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Abstract

In this paper we introduce the notion of rooted ring with several objects (rooted small
preadditive category). Then, we obtain characterizations of projective and flat functors
in the corresponding functor category, and use them to give new results concerning right
perfect rooted rings with several objects and pure semisimple finitely presented additive
categories. We conclude the paper applying the results to the module category over a
rooted ring with enough idempotents.
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1 Introduction

The starting point of this paper are two different situations. The first of them concerns rep-
resentations of infinite quivers. Recall that a quiver Q is a pair (V,A) consisting of a set of
vertices, V , and a set of arrows between them, A. Given R a ring, a representation X of the
quiver by right R-modules assigns to each vertex v of Q a right R-module X(v) and to each
arrow a : v → w a R-morphism X(a) : X(v) → X(w). In the last thirty years, there have
appeared many results concerning representations of quivers. We are interested in representa-
tions of infinite quivers, where the notion of rooted quiver plays an important role, because over
this type of quivers there have been characterized some classes of representations, such as flat,
projective and injective; see, for example, [4], [5], [6] and [7]. The second situation is relative
to triangular matrix rings. Let R and S be unitary rings and M a (R,S)-bimodule. A well

known result asserts that any right module over the triangular matrix ring T =

(
R M
0 S

)
is

uniquely determined by a triple, (X,Y, f), where X ∈ Mod-R, Y ∈ Mod-S and f : X⊗M → Y
is a S-linear map, see [9, p. 17], [12, Theorems 1.5 and 1.10] and [8]. Using this description, we
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can study properties in Mod-T from properties in Mod-R and Mod-S. This have been done,
for example, in [14], [13], [2] and [8].

In this paper we use and extend both ideas, the description of the module category over
a triangular matrix ring and the study of representations of rooted quivers, to study functor
categories over small preadditive categories (which are called rings with several objects in [16];
see [10], [15] and [20] too, for the theory of functor categories). More precisely, let C be a
small preadditive category and denote by (C,Ab) the category whose objects are the additive
covariant functors from C to the category of abelian groups, Ab. Moreover, let Ra be the
ring EndC(a) and Rab the (Ra, Rb)-bimodule HomC(a, b) for each a, b ∈ C. Then, extend-
ing the mentioned result for triangular matrix rings, any functor F is determined by a tuple
(Ma, s

M
ab)a,b∈C where Ma ∈ Mod-Ra for each a ∈ C and sMab is a Rb-morphism from Ma⊗RaRab

to Mb making some diagrams commutative (see 2.2). Then we associate a quiver Q(C) to the
small preadditive category C and we study some classes objects in (C,Ab) in terms of the pro-
perties of the corresponding tuples when the quiver Q(C) is left rooted. With these ideas, we
are able to characterize projective functors (Theorem 1), right perfect small preadditive cate-
gories (Theorem 3) and pure semisimple locally finitely presented additive categories (Theorem
4).

These results are used to study the category of modules over (unitary and non-unitary)
rings with enough idempotents. This is done by rewriting the previous results since, as it was
essentially proved by Mitchell, [16, Theorem 7.1], there is a bijective correspondence between
Morita equivalence classes of rings with enough idempotents and Morita equivalence classes
of small preadditive categories (in the sense that two such categories are Morita equivalent if
the corresponding functor categories are equivalent categories). Thus, the mentioned results
actually characterize projective modules over rings with enough idempotents, right perfect
rings with enough idempotents and right pure semisimple unitary rings (corollaries 2, 3 and 4
respectively). We note that we extend the corresponding results existing for triangular matrix
rings too, see [14, Corollary 5.2], [14, Theorem 3.1] and [8, Proposition 2.1].

2 Preliminaries

Let C be a category. If c is an object of C we shall write c ∈ C. Morphisms and functors will
act on the right. Consequently, if f : a → b and g : b → c are morphisms in C, then their
composition will be fg; for any object c of C, we shall denote 1c the identity morphism of c. The
category of abelian groups will be denoted by Ab. If f : A→ B is a functor between categories,
then Im f will denote the essential image of f , that is, the class of all objects b of B for which
there exists a ∈ A such that (a)f ∼= b. By a preadditive category we mean a category together
with an abelian group structure on each of its hom sets such that composition is bilinear. An
additive category is a preadditive category with finite products.

Fix, for the rest of the section, a small preadditive category C. We shall denote by (C,Ab)
the category whose objects are the additive covariant functors from C to Ab and whose mor-
phisms are the natural transformations between functors. All functors between preadditive
categories will be additive, even though we may neglect to say so explicitly each time. It is well
known that the family of functors {HomC(a, ) : a ∈ C} is a family of projective generators of
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(C,Ab) (see [20, Corollary IV.7.5]) and, consequently, the functor

TC =
⊕
a∈C

HomC(a, ) (2.1)

is a projective generator. We shall call it the regular functor.
For any object c ∈ C, we shall denote by Rc the ring EndC(c). Composition in C gives to

