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Abstract

We study congruences characterizing the matching of cyclic groups by automorphisms,
obtain necessary and sufficient conditions such that the congruences have non-trivial solu-
tions in both symmetric and general cases, and discuss various properties of some related
congruences.
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1 Introduction

In 1981, Takeuchi [7] introduced the matched pair concept and the corresponding bicrossprod-
uct, characterizing in terms of group actions the groups which can be expressed as internal
products of two subgroups with trivial intersection. In [2], necessary and sufficient condi-
tions for a pair of groups to be matched by automorphisms were obtained, and the following
number-theoretical equivalent condition for a pair of finite cyclic groups to be matched by
automorphisms was derived.

Proposition 1 ([2, Prop. 2.6]). Let H and K be cyclic groups of orders n and m, respectively.
The pair (H,K) can be matched by automorphisms if and only if there exist two integers a ∈
[1, n) and b ∈ [1,m) such that:{

bn ≡ 1 (mod m) , am ≡ 1 (mod n) ,

ba−1 ≡ 1 (mod m) , ab−1 ≡ 1 (mod n) .
(1.1)

More precisely, each pair of automorphisms that match the two groups corresponds to a
pair (a, b) which is a solution to the system of congruences (1.1). Clearly, for any orders n and
m, a trivial solution a = b = 1 always exists. Furthermore, if one of them, say a = 1, then
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the only equation yet to be solved is bn ≡ 1 (mod m), and it is clear that a solution b > 1
exists if and only if gcd(n, ϕ(m)) > 1. So a natural thing to do is to focus on the solutions
where both a and b are greater than 1, which would be referred to as the non-trivial solutions
of congruence (1.1). The goal of this paper is to derive conditions such that congruence (1.1)
has a non-trivial solution, and some related problems.

First in Section 2, we consider a special case of congruence (1.1), where we have n = m and
a = b. If that case, we say that (H,K) may be symmetrically matched by automorphisms if
and only if {

an ≡ 1 (mod n) ,

aa−1 ≡ 1 (mod n) ,
(1.2)

has a solution a ∈ [1, n). Again a = 1 is considered as the trivial solution. We will give a
characterization for those numbers n that bear a non-trivial solution. Surprisingly those are
exactly the numbers such that the first line of congruence (1.2) has a non-trivial solution.
Therefore, it is worth considering the second line of congruence (1.2) independently, and in
Section 3 we shall see that this congruence has the curious property that the absence of nontrivial
solutions forces n to be a prime number.

Then in Section 4, we will derive a characterization for those pairs of numbers (n,m) for
which congruence (1.1) has a non-trivial solution, and finally, in Section 5, we discuss results
related to the existence of non-trivial solutions to the second line of congruence (1.1).

2 Cyclic groups symmetrically matched by automorphisms

In this section we study the system of equations (1.2). It turns out that the system of two
equations (1.2) has such a solution, if and only if the first equation

an ≡ 1 (mod n) (2.1)

has such a solution. Recall that a number n is called a cyclic number if any of the following
equivalent characterizations holds:

(1) Congruence (2.1) has no solution a ∈ (1, n).

(2) gcd(n, ϕ(n)) = 1.

(3) n is square-free, and for any prime factors p, q of n, we have p - q − 1.

Szele [6] proved that a number n is a cyclic number if and only if there is only one group
(which is cyclic) up to isomorphism with order n. Erdős [5] showed that the number of cyclic
numbers up to x is

(1 + o(1))
xe−γ

log log log x
.

We shall prove the following theorem.

Theorem 1. Congruence (1.2) has a solution a ∈ (1, n) if and only if n is not a cyclic number.
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Proof: (Necessity) By characterization (1), if congruence (1.2) has a solution a ∈ (1, n), then
n must not be a cyclic number.

