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Abstract

Firm Frobenius algebras are firm algebras and counital coalgebras such that the comul-
tiplication is a bimodule map. They are investigated by categorical methods based on a
study of adjunctions and lifted functors. Their categories of comodules and of firm modules
are shown to be isomorphic if and only if a canonical comparison functor from the category
of comodules to the category of non-unital modules factorizes through the category of firm
modules. This happens for example if the underlying algebra possesses local units, e.g.
the firm Frobenius algebra arises from a co-Frobenius coalgebra over a base field; or if the
comultiplication splits the multiplication (hence the underlying coalgebra is coseparable).
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1 Introduction

The classical notion of Frobenius algebra due to Brauer and Nesbitt [8] can be reformulated in
terms of the existence of a suitable coalgebra structure on the algebra [2]. Thus, a Frobenius
algebra over a commutative ring k is a k-module carrying the structures of an associative and
unital algebra and a coassociative and counital coalgebra. These structures are required to
be compatible in the sense that the comultiplication is a bimodule map (with respect to the
actions provided by the multiplication). Equivalently, the multiplication is a bicomodule map
(with respect to the coactions provided by the comultiplication). As discussed by Abrams in
[2], this compatibility condition results in an isomorphism between the category of modules and
the category of comodules over a Frobenius algebra.

In [21], Frobenius algebras were treated by Street in the broader framework of monoidal
(bi)categories. The behavior of the module and comodule categories was given a deep conceptual
explanation and a number of equivalent characterizations of Frobenius monoids was given.
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Applying it to the monoidal category of functors A → A for an arbitrary category A, the
notion of Frobenius monad is obtained. By [21, Theorem 1.6], a Frobenius monad is a monad
M : A → A, with multiplication µ : M2 → M and unit η : A → M such that any of the
following equivalent assertions holds.

(i) There exist natural transformations ε : M → A and % : A→M2 such that Mε·Mµ·%M =
M = εM · µM ·M%.

(ii) There exists a comonad structure δ : M → M2, ε : M → A such that µM ·Mδ = δ.µ =
Mµ · δM .

(iii) The forgetful functor from the category of M -modules to A possesses a right adjoint

A
φ→ A′ 7→ (MA,µA)

Mφ−→ (MA′, µA′).

It is immediate from (ii) that an endofunctor (−)⊗R on the category of modules over a commu-
tative ring k is a Frobenius monad if and only if R is a Frobenius k-algebra. Characterization
(i) yields a description of Frobenius algebras in terms of a functional εk : R→ k and a Casimir
element %k(1) ∈ R⊗R.

The above classical notion of Frobenius algebra is essentially self-dual: the algebra and
coalgebra structures play symmetric roles. So if allowing the algebra to be non-unital, it is not
immediately clear what properties remain true.

Our approach to non-unital Frobenius algebras in this paper is based on Street’s categorical
treatment in [21]. Generalizing non-unital algebras, we start with discussing non-unital monads;
that is endofunctors equipped with an associative multiplication possibly without a unit. While
there is an evident notion of their non-unital modules, our definition of a firm module is slightly
more sophisticated. It leads to the notion of a firm monad which is a non-unital monad whose
free modules are firm.

A non-unital Frobenius monad is defined as a (coassociative and counital) comonad equipped
also with an associative but not necessarily unital multiplication satisfying the compatibility
conditions in (ii) above. Associated to it, there is the usual Eilenberg-Moore category of (coasso-
ciative and counital) comodules over the constituent comonad and the categories of non-unital,
and of firm modules over the constituent non-unital monad. Generalizing the equivalence
(ii)⇔(iii) above, we investigate in what sense the corresponding forgetful functors possess ad-
joints.

This analysis leads in particular to a canonical comparison functor from the category of
comodules to the category of non-unital modules. It is proven to factorize through the category
of firm modules if and only if the underlying monad is firm and the category of firm modules
and the category of comodules are isomorphic. We collect situations when this happens. In
particular, we show that any adjunction in which the left adjoint is separable, induces a firm
Frobenius monad. For firm Frobenius monads of this kind, the category of firm modules and
the category of comodules are shown to be isomorphic.

We apply our results to algebras over commutative rings. This yields a generalization of
Abrams’ theorem [2] to firm Frobenius algebras. In particular, the isomorphism between the
category of firm modules and the category of comodules follows from our theory in the following
situations.
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• For firm Frobenius algebras arising from coseparable coalgebras (and even from cosepa-
rable corings) over any base ring. This provides an alternative proof of [7, Proposition
2.17].

• For firm Frobenius algebras with local units.

• In particular, for firm Frobenius algebras arising from co-Frobenius coalgebras over a field.
This provides an alternative proof of [11, Theorem 2.3] and [6, Proposition 2.7].

A firm algebra R with a non-degenerate multiplication is shown to be a firm Frobenius algebra
if and only if there exists a generalized Casimir element in the multiplier algebra of R⊗R (cf.
conditions (i) above).