HomC(a, b) the structure of (Ra, Rb)-bimodule for each a, b ∈ C, and, for each triple a, b, c ∈ C
defines a (Ra, Rc)-linear homomorphism from HomC(a, b)⊗Rb HomC(b, c) to HomC(a, c), which
we shall denote by tabc. In addition, we shall denote HomC(a, b) by Rab. Let F : C → Ab be
any functor. Then, for each a ∈ C, (a)F is a right Ra-module with multiplication given by

xf = (x)(f)F ∀x ∈ (a)F and f ∈ Ra

and, for any other b ∈ C, there is a Rb-linear map sFab : (a)F ⊗Ra Rab → (b)F given by the
same formula. This morphisms satisfy that, for any triple a, b, c ∈ C, the following diagram is
commutative:

(a)F ⊗Ra Rab ⊗Rb Rbc
sFab⊗1- (b)F ⊗Rb Rbc

1⊗tabc

? ?

sFbc

(a)F ⊗Ra Rac -
sFac

(c)F

(2.2)

Moreover, any functor F in (C,Ab) is determined by this data, that is, a tuple (Ma, s
M
ab)a,b∈C

where Ma ∈ Mod-Ra for each a ∈ C and sMab is a Rb-morphism from Ma⊗Ra Rab to Mb making
diagram (2.2) commutative. With this tuple, the functor F is defined as (a)F = Ma for each
a ∈ C and (f)F is the morphism given by (x)(f)F = (x⊗f)sMab for each f ∈ Rab and x ∈ (a)F .
With this identification, each natural transformation τ : F → G in (C,Ab) is determined by a
family of morphisms (τc)c∈C such that τc ∈ HomRc((c)F, (c)G) making the diagram

(a)F ⊗Ra Rab
τa⊗1ab- (a)G⊗Ra Rab

sFab

? ?

sGab

(b)F -
τb

(b)G

(2.3)

commutative for each a, b ∈ C. Moreover, it is easy to see that a subfunctor G of a functor F
is determined by a family of abelian groups {Gc : c ∈ C} such that Gc is a right Rc-submodule
of (c)F that verifies (x⊗ f)sFab ∈ Gb for each x ∈ Ga and f ∈ Rab. We shall call G the functor
determined by the family of modules {Gc : c ∈ C}.

Remark 1. The identification of functors with tuples is an extension of some well known
theorems concerning matrix rings, see [9, p. 17], [12, Theorems 1.5 and 1.10] and [8]. More
precisely, define the category A with objects tuples (Ma, s

M
ab)a,b∈C such that Ma ∈ Mod-Ra for

each a ∈ C and sMab ∈ HomRb(Ma ⊗Ra Rab,Mb) making diagram (2.2) commutative, and with
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morphisms tuples (τa)a∈C such that τa is a Ra-linear map making diagram (2.3) commutative
for each a ∈ C. Then, the categories (C,Ab) and A are equivalent.

Moreover note that the category A is the category of representations of a generalized species,
(in the sense that it is defined using rings with unit instead of the classical definition that uses
division rings, see [11]) with a commutativity condition, see [18, §3]

We shall use the identification of functors with tuples freely along the paper. Summarising,
we shall use the following notation and conventions.

Notation 1. Let F ∈ (C,Ab) and a, b, c ∈ C. Then:

• Ra and Rab will be HomC(a, a) and HomC(a, b) respectively.

• tabc : Rab ⊗Rb Rbc → Rac is the morphism defined by composition.

• sFab : (a)F⊗RaRab → (b) is the morphism given by (x⊗f)sFab = (x)(f)F for each x ∈ (a)F
and f ∈ Rab.

• We shall omit the ring in the tensor product when it is clear from the context.

Now we establish the relationship between the functor category (C,Ab) and the product
category

∏
c∈C Mod-Rc. In order to do this, we define the following functors:

• The functor p :
∏
c∈C Mod-Rc → (C,Ab) is defined, for each object (Mc)c∈C of∏

c∈C Mod-Rc, as ((Mc)c∈C) p =
⊕

c∈CMc ⊗Rc HomC(c, ); and for each morphism ϕ =
(ϕc)c∈C, let (ϕ)p be the natural transformation such that, for each a ∈ C, (a)(ϕ)p =⊕

c∈C ϕc ⊗Rc 1Hom(c,a).

• The functor q : (C,Ab) →
∏
c∈C Mod-Rc is defined, for each functor F of (C,Ab), as

(F )q =
(
(c)F

)
c∈C; and, for each natural transformation τ : F → G, let (τ)q = ((c)τ)c∈C.

Proposition 1. Let p and q be as above. Then p is a left adjoint of q and q is exact.

Proof: We shall denote by P the product category
∏
c∈C Mod-Rc. We define the unit η =

(ηM )M∈P : 1P → pq and the counit ε = (εF )F∈(C,Ab) : qp → 1(C,Ab) of the adjunction.
Given any object M = (Mc)c∈C in P, let

ηM =
(
ηMc
)
c∈C : (Mc)c∈C →

(⊕
c∈C

Mc ⊗Rc Hom(c, a)

)
a∈C

be the morphism such that, for each a ∈ C and m ∈Ma, (m)ηMa = m⊗ 1a.
For any functor F : C → Ab let εF : (F )qp → F be the natural transformation such that,

for each a ∈ C, (a)εF :
⊕
c∈C

(c)F ⊗Rc Hom(c, a)→ (a)F is the morphism ⊕c∈CsFca.