(Sufficiency) We will use characterization (3) to construct a particular solution. First assume
that n is not square-free, say n = pkm where p is a prime, k ≥ 2 and (m, p) = 1. Then we take
a = pk−1m+ 1. It follows that 3 ≤ a ≤ n/2 + 1 ≤ n− 1 since n ≥ 4, so indeed a ∈ (1, n). Now

an = (pk−1m+ 1)n =

n∑
t=0

(
n

t

)
(pk−1m)t,

and since n | (pk−1m)t for t ≥ 2, it is clear that an ≡ n · pk−1m+ 1 ≡ 1 (mod n). Similarly,

aa−1 = (pk−1m+ 1)p
k−1m ≡ pk−1m · pk−1m+ 1 ≡ 1 (mod n) .

We remark that, by exactly the same argument, we can also show that a = ϕ(pk)m+ 1 is also
a solution in this case. This will be used later.

Next, assume that n is square-free, whose prime factors are p1, . . . , pt, with p2 | p1 − 1. By
the last assumption, there are elements (mod p1) such that the order of each of them modulo p1
is p2. Let b be such an element, and let a be the least positive solution of the following Chinese
Remainder equations {

a ≡ b (mod p1) ,

a ≡ 1 (mod pi) for all i 6= 1.

Clearly a > 1 since b 6≡ 1 (mod p1). It follows by our choice of a that aa−1 ≡ 1 (mod pi) and
an ≡ 1 (mod pi) are both trivial for i 6= 1. Also, since a ≡ 1 (mod p2) and p2 | n, it is also
clear that aa−1 ≡ 1 (mod p1) and an ≡ 1 (mod p1) by the choice of b.

Since the existence of a nontrivial solution of congruence (1.2) is essentially implied by
that of congruence (2.1), it make sense to examine the second equation of congruence (1.2)
independently. Our next section does exactly that.

3 Conditions for Primality

In this section we shall give some primality conditions obtained by studying the solutions of
the congruence

aa−1 ≡ 1 (mod n) . (3.1)

Again we consider only those a such that a ∈ [1, n), and a = 1 is considered as the trivial
solution. The outcome is summarized in the next theorem:

Theorem 2. Let n be a positive integer.

(i) If congruence (3.1) has no non-trivial solution, then n is a prime number, and either
n = 2 or n ≡ ±3 (mod 8);

(ii) If n is odd and a = (n+ 1)/2 is the only non-trivial solution to congruence (3.1), then n
is a prime number and n ≡ ±1 (mod 8);
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(iii) If a = n− 1 is the only non-trivial solution to congruence (3.1), then n is twice a prime
number.

Proof: (i) Suppose that n is composite, and we will show that congruence (3.1) has a non-trivial
solution. The construction will break into the following four cases.

1. If n > 2 is even, then a = n− 1 is a non-trivial solution.

2. If n is odd and not square-free, then the proof of Theorem 1 actually gives a non-trivial
solution a = ϕ(pk)m+ 1 that satisfies even more.

3. Suppose that n = pm, where p is an odd prime and m > 2 odd, square-free and not
divisible by p, and also p - m − 1. Then a = (p − 1)m + 1 will be a non-trivial solution,
since

aa−1 ≡
(
(1−m)p−1

)m ≡ 1 (mod p) ,

and a ≡ 1 (mod q) for any prime factor q of m.

4. Finally, if n does not fit into any of the previous cases, then we must be able to write
n = pql, where p, q are distinct odd primes that do not divide l, which is odd and square-
free, and also we have p | ql−1 and q | pl−1. Then a = (p−1)(q−1)l+ 1 is a non-trivial
solution: we have aa−1 ≡ 1 (mod l), and

a ≡ 1− ql + l ≡ l (mod p) ,

so aa−1 ≡ (lp−1)(q−1)l ≡ 1 (mod p), and similarly aa−1 ≡ 1 (mod q).