2 Non-unital monads and firm modules

2.1 Non-unital monad

By a non-unital monad on a category A we mean a pair of a functor M : A→ A and a natural
transformation µ : M2 →M obeying the associativity condition

M3 Mµ //

µM
��

M2

µ
��

M2 µ // M.

2.2 Non-unital module

By a non-unital module over a non-unital monad M : A → A we mean a pair of an object A
and a morphism α : MA→ A (called the M -action) in A obeying the associativity condition

M2A
Mα //

µA
��

MA
α
��

MA
α // A.

(2.1)

Morphisms of non-unital M -modules are morphisms A → A′ in A which are compatible with
the M -actions in the evident sense. These objects and morphisms define the category AM of
non-unital M -modules.

In terms of the forgetful functor UM : AM → A and the functor

FM : A→ AM , A
φ→ A′ 7→ (MA,µA)

Mφ−→ (MA′, µA′),

we can write M = UMFM . Although there is a natural transformation

α : FMUM (A,α)→ (A,α),

in the absence of a unit this does not provide an adjunction.
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2.3 Firm module

We say that a non-unital module (A,α) over a non-unital monad M : A→ A is firm if α is an
epimorphism in A and the fork

M2A
µA //
Mα

// MA
α // A (2.2)

is a coequalizer in AM . The full subcategory of firm modules in AM will be denoted by A(M),
and we will denote by J the full embedding A(M) → AM . When M is an usual (unital)
monad, then the category of firm M -modules is just the usual Eilenberg-Moore category of
unital M -modules.

If the functor underlying a non-unital monad is known to preserve epimorphisms, then a
simpler criterion for firmness can be given.

Lemma 1. Let M : A → A be a non-unital monad and (A,α) be a non-unital M -module. If
(2.2) is a coequalizer in A and Mα is an epimorphism in A, then (A,α) is a firm M -module.

Proof: By assumption, α is a (regular) epimorphism in A. Consider a morphism κ of non-
unital M -modules from (MA,µA) to any non-unital M -module (X, ξ) such that κ·µA = κ·Mα.
Since (2.2) is a coequalizer in A, there is a unique morphism κ̃ : A→ X in A satisfying κ̃ ·α = κ.
The subdiagrams of

MA

Mκ̃

��

α // A

κ̃

��

M2A
Mα

hh

Mκ

vv

µA // MA
α

77

κ

''
MX

ξ // X

commute since κ is a morphism of non-unital M -modules and α is associative. So by the
assumption that Mα is an epimorphism in A, also the exterior commutes proving that κ̃ is a
morphism in AM hence (2.2) is a coequalizer in AM .

2.4 Firm monad

We say that a non-unital monad M on a category A is a firm monad if the functor FM :
A → AM in Section 2.2 factorizes through some functor F(M) : A → A(M) via the inclusion
J : A(M) → AM . That is, for any object A of A, µA is an epimorphism in A and

M3A
µMA //
MµA

// M2A
µA // MA (2.3)

is a coequalizer in AM . Then in terms of the forgetful functor U(M) : A(M) → A, the equality
M = U(M)F(M) holds and there is a natural transformation

α : F(M)U(M)(A,α) = (MA,µA)→ (A,α).

However, in general this does not extend to an adjunction.



Firm Frobenius monads 285

3 Non-unital monads versus adjunctions

3.1 Non-unital adjunction

By a non-unital adjunction we mean a pair of functors U : B→ A and F : A→ B together with
a natural transformation ϕ : FU → B.

Associated to any non-unital adjunction ϕ : FU → B, there is a non-unital monad (UF,UϕF ).
Conversely, associated to any non-unital monad M : A → A, there is a non-unital adjunction
FMUM → AM as in Section 2.2.

For any non-unital adjunction ϕ : FU → B, there is an induced functor

LUF : B→ AUF , B
φ→ B′ 7→ (UB,UϕB)

Uφ−→ (UB′, UϕB′).

3.2 Firm adjunction

We say that a non-unital adjunction ϕ : FU → B is firm if the functor LUF : B → AUF in
Section 3.1 factorizes through some functor L(UF ) : B → A(UF ) via the inclusion J : A(UF ) →
AUF . That is, for any object B in B, UϕB is an epimorphism in A and

UFUFUB
UϕFUB //
UFUϕB

// UFUB
UϕB // UB (3.1)

is a coequalizer in AUF .
For an adjunction F a U in the usual (unital and counital) sense, (3.1) is a split coequalizer

in A (in the sense of [4, page 93]). Hence F a U is a firm adjunction by Lemma 1.
Associated to any firm adjunction ϕ : FU → B, there is a firm monad (UF,UϕF ). Con-

versely, associated to any firm monad M : A→ A, there is a firm adjunction F(M)U(M) → A(M)

as in Section 2.4.