It is easy, but tedious, to check that η and ε are natural transformations such that η(F )q ◦(
εF
)
q = 1(F )q and

(
ηM
)
p ◦ ε(M)p = 1(M)p for any pair of objects F ∈ (C,Ab) and M ∈ P.

By [15, Theorem IV.2], these natural transformation determine an adjunction between p and
q in which p is the left adjoint of q.
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The functor q is exact since kernels and cokernels are computed componentwise in P and
in (C,Ab).

Remark 2. Let M ∈
∏
c∈C Mod-Rc and a, b ∈ C. Then the morphism s

(M)p
ab is given by:

((mc ⊗ fca)c∈C ⊗ fab) s(M)p
ab = (mc ⊗ fcafab)c∈C

for each (mc ⊗ fca)c∈C ⊗ fab ∈
(⊕

c∈CMc ⊗Rc HomC(c, a)
)
⊗Ra HomC(a, b).

3 Projective and flat objects over rooted rings with several objects

Recall that a quiver Q is a directed graph, i. e., a pair (V,A) consisting of a set of vertices, V ,
and a set of arrows between them, A. Given an arrow a : v1 → v2 in Q, we shall write i(a) = v1
and t(a) = v2. A path in Q is a sequence of arrows a1a2 · · · an with t(ai) = i(ai+1) for each
i ∈ {1, . . . , n− 1}. A cycle in Q is a path a1 · · · an with t(an) = i(a1). It is easy to associate a
quiver to any small category.

Definition 1. Let C be a small category. We define the quiver associated to C, Q(C), as
follows: the set of vertices is the set of objects of C and there is an arrow a→ b precisely when
a 6= b and HomC(a, b) 6= 0.

Let Q = (V,E) be a quiver. We define a set of vertices Vα for each ordinal α as follows. If
α = 0, define

V0 = {v ∈ V : there exists no arrow a of Q with t(a) = v}.

If α is a successor ordinal, say α = γ + 1, we define

Vα = {v ∈ V : there exists no arrow a of Qγ with t(a) = v},

where Qγ = (V γ , Eγ) is the subquiver of Q with V γ = V −Vγ and Eγ = E−{a ∈ E : i(a) ∈ Vγ}.
Finally, if α is a limit ordinal we define Vα =

⋃
γ<α Vγ and Qα = (V α, Eα) the subquiver of Q

given by V α = V −
⋃
γ<α Vγ and Eα = E − {a ∈ E : i(a) ∈ Vα}. The quiver Q is said to be

left rooted if there exists an ordinal α such that V =
⋃
γ<α Vγ , see [7].

Definition 2. A small category C is said to be left rooted if the quiver associated to C is left
rooted.

The dual procedure gives the definition of right rooted category. If C is a left rooted small
category, we shall denote by V (C)α the corresponding subsets of vertices of the quiver Q(C).
Now we characterize projective functors. We need the following notation and a preliminary
lemma.

Notation 2. Let C be a small preadditive category and F : C → Ab a functor. If, for each
object a ∈ C, we denote by SFa =

∑
c6=a Im sFca, then the family of submodules {SFc : c ∈ C}

induces a subfunctor of F . We shall denote it by SF .
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Lemma 1. Let C be a small preadditive category such that Q(C) has no cycles. Then, for
any M = (Mc)c∈C ∈

∏
c∈C Mod-Rc, (b)S(M)p =

⊕
a6=bMa ⊗Ra Rab ∀b ∈ C. In particular,

(b)S(M)p
⊕

(Mb⊗Rb) = (b)(M)p for each b ∈ C and, if s
(M)p
ab denotes the restriction of s

(M)p
ab

to Ma ⊗Ra ⊗Rab for each a, b ∈ C, then
⊕

a6=b s
(M)p
ab is monic for each b ∈ C.

Proof: Fix b ∈ C and let a 6= b be an object of C and (mc⊗ rca)c∈C⊗ rab ∈ (a)(M)p⊗Ra Rab.
By Remark 2, ((mc ⊗ rca)c∈C ⊗ rab) s(M)p

ab = (mc ⊗ (rca ⊗ rab)tcab)c∈C, and the coordinate in
position b of this element is zero since, if c = b, then rab = 0 or rba = 0 (otherwise there
would be a cycle a → b → a and this is not true by hyphotesis). This proves the inclusion∑
a6=b Im s

(M)p
ab ≤

⊕
a 6=bMa ⊗ HomC(a, b). The other inclusion follows from the fact that, for

every (ma ⊗ rab)a6=b ∈
⊕

a6=bMa ⊗Ra Rab, we have the identity

(ma ⊗ rab)a 6=b =
∑
a6=b

((ma ⊗ 1a)ιa ⊗ rab) s(M)p
ab

where ιa is the inclusion of Ma ⊗Ra Ra in
⊕

c∈CMc ⊗Rc Rca.

Now we prove that
⊕

a6=b s
(M)p
ab is monic. As a consequence of Remark 2 we have, for each

pair of objects of C, a 6= b, that s
(M)p
ab = (1Ma

⊗taab)ιab, where ιab is the inclusion of Ma⊗RaRab
in (b)(M)p. Then,

⊕
a 6=b s

(M)p
ab can be viewed as the direct sum of the homomorphisms

1Ma ⊗ taab : Ma ⊗Ra Ra ⊗Ra Rab →Ma ⊗Ra Rab

with a 6= b. Consequently,
⊕

a6=b s
(M)p
ab is a monomorphism, since taab is just the canonical

isomorphism Ra ⊗Ra Rab ∼= Rab for each a, b ∈ C.