For the last statement, one observes that, if n is a prime number, then a = (n + 1)/2 is a
non-trivial solution if and only if n ≡ ±1 (mod 8), since by Euler’s criterion we have

aa−1 ≡
(
n+ 1

2

)n−1
2

=

〈
2−1

n

〉
=

〈
2

n

〉
(mod n) ,

where the angle brackets are Legendre symbols.
(ii) It now suffices to show that none of the solutions constructed in part (i) is equal to

(n + 1)/2. Certainly that is true if n is even, and in case (2), if ϕ(pk)m + 1 = (n + 1)/2
then n = 2pk−1m − 1, an obvious contradiction. In case (3), if (p − 1)m + 1 = (n + 1)/2
then 1 = (2 − p)m < 0, also a contradiction. Finally in case (4), if a = (n + 1)/2 then
1 = l(2p + 2q − 2 − pq), and it follows that l = 1 and p = q = 3, but that contradicts the
hypothesis that n is square-free.

(iii) Obviously, here n must be even. We will first prove that either n = 4, or n = 2m with
m an odd square-free number. To see this, first suppose that n = 2km where k ≥ 2 and m is
odd. Then as we have seen, a = 2k−1m+ 1 is a non-trivial solution, but according to condition
(iii) this must be equal to n − 1, so we get n = 4. Next assume that n = 2pkm where p is an
odd prime, k ≥ 2, and m is odd and not divisible by p. Again a = 2pk−1m+ 1 is a non-trivial
solution, and since this is equal to n− 1, we have n(p− 1) = 2, which is clearly not possible.

It then suffices to show that, if n = 2pm with p being a odd prime and m an odd square-free
number not divisible by p, then in fact m = 1. First, if p | m − 1, then a = (p − 1)m + 1
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is again a non-trivial solution as in the proof of case (3) above (clearly a ≡ 1 (mod 2)), and
a = n− 1 leads to n = 2p, so indeed m = 1. Next, if n = 2pql where p, q, l are the same as in
case (4) above, then again a = (p− 1)(q − 1)l+ 1 is a non-trivial solution, and a = n− 1 leads
to pql + ql + pl = l + 2, a contradiction.

We remark that each converse of the parts of Theorem 2 is not true. Counterexamples
are (n, a) = (13, 5), (17, 13), (26, 5 or 21), respectively. It seems to be very difficult to give
a complete characterization for those numbers n such that congruence (3.1) has only trivial
solution.

We are obviously interested in shortening the range in which the absence of solutions for
congruence (3.1) will still force n to be a prime number. In this respect we notice that the non-
trivial solutions constructed for congruence (3.1) in Part (i) are all greater than ϕ(n). Although
the absence of solutions for congruence (3.1) in the range ϕ(n) < x < n do characterize the
prime numbers, this is obviously an ineffective method, since in this case the value of ϕ(n) itself
would be the best certificate for the primality of n. However, one may easily replace ϕ(n) by a
simpler function of n, as seen in the following result.

Corollary 1. Let n be an odd positive integer. If there exists no integer a with 8n/15 < a < n
satisfying aa−1 ≡ 1 (mod n), then n is a prime number.

Proof: We check that all the solutions obtained in cases (1)–(4) in the proof of Theorem 2
above are bigger than 8n/15. Case (1) is trivial, and for both cases (2) and (3) we have

a

n
>
ϕ(pk)m

n
> 1− 1

p
≥ 2

3
>

8

15
,

while in the conditions of (4) we have

a

n
>

(
1− 1

p

)(
1− 1

q

)
≥ 2

3
· 4

5
=

8

15
.

Remark 1. For each c, 8/15 < c < 1, one may find a finite set of small primes Pc such that
an odd number is prime provided that no p ∈ Pc divides n and there exists no solution for the
congruence (7) in the range cn < a < n. For instance, Pc = {3} for any c between 8/15 and
24/35, and Pc = {3, 5} for 24/35 < c < 60/77.

In order to prove that an integer n is a prime number we may prove on one hand that n is
a prime power, and on the other hand that n is square-free, as in the following result.