4 Frobenius structures

4.1 Non-unital Frobenius monad

By a non-unital Frobenius monad we mean a functor M : A → A which carries a non-unital
monad structure µ : M2 → M and a comonad structure (δ : M → M2, ε : M → A) such that
the following diagram commutes.

M2 Mδ //

δM

��

µ

&&

M3

µM

��
M

δ

&&
M3 Mµ // M2

(4.1)

A firm Frobenius monad is a non-unital Frobenius monad which is a firm monad.
Let M : A→ A be a non-unital Frobenius monad. As in the case of any non-unital monad

M , we denote by AM the category of non-unital M -modules and we denote by A(M) the full
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subcategory of firm M -modules. The usual Eilenberg-Moore category of counital comodules
for the comonad M will be denoted by AM with corresponding forgetful functor UM : AM → A
and its right adjoint FM : A

φ→ A′ 7→ (MA, δA)
Mφ−→ (MA′, δA′).

4.2 Non-unital Frobenius adjunction

We say that a (firm) non-unital adjunction ϕ : FU → B is Frobenius if U is the left adjoint of
F (in the usual sense, with unit η : B → FU and counit ε : UF → A). Then UF is a (firm)
non-unital Frobenius monad, with multiplication UϕF , comultiplication UηF and counit ε.
The aim of the next sections is to prove the converse: to associate a (firm) non-unital Frobenius
adjunction to any (firm) non-unital Frobenius monad.

4.3 Firm Frobenius monads versus adjunctions to firm modules

Proposition 1. Any firm Frobenius monad M : A→ A determines a firm Frobenius adjunction
F(M)U(M) → A(M) as in Section 2.4 such that U(M)F(M) = M as firm Frobenius monads.

Proof: The counit of the adjunction U(M) a F(M) is the counit ε : U(M)F(M) = M → A of the
comonad M , and the unit η : A(M) → F(M)U(M) is defined via universality of the coequalizer
(in A(M)) in the top row of

M2A
µA //
Mα

//

δMA

��

MA
α //

δA

��

A

η(A,α)

��
M3A

MµA //
M2α

// M2A
Mα // MA,

for any firm M -module (A,α). The square on the left commutes serially (in the sense of [4,
page 72]) by the Frobenius condition (4.1) and by naturality of δ. The bottom row is a fork by
the associativity of α. By the Frobenius property (4.1) of M , δA is a morphism of non-unital
M -modules, hence so is Mα ·δA. This proves the existence and the uniqueness of the morphism
of non-unital M -modules η(A,α) : (A,α)→ (MA,µA).

Naturality of η follows from commutativity of the diagram

A
η(A,α) //

φ

��

MA

Mφ

��

MA
δA //

α

gg

Mφ��

M2A
Mα

66

M2φ��
MA′

δA′ //
α′

ww

M2A′
Mα′

((
A′

η(A′,α′) // MA′

for any morphism of firm M -modules φ : (A,α)→ (A′, α′), because α is an epimorphism (both
in A(M) and A).
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It remains to check that η and ε satisfy the triangular identities. Given an object A of A,
ηF(M)A = η(MA,µA) is the unique morphism rendering commutative the diagram

M2A
µA //

δMA ��
MA

ηF(M)A��
M3A

MµA // M2A.

So by the Frobenius condition (4.1), ηF(M)A = δA. Thus, F(M)ε · ηF(M) = Mε · δ = F(M).
Since α is an epimorphism in A for all (A,α) ∈ A(M), the other triangle condition follows by
the commutativity of

A = U(M)(A,α)
U(M)η(A,α)

// MA
εU(M)(A,α)

// U(M)(A,α) = A

MA

α
OO

δA // M2A

Mα
OO

εMA // MA.

α
OO

For any firm Frobenius monad M : A→ A, the unit η : A(M) → F(M)U(M) of the adjunction
U(M) a F(M) in Proposition 1 induces a functor K(M) rendering commutative

AM

UM

��
A(M)

K(M)

66

U(M) // A,

(4.2)

since U(M)F(M) = M as comonads. Explicitly, K(M) is given by

(A,MA
α→ A)

φ→ (A′,MA′
α′→ A′) 7→ (A,A

η(A,α)−→ MA)
φ→ (A′, A′

η(A′,α′)−→ MA′).

4.4 Non-unital Frobenius monads versus adjunctions to comodules

In order to associate a non-unital Frobenius adjunction to any, not necessarily firm, non-unital
Frobenius monad, we shall work with the category of comodules instead of the categories of
firm or non-unital modules in the previous sections.

Let M : A→ A be a non-unital Frobenius monad. For any M -comodule (A,α), throughout
the paper the notation

α := MA
Mα // M2A

µA // MA
εA // A (4.3)

will be used.

Lemma 2. Let M : A→ A be a non-unital Frobenius monad. Using the notation in (4.3), for
any M -comodule (A,α) the following assertions hold.
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(1) The coaction α obeys µA ·Mα = α · α.