Now we obtain the characterization of projective functors over left rooted small preadditive
categories:

Theorem 1. Let C be a left rooted small preadditive category and P ∈ (C,Ab). The following
assertions are equivalent:

1. P is projective.

2. P ∼=
((

(c)P
(c)SP

)
c∈C

)
p and (c)P

(c)SP
is projective in Mod-Rc for each c ∈ C.

3. There exists a projective object (Pc)c∈C of
∏
c∈C Mod-Rc such that P =

(
(Pc)c∈C

)
p.

4. They are verified:

(a) (b)P
(b)SP

is projective for each b ∈ C.

(b) There exists a decomposition (b)P = (b)SP ⊕ Kb for each b ∈ C such that, if sPab
denotes the restriction of the morphism sPab to Ka ⊗ Rab for each a, b ∈ C, then⊕

a6=b s
P
ab is monic for each b ∈ C.
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Proof: (1) ⇒ (2). First of all we prove that (c)P
(c)SP

is projective for each c ∈ C. For each

c ∈ C let fc : Mc → (c)P
(c)SP

be an epimorphism in Mod-Rc. Let M be the functor such that

(c)M = Mc for each object c ∈ C, and for each morphism in C, f : a → b, (f)M = 0 if a 6= b
and (f)M is right multiplication by f if a = b. It is easy to see that, since Q(C) has no cycles,
M is a functor and fc defines a natural transformation f : M → P

SP
which is an epimorphism

in (C,Ab) (this is due to, for each morphism h : a→ b in C, (h) P
SP

= 0). Applying that P is
projective in (C,Ab), there exists a natural transformation g : P → M such gf = π, where π
is the canonical projection from P to P

SP
. Now, using that g is natural, it is easily seen that(

(c)SP
)
gc = 0 for each c ∈ C and, by the factor theorem, there exists hc : (c)P

(c)SP
→ Mc with

πchc = gc for each c ∈ C. This morphism verifies that hcfc is the identity for each c ∈ C. That

is, fc is split and (c)P
(c)SP

is projective in Mod-Rc for each c ∈ C.

Now using that P is a direct summand of a direct sum of copies of the regular functor TC,
that TC belongs to the image of p and that p commutes with direct sums (since it commutes
with direct limits as it is a left adjoint), we can find a projective object (Nc)c∈C of

∏
c∈C Mod-Rc

such that P is a direct summand of ((Nc)c∈C) p. Write P⊕Q = ((Nc)c∈C) p for some projective
functor Q and denote M = ((Nc)c∈C) p. By Lemma 1, it is verified that (b)SM =

⊕
a6=bNa ⊗

Rab, that (b)SM ⊕(Nb⊗Rb) = (b)M and, if sMab denotes the restriction of sMab to Na⊗RaRa⊗Ra
Rab for each pair of objects a 6= b, then

⊕
a6=b s

M
ab is monic for each b ∈ C. Moreover, since sMab

is the direct sum of sPab and sQab for each pair a, b ∈ C, it is verified (b)SM = (b)SP ⊕ (b)SQ,
∀b ∈ C.

We are going to find a subfunctor P ′ of M such that P ∼= P ′ and P ′ belongs to Im p. By the
first part of this proof there exists, for each b ∈ C, submodules Kb ≤ (b)P and Lb ≤ (b)Q such
that (b)SP ⊕Kb = (b)P and (b)SQ⊕Lb = (b)Q. Now, since (b)SP ⊕ (b)SQ⊕ (Nb⊗Rb) = (b)M
and (b)SP ⊕ (b)SQ ⊕Kb ⊕ Lb = (b)M for each b ∈ C, Kb ⊕ Lb ∼= (Nb ⊗Rb), and there exists a
decomposition Nb = P ′b ⊕ Q′b with Kb

∼= P ′b and Lb ∼= Q′b. Finally, consider the subfunctor P ′

of M given by

(b)P ′ = (P ′b ⊗Rb Rb)
⊕(⊕

a∈C

P ′a ⊗Ra Rab

)

Then it is easy to see that P ′ ∼= P . Moreover, note that P ′ ∼= ((P ′c)c∈C)p and since P ′b
∼= Kb

∼=
(b)P
(b)SP

for each b ∈ C, we get that P ′ ∼=
((

(b)P
(b)SP

)
b∈C

)
p and the proof is finished.

(2) ⇒ (3) and (3) ⇒ (1) are trivial.

(3) ⇒ (4). By Lemma 1.

(4) ⇒ (3). Consider the natural transformation s : ((Kb)b∈C)p → P given by (b)s =⊕
a∈C s

P
ab for each b ∈ C. It is easy to see that s is actually a natural transformation. We

prove that it is an equivalence.

