(III) b ≤ e, f < c

(IIIA) a = d, a < b < e < f < c

[

a b c

a e f

]

−

[

a b f

a e c

]

+

[

a b e

a f c

]

(IIIB) b = e, a < d < b < f < c

[

a b c

d b f

]

−

[

a b f

d b c

]

+

[

a d b

b f c

]

(IIIC) b ≤ d, a < b ≤ d < e < f < c

[

a b c

d e f

]

−

[

a b f

d e c

]

+

[

a b e

d f c

]

+

[

a b f − 2
d+ 1 e+ 1 c

]

+ · · ·

(IIID) b > d, a < d < b < e < f < c

[

a b c

d e f

]

−

[

a b f

d e c

]

+

[

a b e

d f c

]

+

[

a d b

e f c

]

+ . . .

(IV ) 2 ≤ d− b, e− c ≤ 1, d− 1 < c

(IVA) a < b << d < e− 1 ≤ c < e < f

[

a b c

d e f

]

−

[

a d− 1 c

b+ 1 e f

]

+

[

a d e− 1
b+ 1 c f

]

+

[

a d e

b+ 1 c f − 1

]

+· · ·
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(IVB) d = c = e− 1, a < b << e− 1 < e < f − 1 < f

[

a b e− 1
e− 1 e f

]

−

[

a e− 2 e− 1
b+ 1 e f

]

+

[

a e− 1 e

b+ 1 e− 1 f − 1

]

+

+

[

a e− 2 e

b+ 2 e f − 1

]

+ · · ·

(IVB1) d = c = e− 1, e = f − 1, a < b << e− 1 < e < e+ 1

[

a b e− 1
e− 1 e e+ 1

]

−

[

a e− 2 e− 1
b+ 1 e e+ 1

]

+

[

a e− 1 e

b+ 1 e− 1 e

]

+

+

[

a+ 1 e− 2 e− 1
b e e+ 1

]

+ · · ·

(IVC) d < e− 1, c = e, a < b << d < e− 1 < e < f

[

a b e

d e f

]

−

[

a d− 1 e

b+ 1 e f

]

+

[

a d e

b+ 1 e− 1 f

]

+

−

[

a d e− 1
b+ 1 e f

]

+ · · ·

(IVD) d = e− 1, c = e, a < b << e− 1 < e < f − 1 < f

[

a b e

e− 1 e f

]

−

[

a e− 2 e

b+ 1 e f

]

+

[

a e− 1 e

b+ 1 e− 1 f

]

+

+

[

a e− 1 e

b+ 1 e f − 1

]

+ · · ·

(IVD1) d = e− 1, c = e, f = e+ 1, a < b << e− 1 < e < e+ 1

[

a b e

e− 1 e e+ 1

]

−

[

a e− 2 e

b+ 1 e e+ 1

]

+

[

a e− 1 e

b+ 1 e− 1 e+ 1

]

+

+

[

a+ 1 e− 2 e

b e e+ 1

]

+ · · ·
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(IVE) a < b << d < e < c < f

[

a b c

d e f

]

−

[

a d− 1 c

b+ 1 e f

]

+

[

a d c

b+ 1 e− 1 f

]

+

+

[

a d c− 1
b+ 1 e f

]

+ · · ·

(V ) d− b ≤ 1, 2 ≤ e− c, c+ 1 < f

(VA) b = d− 1, d < c, c+ 3 < f , a < b < d < c << e < f

[

a d− 1 c

d e f

]

−

[

a d− 1 e− 1
d c+ 1 f

]

+

[

a d− 1 e

d c+ 1 f − 1

]

+

−

[

a d− 1 e− 1
d c+ 2 f − 1

]

+ · · ·

(VA1) b = d− 1, d = c, d = f − 3, a < d− 1 < d << d+ 2 < d+ 3

[

a d− 1 d

d d+ 2 d+ 3

]

−

[

a d− 1 d+ 1
d d+ 1 d+ 3

]

+

[

a d− 1 d+ 2
d d+ 1 d+ 2

]

+

−

[

a+ 1 d d+ 1
d− 1 d d+ 3

]

+ · · ·

(VB) b = d− 1, d < c, c+ 3 = f a < b < d < c << c+ 2 < c+ 3

[

a d− 1 c

d c+ 2 c+ 3

]

−

[

a d− 1 c+ 1
d c+ 1 c+ 3

]

+

[

a d− 1 c+ 2
d c+ 1 c+ 2

]