(2) The identity α·α = Mα·δA holds. That is, α is a morphism of M -comodules (MA, δA)→
(A,α).

Proof: (1). The claim follows from the commutativity of the diagram

MA

Mα ��

Mα // M2A

M2α ��

µA // MA
εA //

Mα��

A

α

��

M2A

µA
��

MδA // M3A
µMA // M2A

εMA
((

MA

δA

22

MA.

(2). By the naturality and the counitality of δ and the Frobenius condition (4.1), Mα ·δA =
µA ·Mα. So the claim follows by part (1).

Proposition 2. Any non-unital Frobenius monad M : A→ A determines a non-unital Frobe-
nius adjunction FMUM → AM such that UMFM = M as non-unital Frobenius monads.

Proof: For any comonad M , UM a FM and UMFM = M as comonads. A non-unital
adjunction FMUM → AM is provided by the M -comodule morphisms α : (MA, δA) =
FMUM (A,α) → (A,α) in Lemma 2 (2). In light of (4.3), their naturality follows by the
naturality of µ and ε. The equality UMFM = M of non-unital monads follows by δA =
εMA · µMA ·MδA = εMA · δA · µA = µA, cf. (4.3).

For any non-unital Frobenius monadM : A→ A, corresponding to the non-unital adjunction
FMUM → AM in Proposition 2, there is an induced functor LM : AM → AM as in Section 3.1.
It renders commutative the diagram

AM

UM

��
AM

LM

<<

UM
// A

(4.4)

and sends (A,A
α→MA)

φ→ (A′, A′
α′→MA′) to (A,α)

φ→ (A′, α′), cf. (4.3).

5 Modules and comodules of a firm Frobenius monad

The aim of this section is to see when the functor K(M), associated in (4.2) to a firm Frobenius
monad M , is an isomorphism.

Proposition 3. For any firm Frobenius monad M : A→ A, the functor K(M) in (4.2) is fully
faithful.
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Proof: For any firm M -module (A,α) and the functor LM in (4.4),

LMK(M)(A,α) = (A, MA
Mη(A,α) // M2A

µA // MA
εA // A ).

Since η(A,α) is a morphism of non-unital M -modules, and by one of the triangle identities on
the adjunction U(M) a F(M), εA · µA ·Mη(A,α) = εA · η(A,α) · α = α; that is, LMK(M) = J .
Since J is faithful, we get that K(M) is faithful, too. In order to see that K(M) is full, take a
morphism

K(M)(A,α) = (A, η(A,α))
φ // K(M)(A

′, α) = (A′, η(A′, α′))

in AM . Then

LMK(M)(A,α) = (A,α)
LMφ=φ // LMK(M)(A

′, α) = (A′, α′)

belongs to the full subcategory A(M), and applying to it K(M), we re-obtain φ.

Theorem 1. For a non-unital Frobenius monad M : A → A, the following assertions are
equivalent.

(1) The non-unital Frobenius adjunction FMUM → AM in Proposition 2 is a firm Frobenius
adjunction. That is, for any M -comodule (A,α), α in (4.3) is an epimorphism in A and
there is a coequalizer

M2A
µA //
Mα

// MA
α // A in AM .

(2) M is a firm Frobenius monad and the functor K(M) in (4.2) is an isomorphism.

Proof: (1)⇒ (2). Since M arises from a firm Frobenius adjunction in (1), it is a firm Frobenius

monad. Let AM
L(M)−→ A(M)

J→ AM be a factorization of LM . We claim that L(M) provides the
inverse of K(M). We know from the proof of Proposition 3 that JL(M)K(M) = LMK(M) = J ,
so that L(M)K(M) = A(M). For any M -comodule (A,α), L(M)(A,α) = (A,α) in (4.3) is firm
by assumption. So K(M)L(M)(A,α) = (A, η(A,α)), and the proof is complete if we show
η(A,α) = α. Since α is an epimorphism in A, this follows by commutativity of the diagram

A
η(A,α) //

α

��

MA

MA
α

hh

Mα��

δA // M2A
Mα

66

M2α��
M2A

δMA //
µA

vv

M3A
MµA
��

MA
δA // M2A

MεA // MA
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where the region on the left commutes by Lemma 2 (1).

(2)⇒ (1) Since LMK(M) = J , LM = JK−1
(M) is the desired factorization.

Next we look for situations when the equivalent conditions in Theorem 1 hold.

Proposition 4. For a non-unital Frobenius monad M : A → A, assume that there exists a
natural section (i.e. right inverse) ν of the multiplication µ : M2 →M rendering commutative

M2 µ //

νM ��

M
ν
��

M3 Mµ // M2.

Then the equivalent conditions in Theorem 1 hold.