Since Im
⊕

a 6=b s
P
ab ≤ (b)SP , the morphism (b)s is the direct sum of the morphisms

⊕
a6=b s

P
ab :⊕

a 6=bKa ⊗ Rab → (b)SP and sPbb : Kb ⊗ Rb → Kb. For each b ∈ C, note that sPbb is just the
canonical isomorphism from Kb ⊗ Rb to Kb and, in order to see that (b)s is an isomorphism
we just have to prove that ⊕a 6=bsPab is. Since this map is, by hyphotesis, monic, we have to see
that is is epic.



322 Manuel Cortés-Izurdiaga, Blas Torrecillas

Let b ∈ C and α be an ordinal number such that b ∈ V (C)α. We prove that Im
⊕

a6=b s
P
ab =

(b)SP by transfinite induction on α. Case α = 0 is trivial. Suppose that α is greater than 0
and that the result is true for each object in V (C)γ for each γ < α. Let a 6= b with Rab 6= 0,
rab ∈ Rab and m ∈ (a)P . Write m = x+ y with x ∈ (a)SP and y ∈ Ka and we have to see that
(x⊗rab)sPab ∈ Im⊕a 6=bsPab. Since a ∈ V (C)γ for some γ < α, we can use induction hyphotesis to
write x =

∑
c6=a

∑nc
k=1(pkc ⊗ rkca)sPca for elements pkc ⊗ rkca ∈ Kc⊗Rc Rca for each k ∈ {1, . . . , nc}

and c 6= a. Then

(x⊗ rab)sPab =
∑
c 6=a

∑nc
k=1(pkc ⊗ rkca ⊗ rab)(sPca ⊗ 1ab)s

P
ab

=
∑
c6=a

∑nc
k=1(pkc ⊗ rkca ⊗ rab)(1⊗ tcab)sPcb

which concludes the proof.

Remark 3. If C is a small preadditive category such that Q(C) has no cycles, then any

projective functor P ∈ (C,Ab) satisfies that (b)P
(b)SP

is projective. This is not true if Q(C) has

cycles, as it is proved in the following example.

Example 1. Let R be a unitary ring and M a non-zero right R-module such that the trace
ideal of M in R is not a direct summand (recall that the trace ideal of M in R is tM (R) =∑
f∈HomR(M,R) Im f). Consider the small preadditive category C whose set of objects is {a, b},

whose set of morphisms are EndC(a) = R, EndC(B) = EndR(M), HomC(a, b) = HomR(M,R)
and HomC(b, a) = M and composition is defined in an obvious way. Let T be the regular
functor. Then (a)T = R⊕M and (a)ST = Im sT21 = tM (R)⊕M . Since, by hyphotesis, tM (R)

is not a direct summand, (a)T
(a)ST

cannot be projective. Then T is a projective functor that does

not satisfy the previous remark. Note, in addition, that the quiver associated to C is

1�- 2

and that (C,Ab) is equivalent to the module category associated to the matrix rings of the
derived Morita context of M .

Remark 4. In the proof of (2)⇒ (3) of the preceding theorem it is actually proved the following
more general result: Let P,Q ∈ (C,Ab) be such that P ⊕Q ∈ Im p and (b)SP and (b)SQ are
direct summands of (b)P and (b)Q for each b ∈ C. Then P,Q ∈ Im p.

Now we characterize flat functors that belong to Im p. If C is a small preadditive category,
a functor F : C→ Ab is flat each short exact sequence

0 - X - Y - F - 0

is pure. By [19, Theorem 3], this condition is equivalent to the existence of a family of projective
functors such that F is its direct limit.

Proposition 2. Let C be a small preadditive category such that Q(C) has no cycles and let

F ∈ (C,Ab) be a flat. Then (c)F
(c)SF

is a flat Rc-module for each c ∈ C.
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Proof: First of all note that for each natural transformation τ : M → N in (C,Ab), there are
natural transformations k : SM → SN and p : M

SM
→ N

SN
making the diagram

0 - SM uM-M vM- M
SM

- 0

k

? ?

τ

?

p

0 - SN -
uN

N -
vN

N
SN

- 0

commutative with uM and uN inclusions, and vM and vN projections. Moreover, k and p are
uniquely determined by this property.

Let (P i, ιij)i≤j∈I be a direct system of projective functors whose direct limit is F . Using
the preceding fact there exists, for each i ≤ j, a commutative diagram with exact rows,

0 - Si - P i - P
Si

- 0

kij

? ?

ιij

?

pij

0 - Sj - P j - P j

Sj
- 0

where Si = SP
i

for each i ∈ I. Using the uniqueness of kij and pij it is easy to see that these
diagrams define direct systems of short exact sequences whose direct limit is precisely the short
exact sequence

0 - SF - F - F

SF
- 0

Using that P i is projective for each i ∈ I, it is easy to see that, actually,
(c)F

(c)SF
= lim−→

i∈I

(c)P i

(c)Si
for

each c ∈ C. Now since, by Theorem 1, (c)P i

(c)Si is projective in Mod-Rc, we conclude that (c)F
(c)SF

is a flat Rc-module for each c ∈ C.

Now the characterization of flat functors belonging to Im p is an easy consequence of The-
orem 1.

Theorem 2. Let C be a left rooted small preadditive category and F ∈ (C,Ab). The following
assertions are equivalent:

1. F is flat and belongs to Im p.

2. F ∼=
((

(c)F
(c)SF

)
c∈C

)
p and (c)F

(c)SF
is flat in Mod-Rc for each c ∈ C.