Proposition 2. We have the following:

(i) An odd integer n > 2 is a prime power if and only if there exists no integer a with
2
√

2n < a < n satisfying aa−1 ≡ 1 (mod n) and aa+1 ≡ 1 (mod n);
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(ii) An integer n > 1 is square-free if and only if a2 is not divisible by n, for all integers a
with

√
n ≤ a < n.

Proof: (i) Since for a > 1 we have

gcd
(
aa−1 − 1, aa+1 − 1

)
= agcd(a−1,a+1) − 1,

an integer a > 1 will satisfy both congruences in the statement of our result if and only if a is
odd and a2 ≡ 1 (mod n).

Let n = pk, with k ≥ 1 and p an odd prime number, and let us assume there exists a with
2
√

2n < a < n satisfying both our congruences. Then a must be odd, say a = 2u + 1, and pk

divides u(u + 1). This implies that either u or u + 1 is divisible by pk, and in both cases we
have a ≥ 2n− 1 > n, a contradiction.

Conversely, let us assume that n = uv, with u, v odd relatively prime integers. There
exist integers s and t with 1 ≤ s < v, 1 ≤ t < u and such that su − tv = 1. Since u and v
are both odd integers, it follows that the products st and (v − s)(u − t) are both even. Let
a = 2su− 1 = 2tv+ 1. Then a ≤ 2u(v− 1)− 1 < 2n− 6 and a2 = (2su− 1)(2tv+ 1) = 4stn+ 1,
so a2 ≡ 1 (mod n). In case a > n, we may consider a1 = 2n − a, which satisfies a1 < n and
a21 ≡ 1 (mod n). We prove now that a > 2

√
2n and a1 > 2

√
2n.

Using the fact that a = 2su− 1 = 2tv + 1 we obtain a = su+ tv, which implies

a ≥ 2
√
stuv ≥ 2

√
2n,

since st is even. Similarly we obtain

a1 = 2n− su− tv = u(v − s) + v(u− t) ≥ 2
√
uv(v − s)(u− t) ≥ 2

√
2n,

since (v − s)(u− t) is even too.
(ii) Let us assume that n is square-free, say n = p1 · · · pk with p1, . . . , pk distinct prime

numbers. If there exists a ≥
√
n such that n divides a2, then a will be divisible by each of

the primes p1, . . . , pk, which implies that n divides a, and hence a ≥ n. Conversely, assume
there exists a prime p such that p2 divides n. We consider then a = n

p and we obviously have√
n ≤ a < n, while n divides a2, and this completes the proof.

We note here that a more general square-free criterion may be stated as follows.

Proposition 3. Let m ≥ 2 be a fixed, arbitrarily chosen integer. An integer n > 1 is square-free
if and only if n - am for each integer a with

√
n ≤ a < n.

This result was proved in [1] and was adapted to obtain square-free criteria for polynomials
that use no derivatives or discriminants.

4 Cyclic groups matched by automorphisms

Now we go back and consider the system of congruences (1.1). In this section, we will prove
the following:
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Theorem 3. Congruence (1.1) has a non-trivial solution if and only if either of the following
condition holds:

(1) gcd(n,m,ϕ(n), ϕ(m)) > 1.

(2) We can write n = n1n2 and m = m1m2, such that gcd(n1, n2) = 1, gcd(m1,m2) = 1,
gcd(n1, ϕ(m2)) > 1 and gcd(m1, ϕ(n2)) > 1.

We note that these two conditions are not exclusive. To demonstrate the claim, consider
n = 4,m = 6. One can verify that gcd(n,m,ϕ(n), ϕ(m)) = 2, and congruence (1.1) has a
non-trivial solution (a, b) = (3, 5). Or, if n = 14,m = 15, then we can choose (n1, n2,m1,m2) =
(2, 7, 3, 5), and condition (2) holds, so congruence (1.1) has non-trivial solutions (a, b) = (9, 4)
and (11, 4). On the other hand, if gcd(n, ϕ(m)) = 1 or gcd(m,ϕ(n)) = 1, then clearly not even
the first line of congruence (1.1) has a non-trivial solution. For a not-so-trivial example where
both conditions in theorem fail, consider n = 3,m = 14. Then condition (1) fails, and there is
no way to come up with the decomposition in condition (2), so in this case congruence (1.1)
has only trivial solutions.