Proof: We will show that for every M -comodule (A,α), and α as in (4.3), the diagram

M2A
µA //
Mα

// MA
α //

νA

xx
A

MεA·νA·α
{{

is a contractible coequalizer in A (in the sense of [4, page 93]). By assumption, µA · νA = MA.
By Lemma 2 (1), and naturality of ν, we get that the diagram

MA

α

��

MA
νA //

Mα��

M2A
M2α��

M2A

Mα

��

M2A
νMA //

µA��

M3A
MµA��

A
α // MA

νA // M2A
MεA // MA

is commutative. Thus, Mα · νA = MεA · νA · α · α. Using that ν is natural, the Frobenius
condition and the assumption, also the following diagram is seen to commute.

M

ν

��

δ // M2

νM

��

M2

νM ��

µ

hh

Mδ // M3
µM

66

νM2
��

M3

Mµ

vv

M2δ // M4

MµM

((
M2 Mδ // M3
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Since µ is a (split) natural epimorphism by assumption, also the outer rectangle commutes,
what implies commutativity of

A
α��

α // MA
νA //

Mα ��

M2A
MεA // MA

Mα ��
MA

δA // M2A
νMA // M3A

MεMA // M2A.

MA
νA // M2A

MδA
OO

Composing both equal paths around this diagram by εA ·µA, using that ν is a section of µ and
the counitality of α, we obtain α ·MεA ·νA ·α = A. Since in this way α is a split epimorphism,
it is taken by M to a (split) epimorphism. So we conclude by Lemma 1 that LM (A,α) = (A,α)
is a firm M -module.

Every Frobenius pair of functors in the sense of [12] gives obviously a (unital) Frobenius
adjunction and, therefore, a (unital) Frobenius monad. A more interesting situation is described
in the following corollary. Separable functors were introduced and studied in [18].

Corollary 1. Let U : B → A be a separable functor possessing a right adjoint F . Then
UF carries the structure of a firm Frobenius monad such that the comparison functor K(UF ) :
A(UF ) → AUF is an isomorphism.

Proof: By Rafael’s theorem [20], there exists a retraction (i.e. left inverse) ϕ of the unit
η : B → FU of the adjunction. Then ϕ : FU → B is a non-unital Frobenius adjunction so
that UF is a non-unital Frobenius monad. The claim follows by applying to it Proposition 4,
putting ν := UηF .

6 Application: Firm Frobenius algebras over commutative rings

6.1 Firm Frobenius algebra

Let k be an associative, unital, commutative ring and denote the category of k-modules by Mk.
It is a monoidal category via the k-module tensor product ⊗ and the neutral object k.

Any associative algebra R — possibly without a unit — over k may be equivalently defined
as a non-unital monad (−)⊗R : Mk →Mk. The category of non-unital modules for this monad
— equivalently, the category of non-unital modules for the algebra R — will be denoted by MR.
For any (non-unital) right R-module (A,α) and left R-module (B, β), we denote by A ⊗R B
the coequalizer of α⊗B and A⊗ β in Mk and we call it the R-module tensor product.

Proposition 5. For a non-unital k-algebra R and a non-unital right R-module (A,A⊗R α→ A),
the following assertions are equivalent.

(1) (A,α) is a firm module for the non-unital monad (−)⊗R : Mk →Mk.

(2) The action α : A⊗R→ A projects to a bijection A⊗R R→ A.
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Proof: Since (−)⊗R is a right exact endofunctor on Mk, we get that coequalizers exist in MR

and the forgetful functor MR → Mk creates them. Hence (2.2) is a coequalizer in MR if and
only if it is a coequalizer in Mk so if and only if (2) holds. This proves (1)⇒ (2). If (2) holds
then α is surjective, hence it is an epimorphism in Mk proving (2)⇒ (1).

Similarly, (−) ⊗ R : Mk → Mk is a firm monad if and only if the multiplication map
R ⊗ R → R projects to an isomorphism R ⊗R R → R. That is, if and only if R is a firm ring
in the sense of [19].

By a non-unital Frobenius k-algebra we mean a k-module R such that (−)⊗R : Mk →Mk

is a non-unital Frobenius monad. Explicitly, this means that R is a non-unital k-algebra with
multiplication µ : R ⊗ R → R and a k-coalgebra with comultiplication ∆ : R → R ⊗ R and
counit ε : R → k, such that µ is a morphism of R-bicomodules, equivalently, ∆ is a morphism
of R-bimodules, that is, the following diagram commutes.

R⊗R R⊗∆ //

∆⊗R

��

µ

))

R⊗R⊗R

µ⊗R

��
R

∆

))
R⊗R⊗R

R⊗µ // R⊗R

A firm Frobenius k-algebra is a non-unital Frobenius k-algebra which is a firm algebra.

6.2 The Casimir multiplier

In the case of a unital Frobenius algebra R, the R-bilinear comultiplication is tightly linked to
a so-called Casimir element in R⊗R (the image under ∆ of the unit 1). In our present setting,
this is only possible if we allow the Casimir element to be a multiplier [14].