3. There exists a flat object (Fc)c∈C of
∏
c∈C Mod-Rc such that F =

(
(Fc)c∈C

)
p.

4. They are verified:
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(a) (b)F
(b)SF

is flat for each b ∈ C.

(b) There exists a decomposition (b)F = (b)SF ⊕ Kb for each b ∈ C such that, if sFab
denotes the restriction of the morphism sFab to Ka ⊗ Rab for each a, b ∈ C, then⊕

a6=b s
F
ab is monic for each b ∈ C.

Proof: (1) ⇒ (2). If F ∈ Im p, say F ∼= ((Nc)c∈c)p, then (c)F
(c)SF

∼= Nc for each c ∈ C by

Lemma 1. Then F ∼=
((

(c)F
(c)SF

)
c∈C

)
p. Moreover (b)F

(b)SF
is flat for each b ∈ C by the previous

proposition.
(2) ⇒ (3). Trivial.
(3) ⇒ (1). Since p is a left adjoint it preserves projective objects and direct limits. Conse-

quently it preserves flat objects.
(1) ⇒ (4). (a) Follows from Proposition 2. (b) is a consequence of Lemma 1.
(4) ⇒ (3). The same proof of (4) ⇒ (3) of Theorem 1.

4 Applications to functor categories

In this section we apply the results of the previous one in order to characterize right perfect
functor categories and pure semisimple additive categories. Recall that a small preadditive
category C is called right perfect (see [17]) if each flat functor of (C,Ab) is projective. If C is
left rooted and α is an ordinal number, we shall denote by qα the subfunctor of q such that,
for each functor F ∈ (C,Ab), (F )qα is the object (Xc)c∈C of

∏
c∈C Mod-Rc with Xc = (c)F

if c ∈ V (C)α and Xc = 0 otherwise. We shall use the following technical result.

Lemma 2. Let C be a left rooted small preadditive category and F ∈ (C,Ab) a flat functor such
that (b)F = 0 for each b ∈

⋃
γ<α V (C)γ for some ordinal α. Then there exists a direct system

(P i, ιij)i≤j consisting of projective functors satisfying (b)P i = 0 for each b ∈
⋃
γ<α V (C)γ and

whose limit is F .

Proof: Straightforward by transfinite induction on α.

Theorem 3. Let C be a left rooted small preadditive category. Then the following assertions
are equivalent:

1. C is right perfect.

2. Each flat functor belonging to Im p is projective.

3. Rc is a right perfect ring for each c ∈ C.

4. For each finitely generated projective functor P ∈ (C,Ab), End(C,Ab)(P ) is a right perfect
ring.
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Proof: (1) ⇒ (2). Trivial.
(2)⇒ (3). Fix c ∈ C and Fc a flat module in Mod-Rc. Since F = (Fc)p is flat, it is projective

by hyphotesis. Now, by Theorem 1, (c)F
(c)SF

is projective; but, since (c)SF = 0, (c)F
(c)SF

= Fc is

actually projective. As Fc was arbitrary, we conclude that Rc is right perfect.
(3) ⇒ (1). Let F be a flat functor. We are going to construct, for each ordinal γ, a short

exact sequence

0 -
⊕
δ<γ

Pδ
sγ- F

rγ- Fγ - 0

with Pδ a projective submodule of F for each δ < γ, sγ the inclusion, Fγ flat and (b)Fγ = 0 for
each b ∈

⋃
δ<γ V (C)δ. From this construction and using that C is left rooted it follows that

F =
⊕

δ<γ Pδ for some ordinal number γ and, consequently, it is projective.
We shall make the construction using transfinite recursion on γ. If γ = 0, simply take

P0 = 0 and F0 = F .
Assume that we have made the construction for each δ < γ and that γ is successor, say

γ = µ + 1. Using the previous lemma, take (P i, ιij)i≤j a direct system of projective functors

whose limit is Fµ and such that (b)P i = 0 for each b ∈
⋃
δ<µ V (C)δ. Denote by Si = SP

i

and siab = sP
i

ab for each a, b ∈ C and i ∈ I. Since, by Theorem 1, (b)P i is projective for each
b ∈ V (C)µ and i ∈ I (as (b)Si = 0), and

⊕
a∈V (C)µ

siab is monic for each b ∈ C, we conclude

that (b)F is flat and
⊕

a∈V (C)µ

sFab is monic for each b ∈ C (note that (b)F = lim−→
i∈I

(b)P i and⊕
a∈V (C)µ

sFab = lim−→
i∈I

⊕
a∈V (C)µ

siab). Thus, as in the proof of Theorem 1,
⊕

a∈V (C)µ

sFab and
⊕

a∈V (C)µ

siab

induce natural transformations sµ+1 : (Fµ)qµp → Fµ and si : (P i)qµp → P i respectively,
which actually are monic by the previous comments. Moreover, we have a direct system of
splitting short exact sequences

0 - (P i)qµp si- P i - P
i - 0

whose direct limit is precisely

0 - (F )qµp
sµ+1- Fµ

rµ+1- Fµ+1
- 0

In particular, Fµ+1 is a flat functor with (b)Fµ+1 = 0 for each b ∈
⋃
δ<µ+1 V (C)δ.

