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Abstract

This article presents a decreasing directed paths algorithm for the parametric minimum
flow problem. The algorithm always finds a shortest conditional decreasing directed path
from the source node to the sink node in a parametric residual network and decreases
the flow along the corresponding path in the original parametric network. On each of the
iterations, the shortest conditional decreasing path (SCDP) algorithm computes a sub-
interval of the parameter value within a decreasing of flow is possible and the maximum
amount by which the flow can be decreased. The complexity of the SCDP algorithm is
O(n2m2K + nmK2) where K − 1 is the number of breakpoints of the piecewise linear
minimum flow value function, n and m being respectively the number of nodes and the
number of arcs in the network.
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1 Introduction

For the parametric maximum flow problem with zero lower bounds and linear capacity
functions of a parameter λ, Hamacher and Foulds [8] investigated an augmenting paths approach
for determining in each iteration an improvement of the flow defined on the whole interval of
the parameter. For the same problem, Ruhe [9] proposed a ”piece-by-piece” approach. Gallo,
Grigoriadis, and Tarjan [7] and Ahuja et al. [2], [3] have pointed out that the parametric
problem has many applications, in multiprocessor scheduling with release times and deadlines,
integer programming problems, computing subgraph density and network vulnerability and
partitioning a data base between fast and slow memory. Ciurea et al. [4], [5] investigated the
non-parametric minimum flow problem. The approach presented in this article refers to the
minimum flow problem in a network with linear lower bound functions of a single parameter
λ. Further on, this paper is organized as follows: Section 2 contains the basic network flow
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terminology and some results used in the rest of the paper. More specialized terminology is
developed in later sections. Section 3 deals with the parametric minimum flow problem. Section
4 presents the shortest conditional decreasing path algorithm for the parametric minimum
flow problem. Section 5 gives an example of how the algorithm works on a network with
linear lower bound functions of a parameter. In the presentation to follow, some familiarity
with flow algorithms is assumed and many details are omitted, since they are straightforward
modifications of known results. The notions and results presented in Section 2 and Section 3
are taken from [1], [2], [4], [5] and [6].

2 Terminology and preliminaries

Definitions and Notation

Given a capacitated network G = (N,A, `, u, s, t) with N = . . . , i, . . . being the set of nodes
i and A = . . . , a, . . . being the set of arcs a so that for every a ∈ A, a = (i, j) with i, j ∈ N ,
let n = |N | and m = |A|. The upper bound function and the lower bound function are two
nonnegative functions, u(a) and `(a) associated with each arc a = (i, j) ∈ A. The network
has two special nodes: a source node s and a sink node t. A flow is a function f : A → <+

satisfying the next conditions:

∑
j|(i,j)∈A

f(i, j)−
∑

j|(j,i)∈A

f(j, i) =

 v, i = s
0, i 6= s, t
−v, i = t

(1)

for some v ≥ 0, where v is referred to as the value of the flow f . Any flow on a directed network
satisfying the flow bound constraints:

`(i, j) ≤ f(i, j) ≤ u(i, j), ∀(i, j) ∈ A (2)

for every arc (i, j) ∈ A is referred to as a feasible flow. A cut is a partition of the node set N
into two subsets S and T = N −S, denoted by [S, T ]. Alternatively, a cut can be defined as the
set of arcs whose endpoints belong to different subsets S and T . An arc (i, j) ∈ A with i ∈ S
and j ∈ T is referred to as a forward arc of the cut while an arc (i, j) ∈ A with i ∈ T and j ∈ S
as a backward arc of the cut. Let (S, T ) denote the set of forward arcs in the cut and let (T, S)
denote the set of backward arcs. A cut [S, T ] is an s− t cut if s ∈ S and t ∈ T .

The minimum flow problem

The minimum flow problem is to determine a flow f̂ for which v is minimized. The problem
can be solved in two phases:
(1) establishing a feasible flow; (2) from a given feasible flow, establishing the minimum flow.
For the first phase see the algorithm presented in [1] and [5].
Let f be a feasible solution for the minimum flow problem. Supposing that an arc (i, j) ∈ A
carries f(i, j) units of flow, the residual capacity r̂(i, j) of any arc (i, j) ∈ A, with respect to a
given flow f , for the minimum flow problem is given by:

r̂(i, j) = u(j, i)− f(j, i) + f(i, j)− `(i, j). (3)
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For a network G = (N,A, `, u, s, t) and a feasible solution f , the network denoted by Ĝ(f) =
(N, Â), where Â is the set of residual arcs corresponding to the feasible solution f and consisting
only of arcs (i, j) with r̂(i, j) > 0, is referred to as the residual network with respect to the
given flow f for the minimum flow problem. The capacity of an s− t cut ĉ[S, T ] is defined, for
the minimum flow problem, as:

ĉ[S, T ] = `(S, T )− u(T, S). (4)

The s− t cut with the greatest capacity value among all s− t cuts is referred to as a maximum
cut and is denoted by [Ŝ, T̂ ].

Theorem 1. (Min-Flow Max-Cut Theorem): If there is a feasible flow in the network, the value
of the minimum flow from a source s to a sink t in a capacitated network with nonnegative lower
bounds equals the capacity of the maximum s− t cut.