Let R be a non-unital k-algebra with a non-degenerate multiplication. That is, assume that
any of the conditions (sr = 0, ∀s ∈ R) and (rs = 0, ∀s ∈ R) implies r = 0. A multiplier on R
is a pair (λ, %) of k-module endomorphisms of R such that

%(r)s = rλ(s), for all r, s ∈ R. (6.1)

By [14, 1.5], λ is a right R-module map and ρ is a left R-module map.
The k-moduleM(R) of all multipliers is a unital associative algebra with the multiplication

(λ, %)(λ′, %′) = (λλ′, %′%), where juxtaposition in the components means composition of maps.
Throughout, we denote by 1 the unit element (id, id) of M(R). There exists an injective
homomorphism of algebras from R to M(R) sending r ∈ R to the multiplier (λr, ρr), where
λr(s) = rs and ρr(s) = sr, for all r, s ∈ R. The image of R becomes a two-sided ideal ofM(R):
a multiplier ω = (λ, %) acts on an element r ∈ R by ωr = λ(r), and rω = %(r) (so that (6.1) can
be rewritten as (rω)s = r(ωs), for all s, r ∈ R and ω ∈M(R); allowing for a simplified writing
rωs). This yields inclusions R⊗R ⊆M(R)⊗M(R) ⊆M(R⊗R). By the non-degeneracy of
the multiplication of R, two multipliers ω and ω′ on R are equal if and only if ωr = ω′r for all
r ∈ R and if and only if rω = rω′ for all r ∈ R.
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Proposition 6. Let R be a firm algebra with non-degenerate multiplication over a commutative
ring k. Then R is a firm Frobenius algebra if and only if there exists a multiplier e ∈M(R⊗R)
and a linear map ε : R→ k such that, for all r ∈ R, (r⊗ 1)e = e(1⊗ r) is an element of R⊗R
and

(ε⊗R)((r ⊗ 1)e) = r = (R⊗ ε)(e(1⊗ r)).

Proof: Given an R-bilinear comultiplication ∆ : R → R ⊗ R, define ∆̃ :M(R) →M(R⊗R)
by

∆̃(ω)(s⊗ r) = ∆(ωr)(s⊗ 1) (6.2)

(s⊗ r)∆̃(ω) = (1⊗ r)∆(sω), for ω ∈M(R), s, r ∈ R.

The following computation shows that ∆̃(ω) is a multiplier:

((s′ ⊗ r′)∆̃(ω))(s⊗ r) = (1⊗ r′)∆(s′ω)(s⊗ r) = (1⊗ r′)∆(s′ωr)(s⊗ 1)

= (s′ ⊗ r′)∆(ωr)(s⊗ 1) = (s′ ⊗ r′)(∆̃(ω)(s⊗ r)),

where in the second equality we used that ∆ is right R-linear, and in the third one that it is
left R-linear. Put e = ∆̃(1) ∈ M(R⊗R). Take s′ ⊗ r′ ∈ R ⊗ R and r ∈ R. Using once more
that ∆ is left and right R-linear,

(r ⊗ 1)e(s′ ⊗ r′) = (r ⊗ 1)∆(r′)(s′ ⊗ 1) = ∆(rr′)(s′ ⊗ 1) = ∆(r)(s′ ⊗ r′).

Therefore, (r ⊗ 1)e = ∆(r) and so (ε ⊗ R)((r ⊗ 1)e) = r. Symmetrically, e(1 ⊗ r) = ∆(r) and
so (R⊗ ε)(e(1⊗ r)) = r.

Conversely, assume the existence of e ∈M(R⊗R) and ε : R→ k as in the claim. Define

∆(r) = (r ⊗ 1)e = e(1⊗ r) ∈ R⊗R, for all r ∈ R.

This is clearly an R-bilinear comultiplication with the counit ε. It remains to prove that ∆ is
coassociative. Since R is firm, we know that µ is an epimorphism. Therefore, the coassociativity
of ∆ follows from the commutativity of the diagram

R
∆ //

∆

��

R⊗R

∆⊗R

��

R⊗R
∆⊗R ��

R⊗∆ //
µ

jj

R⊗R⊗R
µ⊗R

33

∆⊗R⊗R��
R⊗R⊗R

R⊗µ
tt

R⊗R⊗∆ // R⊗R⊗R⊗R
R⊗µ⊗R

++
R⊗R R⊗∆ // R⊗R⊗R.
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6.3 Firm modules and comodules

The following extension of Abrams’ classical theorem on unital Frobenius algebras [2] is an
immediate consequence of Theorem 1.

Theorem 2. Let R be a non-unital Frobenius algebra over a commutative ring k. Then the
following assertions are equivalent.

(1) Any right R-comodule N is a firm right R-module via the action n · r := n0ε(n1r) (where
Sweedler’s implicit summation index notation n 7→ n0 ⊗ n1 is used for the coaction).