Now use that Rb is right perfect for each b ∈ C to get that (b)F is projective for each
b ∈ V (C)µ and, consequently, that (F )qµp is projective in (C,Ab). Then, the diagram

0 -
⊕

δ<µ Pδ
sµ- F

rµ- Fµ - 0

6
sµ+1

(F )qµp

can be completed with tµ+1 : (F )qµp → F satisfying tµ+1rµ = sµ+1. Note that, since sµ+1 is
monic, tµ+1 is monic too. Now, case γ = µ+ 1 finishes setting Pµ = Im tµ+1, sµ+1 = sµ ⊕ tµ+1
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and rµ+1 = rµrµ+1, because we get the short exact sequence

0 -
⊕
δ<µ+1

Pδ
sµ+1- F

rµ+1- Fµ+1
- 0

In order to conclude the construction, suppose that γ is a limit ordinal. Then, we have a
direct system of exact sequences,

0 -
⊕
δ<µ

Pδ
sµ- F

rµ- Fµ - 0,

which are pure since Fµ is flat for each µ < δ. It is very easy to see that its direct limit is the
short exact sequence

0 -
⊕
δ<γ

Pδ
sγ- F

rγ- lim−→
δ<γ

Fδ - 0

in which sγ is the inclusion and rγ is the direct limit of {rδ : δ < γ}. By [19, Theorem 3],
Fγ = lim−→

δ<γ

Fδ is flat and trivially has the property that (b)Fγ = 0 for each b ∈
⋃
δ<γ V (C)δ. This

concludes the proof.
(3) ⇒ (4). By Yoneda’s lemma, for each c ∈ C, End(C,Ab)(HomC(c, )) is isomorphic to Rc

and, consequently, it is a right perfect ring. Now, if P is a finitely generated projective functor
in (C,Ab), then P is a direct summand of a finite direct sum of representable functors. From
this it follows that End(C,Ab)(P ) is right perfect.

This result adds new equivalent conditions to the general characterization of right perfect
functor categories established in [17, Theorem 2.4], in the special case when the category C
is left rooted. With respect to (4) note that, by [17, Theorem 2.4], each right perfect functor
category (C,Ab) satisfy that Rc is a right perfect ring for each c ∈ C. We have proved that
the converse of this result is true for left rooted small preadditive categories.

When the small preadditive category C is actually additive, we can improve Theorem 3.
First of all we need the notion of strong generating family of objects, see [3].

Definition 3. Let C be a small additive category. A subset N of C is said to be a strong
generating family in case each object in C is isomorphic to a direct summand of a finite direct
sum of objects of N.

The following result establish the relationship between the categories of functors defined
over a small additive category and a strong generating family on it.

Proposition 3. Let C be a small additive category and N a strong generating family. Then
the categories (C,Ab) and (N,Ab) are equivalent.

Proof: Denote by S(N) the full subcategory of C whose class of objects are all finite direct
sums of objects in N. Since each object in C is a retract of an object in S(N), then (C,Ab)
and (S(N),Ab) are equivalent by see [16, p. 12]. Consequently, we only have to prove that
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(N,Ab) and (S(N),Ab) are equivalent. But this is easily deduced from [16, Lemma 1.1], since
any functor F : N→ Ab can be extended to a functor F : S(N)→ Ab; and if τ : F → G is a
natural transformation in (N,Ab) and F and G extend F and G to S(N) respectively, there
exists a unique extension τ : F → G of τ .

We shall use the following weak version of rooted category:

Definition 4. Let C be a small additive category. We shall say that C is weak left rooted if
there exists a strong generating family N of C such that the full subcategory of C whose class
of objects is N is left rooted.

Corollary 1. Let C be a weak left rooted small additive category. Then the following assertions
are equivalent:

1. C is right perfect.

2. There exists a strong generating set N of C which is left rooted and such that EndC(n)
is right perfect for each n ∈ N.

3. For each c ∈ C, EndC(c) is a right perfect ring.

4. For each finitely generated projective functor P ∈ (C,Ab), End(C,Ab)(P ) is a right perfect
ring.

Proof: (1) ⇔ (2). C is right perfect if and only if N is right perfect by Proposition 3. But,
since N is left rooted, N is right perfect if and only if EndC(n) is right perfect for each n ∈ N
by Theorem 3.

(2) ⇒ (3). Any c is a direct summand of a direct sum of objects belonging to N. From this
follows that EndC(c) is right perfect.

(3) ⇒ (4) ⇒ (2). By Yoneda’s lemma.

Let A be a locally finitely presented additive category. We shall denote by fp(A) the full
subcategory of A whose class of objects are the finitely presented objects of A.

Definition 5. Let A be a locally finitely presented additive category. We shall say that A is
left fp-rooted (resp. weak left fp-rooted) if fp(A) is a left rooted small category (resp. weak left
rooted small category).

At the end of the paper we shall give an example of a weak fp-rooted category. The follow-
ing result characterizes pure semisimple weak left fp-rooted locally finitely presented additive
categories (compare with [17, Theorem 3.1]).

Theorem 4. Let A be a weak left fp-rooted locally finitely presented additive category. The
following assertions are equivalent:

1. A is pure semisimple.
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2. There exists a strong generating set N of fp(A) which is left rooted and such that EndC(N)
is right perfect for each N ∈ N.