A path in G = (N,A, `, u, s, t) from the source node s to the sink node t is referred to as
a decreasing path if the corresponding directed path in the residual network consists only of
arcs with positive residual capacities. There is a one-to-one correspondence between decreasing
paths P in G and directed paths P̂ from s to t in the residual network Ĝ(f). For a directed
path P̂ in Ĝ(f) we have r̂(P̂ ) = min{r̂(i, j)|(i, j) ∈ P̂}.

Theorem 2. (Decreasing Path Theorem): A flow f̂ is a minimum flow if and only if the

residual network Ĝ(f̂) contains no directed path from the source node to the sink node.

3 The parametric minimum flow problem

A natural generalization of the minimum flow problem is obtained by making the lower
bounds `(i, j) for some of the arcs (i, j) ∈ A linear functions of a single, nonnegative, real
parameter λ:

`(i, j;λ) = `0(i, j)− λ · L(i, j), (5)

where L(i, j) is a real valued function associated with each arc (i, j) ∈ A, referred to as the
parametric part of the lower bound of the arc (i, j). The nonnegative value `0(i, j) is the lower
bound of the arc (i, j) for λ = 0: `(i, j; 0) = `0(i, j) with 0 ≤ `0(i, j) ≤ u(i, j).
For the problem to be correctly formulated, the lower bound function of every arc (i, j) ∈ A
must respect the condition 0 ≤ `0(i, j;λ) ≤ u(i, j) for the entire interval of the parameter
values, i.e. ∀(i, j) ∈ A and ∀λ ∈ [0,Λ]. It follows that the parametric part of the lower bounds
L(i, j) must satisfy the constraints: 1

Λ (`0(i, j)− u(i, j)) ≤ L(i, j) ≤ 1
Λ`0(i, j), ∀(i, j) ∈ A.

The parametric minimum flow (PMinF) problem is to compute all minimum flows for every
possible value of λ ∈ [0,Λ]:

minimize v(λ) for all λ ∈ [0,Λ] with : (6)

∑
j|(i,j)∈A

f(i, j;λ)−
∑

j|(j,i)∈A

f(j, i;λ) =

 v(λ), i = s
0, i 6= s, t

−v(λ), i = t
(7)
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`(i, j;λ) ≤ f(i, j;λ) ≤ u(i, j), ∀(i, j) ∈ A. (8)

On the set of piecewise linear functions F (λ) : [0,Λ] → <+ an ordering cannot be defined for
the whole interval [0,Λ] since two piecewise linear functions are not necessarily comparable.
For any two piecewise linear functions of a parameter λ, F1(λ) and F2(λ), a partition B of the
interval of the parameter values of the form 0 = λ0 < λ1 < . . . < λK+1 = Λ must be defined
such that on each of the generated sub-intervals [λk, λk+1], k = 0, . . . ,K an ordering to be
defined as:

F1(λ) ≤ F2(λ) for [λk, λk+1] ⇔ F1(λ) ≤ F2(λ) ∀λ ∈ [λk, λk+1], (9)

i.e. the two functions have no crossing points within any of the sub-intervals (λk, λk+1), the
only crossing points taking place for λk, k = 0, . . . ,K. To be mentioned that the breakpoints
and the crossing points of the two piecewise linear functions do not necessarily take place for
the same λk values.
Based on the above considerations, for the parametric minimum flow problem, the sub-intervals
of the parameter values with the property that within each of the sub-intervals [λk, λk+1]
the maximum s − t cut for the non-parametric network with constant lower bound functions
`(i, j;λk) remains a maximum s− t cut for all the λ values in [λk, λk+1] are denoted by Jk.

Definition 1. A parametric cut partitioning [Sk; Jk] is a finite set of cuts [Sk, Tk], k = 0, . . . ,K
together with a partitioning of the interval of the parameter [0,Λ] in sub-intervals Jk such that
J0 ∪ . . . ∪ JK = [0,Λ]. The capacity of a parametric s − t cut partitioning for the minimum
flow problem is a piecewise linear function ĉ[Sk; Jk] defined for all λ values of every sub-interval
λ ∈ Jk, k = 0, . . . ,K:

ĉ[Sk; Jk] =
∑

(i,j)∈(Sk,Tk)

`(i, j;λ)−
∑

(i,j)∈(Tk,Sk)

u(i, j) (10)

A parametric s− t cut with the sub-intervals Jk assuring that every s− t cut is a maximum
cut [Ŝk, T̂k] within the sub-interval Jk is referred to as a parametric maximum s − t cut for
the entire interval of the parameter values [0,Λ] and is denoted by [Ŝk; Jk]. Thus a parametric
maximum cut [Ŝk; Jk] is a set of maximum cuts [Ŝk, T̂k] and ĉ[Ŝk; Jk] = ĉ[Ŝk; T̂k] for all λ of
every sub-interval Jk, k = 0, . . . ,K. As defined, the capacity of a parametric maximum s − t
cut partitioning for the minimum flow problem is a linear function within every sub-interval Jk.