(2) R is a firm Frobenius k-algebra and the category M(R) of firm right R-modules and the
category MR of right R-comodules are isomorphic via the following mutually inverse func-
tors. The functor M(R) →MR sends a firm right R-module M to

(M, M
∼= // M ⊗R R

M⊗R∆ // M ⊗R R⊗R
∼= // M ⊗R ).

The functor MR →M(R) sends an R-comodule (N, ρ) to

(N, N ⊗R
ρ⊗R // N ⊗R⊗R

N⊗µ // N ⊗R N⊗ε // N ).

On the morphisms both functors act as the identity maps.

6.4 Example: coseparable coalgebra

A (coassociative and counital) coalgebra C over a commutative ring k is said to be coseparable
if there is a C-bicomodule retraction (i.e. left inverse) of the comultiplication. Equivalently,
the forgetful functor U from the category of (say, right) C-comodules MC to Mk is separable [9,
Corollary 3.6]. Since U is left adjoint to (−)⊗k C, Corollary 1 yields a firm Frobenius monad
(−)⊗k C on Mk. Therefore C admits the structure of a firm ring. The multiplication is given
by the bicolinear retraction of the comultiplication (see [10] for a direct proof). By Corollary
1, the category of firm modules M(C) and the category of comodules MC are isomorphic.

The above reasoning can be repeated for a coring C over an arbitrary (associative and
unital) algebra A. By [9, Corollary 3.6], C is a coseparable coring if and only if the (left
adjoint) forgetful functor from the category of (say, right) C-comodules to the category of
(right) A-modules is separable. So by Corollary 1, C possesses a firm ring structure, described
already in [10]. In this way Corollary 1 extends [7, Proposition 2.17].

6.5 Example: graded rings

Let G be an arbitrary group. For any commutative ring k, consider the k-coalgebra R with
free k-basis {pg : g ∈ G}, comultiplication ∆(pg) = pg ⊗ pg and counit ε(pg) = 1 for g ∈ G.
This is in fact a coseparable coalgebra via the bicomodule section of ∆ — hence associative
multiplication — determined by pg ⊗ ph 7→ pg if g = h and pg ⊗ ph 7→ 0 otherwise, for g, h ∈ G.

For any G-graded unital k-algebra A = ⊕g∈GAg, the linear map

R⊗A→ A⊗R, pg ⊗ ah 7→ ah ⊗ pgh, for g, h ∈ G and ah ∈ Ah,
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is an entwining structure (a.k.a. mixed distributive law) and, therefore, it defines an A-coring
structure on A⊗R (see [9, Proposition 2.2]). The A-bimodule structure on A⊗R is determined
by

c(a⊗ pg)bh = cabh ⊗ pgh, for a, c ∈ A, bh ∈ Ah, g, h ∈ G,

and its comultiplication and counit are the linear extensions of a⊗pg 7→ (a⊗pg)⊗A (1⊗pg) and
a⊗ pg 7→ a, respectively. The category of right comodules over this coring is isomorphic to the
category of entwined (or mixed) modules [9, Proposition 2.2] which, in the present situation, is
isomorphic to the category gr-A of G-graded right A-modules.

Thanks to the coseparability of the coalgebra R, the A-coring A ⊗ R is coseparable: its
comultiplication has a bicomodule section

µ : (A⊗R)⊗A (A⊗R)→ A⊗R, (a⊗ pg)⊗A (b⊗ ph) 7→ abg−1h ⊗ ph,

for a, b ∈ A, g, h ∈ G. Therefore, the discussion at the end of Example 6.4 shows that A⊗R is
a firm k-algebra via the multiplication induced by µ. (In fact, this firm algebra even has local
units.) Moreover, the category gr-A is isomorphic to the category M(A⊗R) of firm modules.
Since the firm algebra A⊗R is isomorphic to the smash product A]G∗ in [5], this isomorphism
M(A⊗R)

∼= M(A]G∗)
∼= gr-A reproduces the main result of [5].

6.6 Example: Frobenius algebra with local units

We say that an algebra R is an algebra with local units if there is a set E of idempotent elements
in R such that for every finite set r1, . . . , rn ∈ R there is e ∈ E obeying eri = ri = rie for every
i = 1, . . . , n. (This definition of local units is the one used in [15], and it can be traced back to
[1] and [3]. It is more general than [1, Definition 1.1], since we do not assume that the elements
of E commute. In fact, the present notion generalizes that of [1] since, when the idempotents
of E commute, it is enough to require that for each element r ∈ R there exists e ∈ E such
that er = r = re, see [1, Lemma 1.2].) Every algebra R with local units is firm, and a right
R-module M is firm if and only if for every m ∈M there is e ∈ E such that m · e = m.

Corollary 2. Let R be an algebra with local units over a commutative ring. If R is a firm Frobe-
nius algebra, then the category of firm right R-modules and the category of right R-comodules
are isomorphic.