In the following, we are going to introduce the parameters pn, pm, qn and qm. We should
clarify that the subscripts of these are all symbolic, that is, pn and pm are considered as different
parameters even if n = m. The subscript simply indicates that, for example, pn is a prime factor
of n, and so on. In the rest of the paper, the notation ordp(a) means the order of a modulo p.

Proof: [Proof of Theorem 3] First we observe that the stated condition is equivalent to the
following: there are four primes (not necessarily distinct) pn, pm, qn, qm such that{

pn | gcd(n, ϕ(qMm )), qMm ‖ m,
pm | gcd(m,ϕ(qNn )), qNn ‖ n,

(4.1)

and satisfy either of the following conditions:

(i) pn 6= qn and pm 6= qm.

(ii) pn = pm.

It is easy to see that condition (i) is equivalent to condition (2), while condition (ii) is equivalent
to condition (1). We will prove the theorem under the formulations above.

(Sufficiency) First suppose that condition (i) holds. Let a be the least positive integer such
that {

a ≡ 1 (mod qν) for all qν ‖ n such that q 6= qn,

ordqNn (a) = pm.
(4.2)

The existence of such a is guaranteed by the Chinese Remainder Theorem and the fact that
pm | ϕ(qNn ), as in the proof of Theorem 1, and we have a ∈ (1, n). Construct b in the symmetric
way.

Now, since pn 6= qn, by the first line of equation (4.2) we clearly have

a ≡ 1 (mod pn) , (4.3)
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so since ordqMm (b) = pn, we have ba−1 ≡ 1
(
mod qMm

)
, and since pn | n, we also have bn ≡

1
(
mod qMm

)
. It is clear that by construction we have ba−1 ≡ bn ≡ 1 (mod qν) for all qν ‖ m

such that q 6= qm, so the left half of congruence (1.1) holds. By the same reasoning the right
half also holds.

Next, suppose that condition (ii) holds, and, without loss of generality, suppose that condi-
tion (i) does not hold, say for example pm = pn = qn (and let us simply denote all these by just
p). Then since p | ϕ(pN ), we must have N ≥ 2. Write n = pNn′, and let a = pN−1n′+ 1. Then
equation (4.3) is still true, and since ap = (pN−1n′ + 1)p ≡ 1 (mod n) and a 6≡ 1

(
mod pN

)
,

equation (4.2) is also true.
Now, if we also have pm = qm, then we construct b in the symmetric way by writing

m = pMm′ and let b = pM−1m′ + 1, and if pm 6= qm, then b is constructed the same way as in
the case where condition (i) holds. It follows that in either case b also satisfies the analogue of
equation (4.2) and equation (4.3). So by the same argument, congruence (1.1) holds.

(Necessity) Suppose that (a, b) is a non-trivial solution. Since b 6≡ 1 (mod m), there must
be some qMm ‖ m such that b 6≡ 1

(
mod qMm

)
. Then we must have ordqMm (n) dividing all n, a− 1

and ϕ(qMm ) (the first two follow from congruence (1.1), and the last one is just the property of
the order), so ordqMm (b) has a prime factor pn that divides gcd(n, a − 1, ϕ(qMm )). By the same

method, we can choose qNn and pm. Certainly, this procedure does not necessarily give a unique
choice of (pn, pm, qn, qm), but we claim that, as long as we choose these four primes by the
said procedure, our choice will always satisfy either condition (i) or (ii). To prove the claim, it
suffices to show that, if our choice leads to pn = qn, then we must have pn = pm.