Theorem 3. (Parametric Min-Flow Max-Cut Theorem): If there is a feasible flow in the
parametric network, the value function of the parametric minimum flow from a source s to a sink
t in a capacitated network with parametric lower bounds equals the capacity of the parametric
maximum s− t cut. [6]

Let f(λ) = (. . . f(i, j;λ), . . .)(i,j)∈A be a vector of feasible flow functions defined on the
interval [0,Λ]. Supposing that an arc (i, j) ∈ A carries a flow f(i, j;λ), the existing flow can
be reduced either by pulling the flow f(i, j;λ) − `(i, j;λ) from node j to node i over the arc
(i, j) or by pushing the flow u(j, i) − f(j, i;λ) from j to i along the arc (j, i). These flows
are computed as differences between piecewise linear functions of λ. The parametric residual
capacity r̂(i, j;λ) of any of the arcs (i, j) ∈ A, with respect to a given flow f(λ), is given by:

r̂(i, j;λ) = u(j, i)− f(j, i;λ) + f(i, j;λ)− `(i, j;λ), λ ∈ Jk (11)
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with k = 0, . . . ,K(i, j) where K(i, j) is the number of sub-intervals where the piecewise linear
parametric residual capacity function of the arc (i, j) maintains a constant slope. Based on
these ideas, for a network G(λ) = (N,A, `(λ), u, s, t) and a feasible solution f(λ), the network
denoted by Ĝ(f(λ)) = (N, Â(λ)), with Â(λ) being the set of arcs consisting only of arcs with
r̂(i, j;λ) > 0 for at least a sub-interval of [0,Λ], is referred to as the parametric residual network
with respect to the given flow f(λ) for the parametric minimum flow problem. The sub-intervals
Î(i, j) ⊆ [0,Λ] where a decreasing of flow along an arc (i, j) in Ĝ(f(λ)) is possible based on
f(λ), are defined as:

Î(i, j) = {λ|r̂(i, j;λ) > 0} for (i, j) ∈ Â(λ). (12)

If an arc (i, j) does not belong to Ĝ(f(λ)) then Î(i, j) := ∅ is set.

Definition 2. A conditional decreasing directed path P̂ (λ) in Ĝ(f(λ)) is a directed path P̂ from
the source node s to the sink node t such that: Î(P̂ ) =

⋂
(i,j)∈P̂

Î(i, j) 6= ∅.

Definition 3. A partly conditional decreasing directed path P̂ (i, λ) in Ĝ(f(λ)) is a conditional
decreasing directed path from the source node s to a node i with i 6= t.

Definition 4. The parametric residual capacity of a conditional decreasing directed path P̂ (λ) in
Ĝ(f(λ)) is the inner envelope of the parametric residual capacities r̂(i, j;λ) of all arcs composing
the conditional decreasing directed path for all λ ∈ Î(P̂ ):

r̂(P̂ (λ)) = min
λ∈Î(P̂ )

{r̂(i, j;λ)|(i, j) ∈ P̂ (λ)}, λ ∈ Jk (13)

with k = 0, . . . ,K(P̂ (λ)) where K(P̂ (λ)) is the number of sub-intervals where the piecewise
linear parametric residual capacity function of the conditional decreasing directed path P̂ (λ)
maintains a constant slope.

It must be mentioned that, denoting by K(i, j) the number of sub-intervals where the
piecewise linear parametric residual capacity function of the arc (i, j) maintains a constant
slope, K(P̂ (λ)) generally respects the following relation: K(P̂ (λ)) ≥

∑
(i,j)∈P̂ K(i, j).

Theorem 4. (Conditional Decreasing Path Theorem): A flow f̂(λ) is a parametric minimum

flow if and only if the parametric residual network Ĝ(f̂(λ)) contains no conditional decreasing
directed path from the source node to the sink node. [6]

If the parametric residual network Ĝ(f̂(λ)) contains no conditional decreasing directed path
from the source node to the sink node, the parametric minimum flow in network G(λ) can be

determined from the parametric residual capacities using the expression: f̂(i, j;λ) = `(i, j;λ) +
max{r̂(i, j;λ)− u(j, i) + `(j, i;λ), 0}.

4 Shortest decreasing paths algorithm for the parametric minimum flow problem

The shortest decreasing path algorithm for the parametric minimum flow problem presented
in this paper determines in each of the iterations an improvement of the flow over the sub-
interval of the parameter values given by a shortest conditional decreasing directed path in the
parametric residual network.
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Finding the minimum length of a conditional decreasing directed path

Let N = {0, 1, 2, . . . , n−1} be the set of nodes in the parametric residual network with s = 0
and t = n − 1. For increasing values of h = 1, 2, . . . , n − 1, the sub-intervals Îjh on which the
flow can be decreased over a partly conditional decreasing directed path from the source node
s to node j, P̂ (j, λ) in Ĝ(f(λ)) with exactly h arcs are computed for each node j ∈ N −{0} as:

Îjh := {λ | ∃ P̂ (j, λ) ∈ Ĝ(f(λ)) with exactly h arcs} (14)

To find a recursive way of computing the sub-intervals Îjh, the following relation is considered:

Î00 = [0,Λ], Îj0 = ∅ for all j = 1, . . . , n− 1,

Îjh :=
⋃

i|(i,j)∈Â(λ)

(Îih−1

⋂
Î(i, j)), j = 1, . . . , n− 1; h = 1, . . . , n− 1. (15)

The set of the sub-intervals Îjh in relation (15) can be regarded as being the elements of a

matrix Î := [Îjh](n−1)×(n−1) of sub-intervals of [0,Λ]. The algorithm starts with Î := [Îjh =

∅](n−1)×(n−1) and as soon as În−1h 6= ∅ is reached for a certain value of h, the recursion stops
indicating that a conditional decreasing directed path of length h can be found. On the other
hand, if the condition În−1n−1 = ∅ is reached, since any elementary path from the source node
s to the sink node t has at most n− 1 arcs, no conditional decreasing directed path exists and
the current flow is a parametric minimum flow. The procedure length presented below deter-
mines whether there exists a nonempty sub-interval of the parameter values În−1h over which
an improvement of the flow can be obtained. Based on this sub-interval both the value h of
the minimum length of a conditional decreasing directed path and the path itself can be derived.