Proof: According to Theorem 2, we need to prove that any right R-comodule M is a firm
right R-module via the action m · r := m0ε(m1r): Given m ∈ M , we know that m0 ⊗m1 =∑
imi ⊗ ri for finitely many mi ∈ M , ri ∈ R. Let e ∈ E such that rie = ri for every i. Then

m · e =
∑
imiε(rie) =

∑
imiε(ri) = m.

6.7 Example: co-Frobenius coalgebra over a field

Let C be a coalgebra over a field k. The dual vector space C∗ is an associative and unital k-
algebra via the convolution product (φ ∗ψ)(c) = φ(c1)ψ(c2), for all c ∈ C and φ, ψ ∈ C∗, where
for the comultiplication the Sweedler-Heynemann index notation is used, implicit summation
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understood. Every right/left C-comodule becomes then a left/right C∗-module, in particular,
C becomes a C∗-bimodule. The coalgebra C is said to be left/right co-Frobenius if there exists
a monomorphism of left/right C∗-modules C → C∗, see [17].

Proposition 7. For a coalgebra C over a field k, the following assertions are equivalent.

(1) C is a left and right co-Frobenius coalgebra.

(2) The given coalgebra structure of C extends to a non-unital Frobenius algebra with a non-
degenerate multiplication.

(3) The given coalgebra structure of C extends to a firm Frobenius algebra whose multiplication
admits local units.

Proof: (1)⇒ (3) is proved, in fact, in [11]. The main line of the reasoning can be summarized
as follows. When C is semiperfect (that is, the categories of left and right C-comodules have
enough projectives), then the left and right rational ideals of the convolution algebra C∗ coincide
[13, Corollary 3.2.16]. Let Rat(C∗) denote their common value. By [13, Corollary 3.2.17],
Rat(C∗) is a ring with local units. Now, if C is left and right co-Frobenius, then C is semiperfect
[17] and, by [16, Theorem 2.1], there is an isomorphism of say, right C∗-modules C ∼= Rat(C∗).
Then we may pull-back the multiplication of Rat(C∗) to C so that C becomes a k-algebra with
local units. By [11, Theorem 2.2], the resulting multiplication is a morphism of C∗-bimodules.
Using the relation between the C∗-actions and the C-coactions on C, we conclude that the
opposite of this multiplication is a C-bicomodule map. Hence C is also a firm Frobenius
algebra.

(3)⇒ (2) is trivial.
(2)⇒ (1). A right C∗-module map C → C∗ is provided by c 7→ ε(c−). Indeed, for c, d ∈ C

and ϕ ∈ C∗,

ε((c ↼ ϕ)d) = ϕ(c1)ε(c2d) = ϕ(cd) = ε(cd1)ϕ(d2) = (ε(c−)ϕ)(d).

It is injective since if ε(cd) = 0 for all d ∈ C, then 0 = ε(cd1)d2 = cd, hence c = 0 by the
non-degeneracy of the multiplication. Symmetrically, a monomorphism of left C∗-modules is
provided by c 7→ ε(−c).

Note that the right C∗-module map C → C∗, c 7→ ε(c−) in the proof of Proposition 7 is
anti-multiplicative by

ε(cd1)ε(c′d2) = ε(c′ε(cd1)d2) = ε(c′cd), for all c, c′, d ∈ C.

So we conclude by Corollary 2 that if for a coalgebra C over a field the equivalent assertions in
Proposition 7 hold, then the categories MC and (Rat(C∗))M ∼= M(C) are isomorphic. Therefore,
Corollary 2 extends [11, Theorem 2.3] and [6, Proposition 2.7].

Non-degenerate algebras over a field equipped with a so-called separability idempotent,
were discussed recently in [22]. Using the terminology of the current paper, they are in fact
coalgebras obeying the equivalent properties in Proposition 7 and the additional requirement
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that their comultiplication splits the multiplication (‘separability’ of the Frobenius structure);
cf. Section 6.4. In particular, they have local units, answering in affirmative an open question
in [23].
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[18] C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors
applied to graded rings, J. Algebra 123 (1989), 397–413.

[19] D. Quillen, Module theory over nonunital rings, Notes, 1997.

[20] M. D. Rafael, Separable functors revisited, Commun. Algebra 18 (1990), 1445–1459.

[21] R. Street, Frobenius monads and pseudomonoids, J. Math. Phys. 45 (2004), 3930–3948.

[22] A. Van Daele, Separability Idempotents and Multiplier Algebras, preprint available at
http://arxiv.org/abs/1301.4398.

[23] A. Van Daele and S. Wang, Weak Multiplier Hopf Algebras. The main theory, Journal
für die reine und angewandte Mathematik (Crelle’s Journal), in press, preprint available
at http://arxiv.org/abs/1210.4395.

Received: 23.04.2013,

Accepted: 22.05.2013.

Wigner Research Centre for Physics, Budapest,
H-1525 Budapest 114, P.O.B. 49, Hungary

Email: bohm.gabriella@wigner.mta.hu

Departamento de Álgebra,
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