+

−

[

a d c+ 2
d c c+ 2

]

+ · · ·

(VC) d ≤ b, c+ 3 < f a < d ≤ b < c << e < f

[

a b c

d e f

]

−

[

a b e− 1
d c+ 1 f

]

+

[

a b e

d c+ 1 f − 1

]

+

+

[

a b c+ 1
d e f − 1

]

+ · · ·
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(VC1) d ≤ b, c+ 3 = f , a < d ≤ b < c << e < f

[

a b c

d c+ 2 c+ 3

]

−

[

a b c+ 1
d c+ 1 c+ 3

]

+

[

a b c+ 2
d c+ 1 c+ 2

]

+

−

[

a b+ 1 c+ 1
d c c+ 3

]

+ · · ·

(V I) 2 ≤ d− b, 2 ≤ e− c

(V IA) c < d, a < b < c < d < e < f , c+ 3 < f

[

a b c

d e f

]

−

[

a d− 1 e− 1
b+ 1 c+ 1 f

]

+

[

a d− 1 e

b+ 1 c+ 1 f − 1

]

+

+

[

a d e

b+ 1 c+ 1 f − 2

]

+ · · ·

(V IA1) c < d, c+ 3 = f , a < b < c < c+ 1 < c+ 2 < c+ 3

[

a b c

c+ 1 c+ 2 c+ 3

]

−

[

a c c+ 1
b+ 1 c+ 1 c+ 3

]

+

[

a c c+ 2
b+ 1 c+ 1 c+ 2

]

+

+

[

a+ 1 c c+ 1
b c+ 1 c+ 3

]

+ · · ·

(V IB) d ≤ c, c+ 3 < f , a < b << d ≤ c << e < f

[

a b c

d e f

]

−

[

a d− 1 e− 1
b+ 1 c+ 1 f

]

+

[

a d− 1 e

b+ 1 c+ 1 f − 1

]

+

+

[

a d− 1 e− 1
b+ 1 c+ 2 f − 1

]

+ · · ·

(V IB1) d ≤ c, a < b << d ≤ c << c+ 2 < c+ 3
[

a b c

d c+ 2 c+ 3

]

−

[

a d− 1 c+ 1
b+ 1 c+ 1 c+ 3

]

+

[

a d− 1 c+ 2
b+ 1 c+ 1 c+ 2

]

+

+

[

a d c+ 1
b+ 1 c+ 1 c+ 2

]

+ · · ·
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Proof: : In the following we describe how to find the liftings according to our algorithm. The
binomial relation (IA)

(

a b c

d e c

)

−

(

a e c

d b c

)

is replaced by the difference
[

a b c

d e c

]

−

[

a e c

d b c

]

of the products of the corresponding minors. Here

[

a b c

d e c

]

=

∣

∣

∣

∣

∣

∣

xa xb xc
xa+1 xb+1 xc+1

xa+2 xb+2 xc+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xd xe xc
xd+1 xe+1 xc+1

xd+2 xe+2 xc+2

∣

∣

∣

∣

∣

∣

(1)

[

a e c

d b c

]

=

∣

∣

∣

∣

∣

∣

xa xe xc
xa+1 xe+1 xc+1

xa+2 xe+2 xc+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xd xb xc
xd+1 xb+1 xc+1

xd+2 xb+2 xc+2

∣

∣

∣

∣

∣

∣

(2).

All monomials of (1) divisible by xaxdxe+1 or xaxdxe+2 cancel against monomials in the support
of (2). Next in the lexicographical order in (1) consider the monomials divisible by xaxd+1xe,
m1 = xaxd+1xexb+1xc+2xc+2 > xaxd+1xexb+2xc+1xc+2. Since m1 does not appear in (2) it
follows that in<((1)− (2)) = m1 that gives

[

a d c

e b c

]

which is:

∣

∣

∣

∣

∣

∣

xa xd xc
xa+1 xd+1 xc+1

xa+2 xd+2 xc+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xe xb xc
xe+1 xb+1 xc+1

xe+2 xb+2 xc+2

∣

∣

∣

∣

∣

∣

(3).

It is easy to verify that the remaining terms in the sum of (1) − (2) + (3) vanish. Therefore
(IA) is the desired lifting. For the following we always adopt this procedure in the proof of
the remaining cases. The employed monomial order is the lexicographic order and the order
of the variables is the usual x1 > x2 > . . . > xn+2. Moreover, we will identify the symbol
[

a d c

e b f

]

with the corresponding product of minors and the difference between two symbols

by the difference (i)− (j) on the right of the difference of the two symbols. We will show only
another lifting procedure that is not yet a complete lifting. For more details on the computation
of all partial liftings see [6].
Consider the binomial relation (IVA)

[

a b c

d e f

]

−

[

a d− 1 c

b+ 1 e f

]

= (4)− (5).