1 procedure length(Î, h, C)
2 begin
3 while (C = 0) do
4 begin;

5 for j := 1 to n− 1 do Îjh :=
⋃
i|(i,j)∈Â(λ)

(Îih−1
⋂
Î(i, j)) ;

6 if (În−1h 6= ∅) then C:=1
7 else if (h < n− 1) then h := h+ 1
8 else C := 2;
9 end;
10 end;

Theorem 5. If the procedure length ends with În−1h 6= ∅ then h is the length of the shortest
conditional decreasing directed path from the source node to the sink node in the parametric
residual network Ĝ(f(λ)).

Proof. The algorithm stops as soon as În−1h 6= ∅ which means that a conditional decreasing
directed path consisting of exactly h arcs exists in the parametric residual network Ĝ(f(λ)).
It is obvious that h is minimal with this property since otherwise the algorithm would have
stopped earlier. For an arbitrary chosen value of the parameter λ∗ ∈ În−1h, in the non-
parametric residual network Ĝ(f(λ∗)) a breadth first search determines the elements h(i) such

that h(i) = d̂(i) for all nodes i ∈ N . For h = 0, λ∗ ∈ Î00 and h(0) = d̂(0) = 0. Assuming the
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statement to be true for h = k and starting from a node i with h(i) = d̂(i) = k, for all nodes
j with λ∗ /∈ Îjk′ for all k′ ≤ k and for which there exists an arc (i, j) ∈ Ĝ(f(λ∗)) holds that

h(j) = h(i) + 1 = d̂(i) + 1 = k + 1 = d̂(j).

It has to be reminded that according to definition 2 a shortest conditional decreasing directed
path P̂ (λ) in the parametric residual network Ĝ(f(λ)) is not a shortest directed path P̂ in
Ĝ(f(λ)) since for some arcs (i, j) ∈ P̂ might hold that

⋂
(i,j)∈P̂

Î(i, j) = ∅.

Finding a conditional decreasing directed path

After procedure length ends with a minimum length h of a possible conditional decreasing
directed path P̂ (λ), the problem of finding the conditional decreasing directed path itself is
investigated. Let În−1h 6= ∅ for an h ≤ n− 1, where h is minimal with this property. For every
arbitrary chosen value λ∗ ∈ În−1h there must exist a node i with (i, n− 1) ∈ Â(λ) so that both
λ∗ ∈ Îih−1 and λ∗ ∈ Î(i, n− 1) since În−1h :=

⋃
i|(i,n−1)∈Â(λ)

(Îih−1

⋂
Î(i, n− 1)). Therefore, for

an arc (i, n− 1) ∈ P̂ (λ) we have:

λ∗ ∈ Îih−1

⋂
Î(i, n− 1)). (16)

On the other hand λ∗ /∈ Îih−2 since otherwise the recursion would have stopped after h−1 iter-
ations (i.e. h is minimal with the property În−1h 6= ∅). Continuing in the same logic it results
that λ∗ /∈ Îih−3 since otherwise the recursion would have stopped after h − 2 iterations etc.
Based on this reasoning, a vector p̂ = (p̂(0), . . . , p̂(n−1)) can be defined in order to memorize the
conditional decreasing directed path based on relation (16). In the beginning of the algorithm,
the following initialisation is performed: p̂ := (n, . . . , n). Let p̂(h) := n−1 be set and for an arbi-
trary chosen value λ∗ ∈ În−1h, if λ∗ ∈ Îjh−1

⋂
Î(j, n−1)) then the arc (j, n−1) is added to P̂ (λ),

i.e. p̂(h−1) := j is set. Then a new node i ∈ N−{j, n−1} with λ∗ ∈ Îih−2

⋂
Î(i, j)) is searched,

p̂(h − 2) := i is set and so on. Based on the values of the vector p̂, the following conditional
decreasing directed path will be obtained: P̂ (λ) := (p̂(0) = 0, p̂(1), . . . , p̂(h− 1), p̂(h) = n− 1).
The procedure dpath for determining a conditional decreasing directed path P̂ (λ) is the fol-
lowing:

1 procedure dpath(Î, h, p̂)
2 begin

3 λ∗ := (max{λ | λ ∈ În−1h}+ min{λ | λ ∈ În−1h})/2;
4 N∗ := N − {n− 1};
5 p̂(h) := n− 1;
6 for k := h− 1 down to 1 do
7 begin;

8 select a node i ∈ {N∗ | λ∗ ∈ Îik ∩ Î(i, p̂(k + 1))};
9 p̂(k) := i;
10 N∗ := N∗ − {i};
11 end;
12 p̂(0) := 0;
13 end;
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Theorem 6. The procedure dpath computes correctly a conditional decreasing directed path
of h arcs from the source node to the sink node in the parametric residual network Ĝ(f(λ)).

