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Abstract

Combinatorial methods are applied to the holomorph of a cyclic group in order to
derive, among other things, a statement that sheds some light on the well-known ”totient”
conjecture of D.H. Lehmer.
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This note was inspired by a well-known conjecture of D. H. Lehmer [4]: an integer n ≥ 2 is
a prime if and only if ϕ(n) divides n − 1. We are not solving this conjecture here, but we use
it as a good excuse to make some remarks on the holomorphs of cyclic groups of very special
order. The precise aim is to show that these holomorphs could be very interesting objects from
a combinatorial point of view. Miller [5] wrote a paper on holomorphs of cyclic groups about
one hundred and ten years ago and, strolling on old trails, could be very rewarding indeed.

The unexplained notation is mostly standard. G will be a finite group of order n ≥ 3,
so its automorphism group A = Aut(G) will always contain a nontrivial automorphism (i.e.,
distinct from the identity map idG). We will work in the holomorph H = Hol(G) of G; this
can be viewed as the semidirect product GA = AG, with the base group G normal in H, with
CA(G) = 1 and G ∩A = 1.

If 1 ∈ S ⊆ H, we will write S? instead of S \{1}. We write H as the union of three mutually
disjoint subsets: G?, X =

⋃
g∈GA

g and Y = H \ (G? ∪X).
We let both G and A act by conjugation on H and we observe that all of the three subsets

mentioned above are G-invariant and A-invariant. Hence they are also H-invariant (i.e., unions
of conjugacy classes in H).

Whenever a group Y acts on a group X, we will denote by xY the orbit of x ∈ X under
the action of Y . Also, we will denote by tY (X) the number of orbits of Y in X. For example,
for a ∈ A, we have that aG = {ag | g ∈ G}. It is well-known that |aG| = |G : CG(a)|, where
CG(a) denotes the subgroup of all fixed-points of a in G. Since G ∩ A = 1, it is easy to see
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that distinct elements of A have distinct G-orbits. This shows at once two things: first, that G
acts with exactly |A| orbits on the subset X and that |X| =

∑
a∈A |G : CG(a)|. And, since by

definition |Y | = |G||A| − |G|+ 1− |X|, we obtain that

|Y | =
∑
a∈A?

(|G| − |G : CG(a)|)

.
These considerations are not really new, for the set X? was considered a long time ago in

connection with the so-called Frobenius groups. We are dealing with the set X here for number
-theoretical reasons that will become clearer below.

Something similar works for computing the number of G-orbits contained in Y .
Let tA(G) be the number of orbits of A in its natural action on G and let k(G) = tG(G)

denote the number of G-orbits in G (these are nothing else but the conjugacy classes of G). As
done in [3], an application of the Cauchy-Frobenius Lemma shows that G has exactly tA(G)|A|
orbits in H. Thus G has in Y exactly tA(G)|A| − k(G) + 1− |A| orbits and hence Y is empty
precisely when G acts with zero orbits on Y , i.e., when |A|(tA(G)− 1) = k(G)− 1.

But Y is empty precisely when CG(a) = 1 for all a ∈ A?. And this happens precisely
when |G| = p is a prime. Indeed, it must be clear that G is abelian, for the nontrivial inner
automorphisms don’t act fixed-point-freely on G. It is also clear, via the Frobenius-Stickelberger
theorem, that G must be a cyclic p-group. And then, one derives that |G| = p. Conversely,
when |G| = p ≥ 3 , then |A| = p − 1, k(G) = |G| = p and tA(G) = 2. And, finally, the
exceptional case when |G| = 2 being trivial, we have proved

Proposition 1. Let G be a finite group with |G| ≥ 2. Then |G| is a prime if and only if
|A|(tA(G)− 1) = k(G)− 1.

If one wants to determine the number of A-orbits in Y in this general setting, the task
becomes complicated. This is due to the fact that the numbers of orbits of A in H and in X
are harder to get in general.

However, this can be done provided that G is a group of a very special order. If φ := ϕ(n),
call n ≥ 2 a Lehmer number if the equality n = aφ + 1 holds for some positive integer a. Of
course, every prime is a Lehmer number (this happens precisely when a = 1) and Lehmer’s
conjecture asserts that there are no composite such numbers.