All monomials in (4) divisible by xaxb+1xd cancel against monomials in the support of (5).
Consider all monomials in (4) and in (5) divisible by xaxb+1xd+1: xaxb+1xd+1xc+2xe+2xf ,
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xaxb+1xd+1xc+2 xexf+2 in (4), m1 = xaxb+1xd+1xc+1xe+1xf+2, xaxb+1xd+1xc+1xe+2xf+1 in
(5). All of them do not vanish. Then in<((4)− (5)) = m1 that gives

[

a d e− 1
b+ 1 c f

]

= (6).

Now in (6) there are not monomials divisible by xa, xb+1, xd. Consider in (4), (5), (6) the mono-
mials divisible by xa, xb+1, xd+1: xaxb+1xd+1xc+1xe+1xf+2 cancels against a monomial of (5),
but xaxb+1xd+1xc+2xe+2xf , xaxb+1xd+1xc+2xexf+2 in (4), m2 = xaxb+1xd+1xc+1xe+2xf+1 in
(5) and xaxb+1xd+1xc+2xe+1xf+1 in (6) do not vanish. Then in<((4) − (5) + (6)) = m2 that
gives:

[

a d e

b+ 1 c f − 1

]

.

Remark 4.2. The lifting relations from (IA) to (IIID), are just the Plücker relations of the
Grassmann variety as we can verify applying the result of [1] (Lemma 7.2.3).

Corollary 4.3. The variety H(2, 5) has the following relations:

(IA)

[

1 4 5
2 3 5

]

−

[

1 3 5
2 4 5

]

+

[

1 2 5
3 4 5

]

,

[

1 4 6
2 3 6

]

−

[

1 3 6
2 4 6

]

+

[

1 2 6
3 4 6

]

,

[

1 5 6
2 3 6

]

−

[

1 3 6
2 5 6

]

+

[

1 2 6
3 5 6

]

,

[

1 5 6
2 4 6

]

−

[

1 4 6
2 5 6

]

+

[

1 2 6
4 5 6

]

,

[

1 5 6
3 4 6

]

−

[

1 4 6
3 5 6

]

+

[

1 3 6
4 5 6

]

,

[

2 5 6
3 4 6

]

−

[

2 4 6
3 5 6

]

+

[

2 3 6
4 5 6

]

(IB)

[

1 4 5
2 3 6

]

−

[

1 3 5
2 4 6

]

+

[

1 3 4
2 5 6

]

+

[

1 2 5
3 4 6

]

−

[

1 3 4
3 5 6

]

+

[

1 2 3
4 5 6

]



416 Gioia Failla

(II)

[

1 4 5
2 3 4

]

−

[

1 3 4
2 4 5

]

+

[

1 2 4
3 4 5

]

,

[

1 4 6
2 3 4

]

−

[

1 3 4
2 4 6

]

+

[

1 2 4
3 4 6

]

,

[

1 5 6
2 3 5

]

−

[

1 3 5
2 5 6

]

+

[

1 2 5
3 5 6

]

,

[

1 5 6
2 4 5

]

−

[

1 4 5
2 5 6

]

+

[

1 2 5
4 5 6

]

,

[

1 5 6
3 4 5

]

−

[

1 4 5
3 5 6

]

+

[

1 3 5
4 5 6

]

,

[

2 5 6
3 4 5

]

−

[

2 4 5
3 5 6

]

+

[

2 3 5
4 5 6

]

,

[

1 4 6
2 3 5

]

−

[

1 3 5
2 4 6

]

+

[

1 2 5
3 4 6

]

+

[

1 2 3
4 5 6

]

(IIIA)

[

1 2 5
1 3 4

]

−

[

1 2 4
1 3 5

]

+

[

1 2 3
1 4 5

]

,

[

1 2 6
1 3 4

]

−

[

1 2 4
1 3 6

]

+

[

1 2 3
1 4 6

]

,

[

1 2 6
1 3 5

]

−

[

1 2 5
1 3 6

]

+

[

1 2 3
1 5 6

]

,

[

1 2 6
1 4 5

]

−

[

1 2 5
1 4 6

]

+

[

1 2 4
1 5 6

]