Proof. If În−1h 6= ∅ then for every λ∗ ∈ În−1h it results that λ∗ ∈ Îih−1 and λ∗ ∈ Î(i, n − 1)
for at least a node i since În−1h :=

⋃
i|(i,n−1)∈Â(λ)

(Îih−1

⋂
Î(i, n− 1)). For an iteration k of the

procedure dpath, the existence of an ending point i of a partly conditional directed path in
Ĝ(f(λ)) such that λ∗ ∈ Îik ∩ Î(i, p̂(k + 1)) is assured by λ∗ ∈ Îik and λ∗ ∈ Î(i, p̂(k + 1)) for at
least one node i because otherwise, from the recursive relation Îjk+1 :=

⋃
i|(i,j)∈Â(λ)

(Îik
⋂
Î(i, j)),

would result that λ∗ /∈ Îjk′ for any k′ > k and any node j ∈ N − {0} which contradicts the

initial assumption: λ∗ ∈ În−1h for h > k. Hence, the directed path is a conditional decreasing
directed path in Ĝ(f(λ)) for at least the sub-interval Î(P̂ ) =

⋂
(i,j)∈P̂

Î(i, j) = {λ∗}.

Decreasing the flow over a conditional decreasing directed path

After a conditional decreasing directed path P̂ (λ) in the parametric residual network Ĝ(f(λ))
is memorised in vector p̂, the flow is decreased along the corresponding decreasing path in G(λ).
For an arc a = (i, j), the piecewise linear parametric residual capacity function r̂(a;λ) can be
represented considering the ordered list of its K(a) breakpoints Ba := {λk}, 0 = λ0 < λ1 <
. . . < λK(a)+1 = Λ and the corresponding ordered list of residual capacity values computed
for every breakpoint λk ∈ Ba: Ra := {r̂(a;λk) | λk ∈ Ba}. Similarly, the piecewise linear
parametric residual capacity function r̂(P̂ (λ)) of a conditional decreasing directed path P̂ (λ)
in Ĝ(f(λ)) can be represented as the ordered list R

P̂ (λ)
:= {r̂(P̂ (λk)) | λk ∈ BP̂ (λ)

} with B
P̂ (λ)

being the list 0 = λ0 < λ1 < . . . < λ
K(P̂ (λ))+1

= Λ containing, in increasing order, its K(P̂ (λ))

breakpoints. As mentioned before, K(P̂ (λ)) ≥
∑

a∈P̂ (λ)
K(a), i.e.

⋃
a∈P̂ (λ)

Ba ⊆ BP̂ (λ)
. In order

to compute the piecewise linear parametric residual capacity function r̂(P̂ (λ)) of a conditional
decreasing directed path P̂ (λ), the procedure prc (parametric residual capacity) repeatedly
compares two piecewise linear parametric residual capacity functions and sets the parametric
residual capacity of the conditional decreasing directed path to their inner envelope. It starts
by setting the parametric residual capacity of the conditional decreasing directed path to the
parametric residual capacity of the first arc a ∈ P̂ (λ) and successively computes the inner enve-
lope of the current parametric residual capacity of the conditional decreasing directed path and
the parametric residual capacity of each of the following arcs. The procedure stops after all the
arcs in P̂ (λ) have been investigated. The algorithm starts with K(a) = 0 (i.e. no breakpoint),
Ba = {0,Λ} and Ra = {r̂(a; 0), r̂(a; Λ)} for every arc a ∈ Â(λ). Every time the piecewise linear
parametric residual capacity function of a new arc a ∈ P̂ (λ) is analysed, the procedure prc
updates the list of breakpoints B

P̂ (λ)
with the breakpoints in Ba and then compares, for each

of the sub-intervals generated by B
P̂ (λ)

, the two linear residual capacity functions finding the

lowest of them. Any new breakpoint which may occur within a sub-interval Jk = [λk, λk+1] is
added to B

P̂ (λ)
.
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1 procedure prc(p̂)
2 begin
3 a := (0, p̂(1)); R

P̂ (λ)
:= Ra; B

P̂ (λ)
:= Ba;

4 for q := 1 to h− 1 do
5 begin
6 a := (p̂(q), p̂(q + 1)); B∗a := Ba;
7 while (B∗a 6= ∅) do
8 begin
9 λ∗ := min{λ | λ ∈ B∗a}
10 if (λ∗ /∈ B

P̂ (λ)
) then add new(λ∗, B

P̂ (λ)
, R

P̂ (λ)
);

11 remove λ∗ from B∗a;
12 end;
13 λ` := min{λ | λ ∈ B

P̂ (λ)
};

14 if (λ` /∈ Ba) then add new(λ`, Ba, Ra);
15 repeat
16 begin
17 λr := min{λ | λ ∈ B

P̂ (λ)
, λ > λ`};

18 if (λr /∈ Ba) then add new(λr, Ba, Ra);

19 if ([r̂(a;λ`)− r̂(P̂ (λ`))] · [r̂(a;λr)− r̂(P̂ (λr))] < 0) then
20 begin

21 λmid :=
λ`·[r̂(P̂ (λr))−r̂(a;λr)]+λr·[r̂(a;λ`)−r̂(P̂ (λ`))]

r̂(P̂ (λr))−r̂(a;λr)+r̂(a;λ`)−r̂(P̂ (λ`))
;

22 add new(λmid, B
P̂ (λ)

, R
P̂ (λ)

);

23 add new(λmid, Ba, Ra);
24 end;

25 r̂(P̂ (λ`)) := min{r̂(a;λ`), r̂(P̂ (λ`))};
26 λ` := λr
27 end;
28 until (λ` = Λ);

29 r̂(P̂ (Λ)) := min{r̂(a; Λ), r̂(P̂ (Λ))};
30 end;
31 end;

The procedure add new adds a new breakpoint in the piecewise linear parametric resid-
ual capacity function by adding a new λ∗ value to the list B and a new r̂(λ∗) value to the list R.