3. For each finitely presented object N , EndA(N) is a right perfect ring.

4. For each finitely generated projective functor P ∈ (fp(A),Ab), End(fp(A),Ab)(P ) is a right
perfect ring.

Proof: It is well known (see, for example [3, Proposition 1.5]) that A is pure semisimple if and
only if (fp(A),Ab) is right perfect. Then the result follows from Theorem 1.

5 Applications to rings and modules

In this section we apply the results of the paper to the category of unitary modules over a ring
with enough idempotents. Moreover, we show how some results concerning triangular matrix
rings are particular cases of our results. Recall that a ring (not necessarily unitary) R is said
to have enough idempotents if it contains a set {ei : i ∈ I} of pairwise orthogonal idempotent
elements of such that R =

⊕
i∈I Rei =

⊕
i∈I eiR. In this case, {ei : i ∈ I} is called a complete

family of idempotents in R. When talking about modules, we shall refer to right R-modules and
we shall denote by Mod-R the category whose class of objects are the unitary right R-modules,
i. e. modules M verifying MR = M .

The applications of this section are direct consequences of the fact that there is a bijec-
tive correspondence between Morita equivalence classes of rings with enough idempotents and
Morita equivalence classes of small preadditive categories (in the sense that two such categories
are Morita equivalent if the corresponding functor categories are equivalent categories), see [16,
Theorem 7.1] and the remark after this theorem. Under this correspondence, any ring R with
a complete family of idempotents {ei : i ∈ I} corresponds with the small category whose set
of objects is I and, for each i, j ∈ I, HomC(i, j) = HomR(Rei, Rej). Then, using Remark
1, any unitary right R-module is determined by a tuple (Mi, s

M
ij )i,j∈I with Mi ∈ eiRei-Mod

and sMij : Mi ⊗ eiRej → Mj is the morphism in ejRej-Mod given by multiplication for each
i, j ∈ I. Then, we can describe properties in Mod-R in terms of properties of modules over the
unitary rings eiRei (i ∈ I). Moreover, as it was mentioned in Remark 1, this fact contains, as
a particular case, the well known result that describes the module category over certain matrix
rings, see, for example, [9, p. 17], [12, Theorems 1.5 and 1.10] and [8].

Of course, we have the notion of rooted ring with enough idempotents too. Following
Definition 2, a ring R with enough idempotents is left rooted if there exists a complete family
of idempotents, {ei : i ∈ I}, in R such that the corresponding preadditive category is left
rooted. In such case, we shall call {ei : i ∈ I} a left rooted complete family of idempotents in
R. Triangular matrix rings are examples of rooted rings with enough idempotents.

Remark 5. Not every complete family of idempotents in a rooted ring with enough idempo-
tents is rooted. For example, let R be a ring with a non-trivial idempotent e and consider the

triangular matrix ring Λ =

(
R R
0 R

)
. Then Λ is left and right rooted but
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{(
e e
0 0

)
,

(
1− e −e

0 1

)}
is a complete set of idempotent in Λ which is not left nor right rooted.

Using these ideas, Theorem 1 actually gives the characterization of projective modules over
ring with enough idempotents. This is an extension of [14, Theorem 3.1] and [8, Proposition
2.1], where the characterization is obtained for generalized triangular matrix rings in which the
structural morphisms are monic (the tabc in Notation 1).

Corollary 2. Let R be a left rooted ring with enough idempotents and {ei : i ∈ I} a left rooted
complete set of idempotents in R. Then, for a right R-module M , the following assertions are
equivalent:

1. M is projective.

2. There exists a projective object (Pi)i∈I ∈
∏
i∈I Mod-eiRei such that

M =
⊕
j∈I

⊕
i∈I

Pi ⊗ eiRej

Analogously, Theorem 3 gives a characterization of when a left rooted ring with enough
idempotents is right perfect. This is an extension of the corresponding result for unitary rings,
see [1, Proposition 28.11], and for triangular matrix rings, see [14, Corollary 5.2] and [8, Corol-
lary 2.10].

Corollary 3. Let R be a left rooted ring with enough idempotents and {ei : i ∈ I} a left rooted
complete family of idempotents in R. Then R is right perfect if and only if eiRei is right perfect
for each i ∈ I.

Finally, Theorem 4 allow us to characterize when a fp-rooted (unitary) ring is pure semisim-
ple. Of course, a unitary ring R is called left weakly fp-rooted if the category Mod-R is left
weakly fp-rooted.

Corollary 4. Let R be a left weakly fp-rooted ring. Then R is right pure semisimple if and
only if EndR(M) is a left perfect ring for each finitely presented module M .

To conclude the paper, we shall give the announced example of a weakly fp-rooted category.

Example 2. Let R be a left rooted ring with enough idempotents (for example, a triangular
matrix ring) and consider the full subcategory of Mod-R whose class of objects are the flat
modules, Fl(R). Then, by [3, Theorem 1.1], Fl(R) is a locally finitely presented additive category
whose class of finitely presented objects coincides with the class of finitely generated projective
R-modules. Since R is left rooted, fp(Fl(R)) is left weak rooted and Fl(R) is weak left fp-rooted.
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