,

[

1 3 6
1 4 5

]

−

[

1 3 5
1 4 6

]

+

[

1 3 4
1 5 6

]

,

[

2 3 6
2 4 5

]

−

[

2 3 5
2 4 6

]

+

[

2 3 4
2 5 6

]

(IIIB)

[

1 3 5
2 3 4

]

−

[

1 3 4
2 3 5

]

+

[

1 2 3
3 4 5

]

,

[

1 3 6
2 3 4

]

−

[

1 3 4
2 3 6

]

+

[

1 2 3
3 4 6

]

,

[

1 3 6
2 3 5

]

−

[

1 3 5
2 3 6

]

+

[

1 2 3
3 5 6

]

,

[

1 4 6
2 4 5

]

−

[

1 4 5
2 4 6

]

+

[

1 2 4
4 5 6

]

,

[

1 4 6
3 4 5

]

−

[

1 4 5
3 4 6

]

+

[

1 3 4
4 5 6

]

,

[

2 4 6
3 4 5

]

−

[

2 4 5
3 4 6

]

+

[

2 3 4
4 5 6

]
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(IIIC)

[

1 2 5
2 3 4

]

−

[

1 2 4
2 3 5

]

+

[

1 2 3
2 4 5

]

,

[

1 2 6
2 3 4

]

−

[

1 2 4
2 3 6

]

+

[

1 2 3
2 4 6

]

,

[

1 2 6
2 3 5

]

−

[

1 2 5
2 3 6

]

+

[

1 2 3
2 5 6

]

,

[

1 2 6
2 4 5

]

−

[

1 2 5
2 4 6

]

+

[

1 2 4
2 5 6

]

,

[

1 3 6
3 4 5

]

−

[

1 3 5
3 4 6

]

+

[

1 2 4
4 5 6

]

,

[

2 3 6
3 4 5

]

−

[

2 3 5
3 4 6

]

+

[

1 2 4
2 5 6

]

,

[

1 2 6
3 4 5

]

−

[

1 2 5
3 4 6

]

+

[

1 2 4
3 5 6

]

−

[

1 2 3
4 5 6

]

(IIID)
[

1 3 6
2 4 5

]

−

[

1 3 5
2 4 6

]

+

[

1 3 4
2 5 6

]

+

[

1 2 3
4 5 6

]

(IVB1)

[

1 2 4
4 5 6

]

−

[

1 3 4
3 5 6

]

+

[

1 4 5
3 4 5

]

+

[

2 3 4
2 5 6

]

−

[

2 4 5
2 4 5

]

+

[

2 3 5
3 4 5

]

(IVD1)

[

1 2 5
4 5 6

]

−

[

1 3 5
3 5 6

]

+

[

1 4 5
3 4 6

]

+

[

2 3 5
2 5 6

]

−

[

2 4 5
2 4 6

]

+

[

2 3 5
3 4 6

]

−

[

2 3 4
3 5 6

]

(VA1)

[

1 2 3
3 5 6

]

−

[

1 2 4
3 4 6

]

+

[

1 2 5
3 4 5

]

+

[

2 3 4
2 3 6

]

−

[

2 3 5
2 3 5

]

+

[

2 3 4
2 4 5

]
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(VC1)
[

1 2 3
2 5 6

]

−

[

1 2 4
2 4 6

]

+

[

1 2 5
2 4 5

]

+

[

1 3 4
2 3 6

]

−

[

1 3 5
2 3 5

]

+

[

1 3 4
2 4 5

]

−

[

1 2 4
3 4 5

]

(VIA1)
[

1 2 3
4 5 6

]

−

[

1 3 4
3 4 6

]

+

[

1 3 5
3 4 5

]

+

[

2 3 4
2 4 6

]

+

[

2 3 5
2 4 5

]

+

[

2 3 4
3 4 5

]

.

Corollary 4.4. The set {[i1i2i3]} of 3×3−minors of Hankel matrix 3×6, 1 ≤ i1 < i2 < i3 ≤ 6,
is a Sagbi basis for the K−algebra K[[i1i2i3], 1 ≤ i1 < i2 < i3 ≤ 6], coordinate ring of the Hankel
variety H(2, 5) of 2−planes in P

5.

Remark 4.5. We observe that in H(2, n), for n > 6, we can have relations of length ≥ 13 and
also different complete liftings for a fixed Machado relation with different length, as showed in
Section 2. Instead, in H(2, 5) we have only one complete lifting for each binomial relation.
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