1 procedure add new(λ∗, B,R)
2 begin
3 add λ∗ to B;
4 λ′ := max{λ | λ ∈ B, λ < λ∗}; λ′′ := max{λ | λ ∈ B, λ > λ∗};
5 r̂(λ∗) := r̂(λ′) + (λ∗ − λ′) · [r̂(λ′′)− r̂(λ′)]/(λ′′ − λ′);
6 add r̂(λ∗) to R;
7 end;

After the piecewise linear parametric residual capacity function r̂(P̂ (λ)) of the conditional
decreasing directed path is computed, the procedure update decreases the flow along the corre-
sponding path in G(λ) which reflects in updating the parametric residual network Ĝ(f(λ)). For
each of the arcs composing the conditional decreasing directed path a ∈ P̂ (λ), the procedure
checks, in increasing order of the λk values, if the breakpoints in B

P̂ (λ)
belong to Ba and if not,

procedure add new adds the breakpoints to Ba. Then the values of the parametric residual
capacity of the conditional decreasing directed path P̂ (λ) computed for each of its breakpoints
are subtracted from the parametric residual capacity values of all arcs a = (i, j) and added to
the parametric residual capacity values of arcs b = (j, i). Simultaneously, every time two con-
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secutive breakpoints with zero parametric residual capacity values are found, the sub-interval
bounded by the two λ values is subtracted from Î(a).

1 procedure update(p̂)
2 begin
3 λ` := min{λ | λ ∈ B

P̂ (λ)
, λ > 0};

4 repeat
5 begin
6 for q := 0 to h− 1 do
7 begin
8 a := (p̂(q), p̂(q + 1)); b := (p̂(q + 1), p̂(q));
9 if (λ` /∈ Ba) then add new(λ`,Ba, Ra);
10 if (λ` /∈ Bb) then add new(λ`,Bb, Rb);
11 end;
12 λr := min{λ | λ ∈ B

P̂ (λ)
, λ > λ`}; λ` := λr;

13 end;
14 until (λ` = Λ);
15 λ` := min{λ | λ ∈ B

P̂ (λ)
};

16 for q := 0 to h− 1 do
17 begin
18 a := (p̂(q), p̂(q + 1)); b := (p̂(q + 1), p̂(q));

19 r̂(a;λ`) := r̂(a;λ`)− r̂(P̂ (λ`)); r̂(b;λ`) := r̂(b;λ`) + r̂(P̂ (λ`));
20 end;
21 repeat
22 begin
23 λr := min{λ | λ ∈ B

P̂ (λ)
, λ > λ`};

24 for q := 0 to h− 1 do
25 begin
26 a := (p̂(q), p̂(q + 1)); b := (p̂(q + 1), p̂(q));

27 r̂(a;λr) := r̂(a;λr)− r̂(P̂ (λr)); r̂(b;λr) := r̂(b;λr) + r̂(P̂ (λr));

28 if (r̂(a;λ`) + r̂(a;λr) = 0) then Î(a) := Î(a)− [λ`, λr];
29 if (r̂(b;λ`) + r̂(b;λr) 6= 0) then

30 if (r̂(b;λ`) = 0) then Î(b) := Î(b) + (λ`, λr]

31 else if (r̂(b;λr) = 0) then Î(b) := Î(b) + [λ`, λr)

32 else Î(b) := Î(b) + [λ`, λr];
33 end;
34 λ` := λr;
35 end;
36 until (λ` = Λ);
37 end;

Shortest conditional decreasing paths (SCDP) algorithm

The first phase of finding a parametric minimum flow consists in establishing a feasible
flow if one exists in a nonparametric network G′ = (N,A, `′, u, s, t) obtained from the initial
network G(λ) = (N,A, `(λ), u, s, t) by only replacing the parametric lower bound functions of
every arc (i, j) ∈ A with the non-parametric lower bounds: `′(i, j) = max{`(i, j;λ) | λ ∈ [0.Λ]},
i.e. `′(i, j) = `0(i, j) for L(i, j) ≥ 0 and `′(i, j) = `0(i, j) − Λ · L(i, j) for L(i, j) < 0. Af-
ter a feasible flow f0 is established, the parametric residual network for this feasible flow
Ĝ(f0(λ)) is computed. The piecewise linear parametric residual capacity function r̂(i, j;λ)
of every arc a = (i, j) is initialised as r̂(i, j;λ) = u(j, i) − f(j, i;λ) + f(i, j;λ) − `(i, j;λ), i.e.
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for Ba = {0,Λ} the corresponding lists of residual capacity values Ra = {r̂(a; 0), r̂(a; Λ)} with
r̂(i, j; 0) = u(j, i)−f0(j, i)+f0(i, j)−`(i, j; 0) and r̂(i, j; Λ) = u(j, i)−f0(j, i)+f0(i, j)−`(i, j; Λ).
The sub-interval of the parameter values for every arc is initialised as Î(a) := [0,Λ], ∀ a ∈ Â(λ).
In the second phase the algorithm repeatedly computes the minimum length h of a conditional
decreasing directed path, constructs the shortest conditional decreasing directed path, starting
from the sink node t and adding arcs till the source node is reached, memorised in vector p̂
and finally once the conditional decreasing directed path found, the flow is decreased and the
parametric residual network is updated. As soon as the sink node t cannot be reached, even
with a directed path of n− 1 arcs, i.e. În−1n−1 = ∅, the algorithm stops and the obtained flow
is a parametric minimum flow. The shortest conditional decreasing paths (scdp)algorithm is
presented above.