From now on, if nothing else is specified, G will be a group having n ≥ 3 elements, where
n = aφ+ 1 is a Lehmer number. Then (n, φ) = 1 and it is immediate that n must be odd and
square-free, with a number, say, of s ≥ 1 distinct prime factors. It is a well-known exercise
that G must be a cyclic group, so A is abelian in this case and we have that |A| = φ and that
tA(G) = 2s is the number of divisors of |G| = n. Also , if a ∈ A, then it is well-known that
G = CG(a) ×KG(a), where KG(a) = {[g, a] | g ∈ G}. Note that in general the set KG(a) is
not necessarily a subgroup of G, but in our case it is, for G is abelian.

If d is any divisor of n, write ψ(d) :=
∏

p|d(p− 2). Here the product is taken over all primes

dividing d and, by customary convention, ψ(1) = 1. It was shown in [1] that there exist exactly
ψ(n

d ) automorphisms a ∈ A such that |CG(a)| = d.
We claim now that when |G| = n is a Lehmer number, then |X| = φ2. Indeed, |X| =∑

a∈A |G : CG(a)| =
∑

d|n
n
dψ(n

d ) =
∑

d|n dψ(d) =
∏

p|n(1 + p(p− 2)) = φ2.
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It is now easy to determine the size of Y , for |Y | = |G||A|−|G|+1−|X| = nφ−n+1−φ2 =
nφ− aφ− φ2 = φ(n− a− φ) = (φ− 1)(n− φ− 1) = φ(φ− 1)(a− 1).

It is also easy to determine the number of G-orbits in Y . Note that in our case (|G| = n is
square-free), tA(G) is the number of divisors of n, which is 2s, where s is the number of prime
factors of n. Thus, according to our general setting above, G has exactly 2sφ−n+ 1−φ orbits
in Y (this is because G being abelian we have k(G) = |G|). And so, since n = aφ + 1, we get
that G has exactly φ(2s − a− 1) orbits on Y .

The problem of the number of A-orbits in X is a bit more complicated.
Observe first that, for a ∈ A fixed, the G-orbit aG is A-invariant. Indeed, aG = {ag | g ∈

G} = aKG(a) and so, if b ∈ A, we have that (aG)
b

= (aKG(a))b = ab(KG(a))b = aKG(a) = aG.
This is because G is cyclic, so A is abelian and also KG(a) is characteristic in G (or, if the
reader prefers so, normal in H). The number of orbits of A on aG is thus exactly the number
of orbits of A on the subgroup KG(a). And this number is equal to the number of divisors of
|KG(a)|.

Therefore, the total number of A-orbits in X is equal to a sum of powers of 2, each one
appearing , for some divisor d = |CG(a)| of n exactly ψ(n

d ) times. That number is then equal
to

∑
d|n 2sdψ(n

d ), where sd denotes here the number of divisors of n
d = |G : CG(a)| = |KG(a)|,

so the sum in discussion is actually equal to
∏

p|n(1 + 2(p− 2)) =
∏

p|n(2p− 3).
Finally, in order to compute the number of A-orbits in Y , we only need the number of

A-orbits in H. This was shown in [3] to be (because A is abelian) equal to tA(G)|A|. And so,
since A acts with tA(G)− 1 orbits on G?, the number of A orbits on Y is equal to

tA(G)|A| − tA(G) + 1−
∏
p|n

(2p− 3) = 2sφ− 2s + 1−
∏
p|n

(2p− 3)

.
From what was said above, we retain only this rather surprising result - the exceptional case

when |G| = 2 is, again, trivial.

Proposition 2. Let G be a group of order n ≥ 2. Then n is a Lehmer number if and only if
|A|(|A| − 1) divides |Y |. Therefore, n is a counterexample to Lehmer’s conjecture if and only if
|Y | is a nonzero multiple of φ(φ− 1).

Some comments are in order here, the first being that the equality |X| = φ2 holds whenever
G is cyclic of square-free order (for only this is what was used in proof). It fails to hold when
G is cyclic of order four. For in that case, G has just two automorphisms, one fixing G and one
fixing the subgroup of order 2 of G, yielding |X| = 3.

The second comment is that it was shown in [2] by elementary calculations that if n is
a Lehmer number and if also n | φ2 − 1, then n must be a prime. We can now give a more
conceptual proof to this observation: since n is a Lehmer number, it follows that φ divides
|Y |. Since n divides φ2 − 1, it follows that n divides |Y |. And, since (n, φ) = 1, it follows that
nφ = |G||A| = |H| divides |Y |. This could only happen when |Y | = 0, i.e. when n is a prime.

Finally, since we did not discuss that problem here, it remains the interesting question of
finding the number of orbits of H in its conjugation action on both X and Y in the very special
case when |G| is a Lehmer number.
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