1 scdp algorithm
2 Begin
3 let f0 be a feasible flow in network G′;

4 compute the parametric residual network Ĝ(f0(λ));

5 Î00 := [0,Λ]; h := 1;

6 for j := 1 to n− 1 do Îj0 := ∅;
7 repeat
8 C := 0;

9 length(Î, h, C);
10 if (C = 1) then
11 begin

12 dpath(Î, h, p̂);
13 prc(p̂);
14 update(p̂);
15 end;
16 until (C = 2);
17 End.

Theorem 7. If there is a feasible flow in the network G(λ) = (N,A, `(λ), u, s, t), the shortest
conditional decreasing paths algorithm computes correctly a minimum flow.

Proof. The algorithm terminates when the sink node t cannot be reached in the parametric
residual network even with a conditional decreasing directed path of n−1 arcs, i.e. În−1n−1 = ∅.
From the Conditional Decreasing Path Theorem (4) it results that the flow is a parametric
minimum flow.

Theorem 8. The complexity of the shortest conditional decreasing paths algorithm is O(n2m2K+
nmK2), where K is the number of breakpoints of the piecewise linear minimum flow value func-
tion.

Proof. Procedure length investigates all the m arcs of the network for every node in a con-
ditional decreasing path in each of the n iterations thus the complexity of finding the length
of a conditional decreasing directed path is O(n2m). A conditional decreasing directed path is
constructed in O(n2) time since in each of the n iterations all the n nodes are investigated. The
complexity of computing the parametric residual capacity of a conditional decreasing directed
path and updating the parametric residual network is O(nK) with K − 1 being the maximum
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number of breakpoints of a piecewise linear parametric residual capacity of a conditional de-
creasing directed path. Thus, the total complexity of performing one step of decreasing the flow
is O(n2m+nK). The number of steps of decreasing the flow is O(mK) since each step reduces
the residual capacity to zero of at least one sub-interval of the parameter values bounded by
two consecutives breakpoints and for at least one arc. Thus the total complexity of the scdp
algorithm is O(n2m2K + nmK2).

5 Example

The algorithm is illustrated on the network presented in Figure 1.a and for the parameter λ taking
values in the interval [0, 1], i.e. Λ = 1. The source node is s = 1 and the sink node is t = 3. The
feasible flow f0 is computed in the non-parametric network G′ = (N,A, `′, u, s, t) presented in Figure
1.b and obtained from the initial network G(λ) = (N,A, `(λ), u, s, t) by replacing the parametric lower
bound functions with their maximum values over the entire interval of the parameter λ ∈ [0, 1].

Figure 1: a. The parametric network G(λ) with linear lower bound functions and constant upper bounds; b.
The feasible flow f0(i, j) in network G′(λ) = {N,A, `′, u, s, t}

The parametric residual network Ĝ(f0(λ)) is presented in Figure 2.a. The sub-intervals of the param-
eter values available for decreasing the flow on every arc are initialised as Î(a) = [0, 1] for all arcs
a ∈ Â(λ). For practical reasons, in the parametric residual network, the direct arcs are denoted by
ai and the backward arcs are denoted by bi with i = 1, . . . , 5: (0, 1) = a1, (0, 2) = a2, (1, 3) = a3,
(2, 1) = a4, (2, 3) = a5 and (1, 0) = b1, (2, 0) = b2, (3, 1) = b3, (1, 2) = b4, (3, 2) = b5 respectively. Using
these notations, the lists Ba and Ra are initialized as follows: Bai := {0, 1}, Rai := {r̂(ai; 0), r̂(ai; Λ)},
Bbi := {0, 1}, Rbi := {r̂(bi; 0), r̂(bi; Λ)} for i = 1, . . . , 5.

Iteration 1 : For the parametric residual network Ĝ(f0(λ)), based on the values of Î = [Îjh](3)×(3) illus-
trated in Figure 2.b, procedure length finds the minimum length of a conditional decreasing directed
path h = 2 since Î32 6= ∅. Starting from p̂(h) = n − 1 = 3, procedure dpath searches the predecessor
node belonging to the conditional decreasing directed path by investigating all arcs ending in node
p̂(h) = 3 and starting from a node with a nonempty value of Îih−1 = Îi1 i.e. the nonempty elements of
the first column of the matrix Î. Choosing λ∗ = (0 + 1)/2 = 1/2 as an arbitrary value λ∗ ∈ Î32, both
nodes i = 1 and i = 2 can be selected since the condition λ∗ ∈ Îih−1

⋂
Î(i, p̂(h)) holds for both arcs

(1, 3) and (2, 3). Let node 1 be selected, i.e. p̂(h−1) = p̂(1) = 1. Since the last value of the iteration in-
dex in procedure dpath is reached, p̂(h−2) = p̂(0) = 0 is set. The conditional decreasing directed path
P̂ (λ) = (0, 1, 3) memorized in p̂ = (0, 1, 3, 4) is obtained and the parametric residual capacity r̂(P̂ (λ))



SCDP Algorithm for PMinF Problem 399

Figure 2: Illustrating the first iteration of the scdp algorithm. The parametric residual network Ĝ(f0(λ));

b. The sub-intervals of the parameter values Î = [Îjh] in the parametric residual network; c. The parametric

residual capacity function of the conditional decreasing directed path P̂ (λ) = (0, 1, 3).

is computed by procedure prc((0, 1, 3, 4)) as follows: B
P̂ (λ)

:= Ba1 = {0, 1}, R
P̂ (λ)

:= Ra1 = {1, 4}.
The next arc of the conditional decreasing directed path is the arc a3 = (1, 3) for which all the λ values
in B

P̂ (λ)
= {0, 1} also belong to Ba3 = {0, 1} so that there is no need to add new breakpoints and the

two current variables λ` = min{0, 1} = 0 and λr = min{0, 1 | λ > 0} = 1 are computed. The procedure
prc verifies if there is a crossing point of the two parametric residual capacities between λ` = 0 and
λr = 1, i.e. if [r̂(a3;λ`)− r̂(P̂ (λ`))] · [r̂(a3;λr)− r̂(P̂ (λr))] < 0.
Since [3 − 1] · [3 − 4] = −2, a new breakpoint is found for λmid = 2/3 with r̂(P̂ (λmid)) = 3. The new
breakpoint is added both to B

P̂ (λ)
and Ba3 which become B

P̂ (λ)
= {0, 2/3, 1}, Ba3 = {0, 2/3, 1} and

the corresponding parametric residual capacities are updated to R
P̂ (λ)

= {1, 3, 4} and Ra3 = {3, 3, 3}.
Then r̂(P̂ (0)) is set to min{r̂(P̂ (0)), r̂(a3; 0)} = min{1, 3} = 1, and λ` is set to the value of λr = 1.
Since now λ` = Λ the procedure stops after setting r̂(P̂ (1)) to min{r̂(P̂ (1)), r̂(a3; 1)}, i.e. r̂(P̂ (1)) :=
min{4, 3} = 3. The resulting piecewise linear parametric residual capacity function r̂(P̂ (λ)), pre-
sented in Figure 2.c. as the inner envelope of the parametric residual capacities of all arcs compos-
ing the conditional decreasing directed path P̂ (λ) = (0, 1, 3), is represented as R

P̂ (λ)
= {1, 3, 3} for

B
P̂ (λ)

= {0, 2/3, 1} with K(P̂ (λ)) = 1.

Figure 3: a. The parametric residual network Ĝ(f3(λ)); b. The sub-intervals of the parameter values Î = [Îjh]
in the parametric residual network; c. The evolution of the piecewise linear flow value function vi(λ) after each
of the iterations.

The algorithm makes then a call to procedure update((0, 1, 3, 4)) which updates the parametric resid-
ual network Ĝ(f(λ)) according to the decreasing of flow along the corresponding path in G(λ). This
step ends with: Ra1 = {0, 0, 1}, Rb1 = {1, 3, 3}, Ra3 = {2, 0, 0} and Rb3 = {5, 7, 7}. Finally, the
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sub-intervals available for decreasing the flow are updated to Î(0, 1) = [1, 1] − [0, 2/3] = (2/3, 1] and
Î(1, 0) = ∅ ∪ [0, 2/3] = [0, 2/3], respectively Î(1, 3) = [0, 2/3) and Î(3, 1) = [0, 1]. After two more
iterations, the updated parametric residual network Ĝ(f3(λ)) for the new parametric flow f3(λ) is
presented in Figure 3.a. with the lists Ba having the following values: Ba1 = Bb1 = {0, 2/3, 1},
Ba2 = Bb2 = {0, 1/3, 1/2, 2/3, 1}, Ba3 = Bb3 = {0, 1/3, 1/2, 2/3, 1}, Ba4 = Bb4 = {0, 1/3, 1/2, 2/3, 1},
Ba5 = Bb5 = {0, 1/2, 1}.
By investigating the sub-intervals of the parameter values Î = [Îjh] in the updated parametric residual
network it can easily be noticed that În−1n−1 = Î33 = ∅ (see Figure 3.b) which means that no condi-
tional decreasing directed path exists in the parametric residual network and the algorithm stops.
The parametric residual capacity functions are presented in Figure 4 for all the sub-intervals of the
parameter values defining the parametric maximum partitioning cut: [Ŝk; Jk], k = 0, . . . , 3. For each
of the sub-intervals Jk the parametric minimum flow value function equals the parametric capacity
function of the corresponding maximum cut: ĉ[Ŝk; Jk] = `(Ŝk, T̂k) − u(T̂k, Ŝk). From these residual
capacities, the parametric minimum flow f̂(λ) is obtained.
For the parameter value λ = 1/2 the piecewise linear flow value function does not change the slope
but the parametric flow distributes differently over the parametric network arcs. The decreasing of the
piecewise linear flow value function after each of the three iterations of the scdp algorithm is repre-
sented in Figure 3.c.

Figure 4: The parametric residual network for each of the sub-intervals Jk, k = 0, . . . , 3 of the parametric
maximum cut.
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