So, suppose that pn = qn. Then since a ≡ 1 (mod pn) (by construction) and a 6≡
1
(
mod pNn

)
(by pn = qn), we must have N ≥ 2, and also a is of the form kpn + 1, where

1 ≤ k ≤ pN−1n − 1. But then observe that

ap
N−1
n = (kpn + 1)p

N−1
n =

pN−1
n∑
t=0

(
pN−1n

t

)
(kpn)t,

where all the summands (besides the one corresponding to t = 0) contain pn to the power of

t+ (N − 1)−
⌊
t

pn

⌋
−
⌊
t

p2n

⌋
− · · · > t+ (N − 1)− t

pn − 1
≥ N − 1,

that is, they all contain pNn . Therefore, ap
N−1
n ≡ 1

(
mod pNn

)
, which implies that ordpNn (a)

must be a power of pn, so by construction, we must have pm = pn.

A useful special case of the theorem is the following.

Corollary 2. If gcd(n,m) is not a cyclic number, then congruence (1.1) has a non-trivial
solution.

Proof: If gcd(n,m) is not square-free, say p2 | gcd(n,m) for some prime p, then we may simply
choose pn = pm = qn = qm = p and condition (ii) is satisfied. If gcd(n,m) is square-free but
has prime factors p, q such that p | q− 1, then set pn = pm = p and qn = qm = q, and condition
(ii) is again satisfied.
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5 A special set of pairs of prime numbers

It follows from Theorem 3 that, in the case when both n and m are prime numbers, con-
gruence (1.1) has no non-trivial solutions. But what if we consider only the second line of
congruence (1.1)?

If the following, let us denote by A the set of pairs (p, q) of distinct prime numbers for which
the pair of congruences

ab−1 ≡ 1 (mod p) and ba−1 ≡ 1 (mod q) (5.1)

does not have any solutions in integer numbers satisfying a ∈ (1, p) and b ∈ (1, q). A few
questions naturally arise from this definition. Is the set A infinite? Are there infinitely many
pairs of distinct prime numbers not in A? If we fix one of the two primes, q say, are there
infinitely many prime numbers p for which the pair (p, q) is in A? Are there infinitely many
prime numbers p for which the pair (p, q) is not in A?

Our goal in this section is to prove the following two results.

Theorem 4. For any odd prime number q ≡ 2 (mod 3), a positive proportion of prime numbers
p are such that the pair (p, q) is in A. More precisely,

lim inf
x→∞

(log x)#{p prime : p ≤ x, (p, q) ∈ A}
x

≥ cq, (5.2)

where

cq =
1

2

∏
p′ prime

q≡1 (mod p′)

p′ − 3

p′ − 1

∏
p′ odd prime

q 6≡1 (mod p′)
p′≤q−2

p′ − 2

p′ − 1
.

Theorem 5. Suppose that q is an odd prime such that q− 1 = km with k = 2l and m odd, and
m = qδ for some δ > 0. If q �δ 1, then there is a positive proportion of prime numbers p such
that the pair (p, q) is not in A.

As a side remark, let us note that, as q →∞,

cq �
1

log log q
.

We start with the following lemma.

Lemma 1. Let q be an odd prime number. If p is a prime number satisfying the following
conditions:

(i) p ≡ 3 (mod 4),

(ii) p 6≡ 1 (mod p′) for any odd prime p′ such that p′ ≤ q − 2, and

(iii) p 6≡ 2 (mod p′) for any odd prime divisor p′ of q − 1,

then the pair (p, q) ∈ A.
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Proof: Indeed, if there exist integers a ∈ (1, p) and b ∈ (1, q) such that congruence (5.1) holds,
then ordp(a) | gcd(b − 1, p − 1). For any odd prime divisor p′ of b − 1 (if there is one), since
p′ ≤ b−1 ≤ q−2, by (ii) we know that p 6≡ 1 (mod p′), and thus we deduce that gcd(p−1, b−1)
is a power of 2, and by (i), it follows that gcd(p − 1, b − 1) = 1 or 2. Consequently, ordp(a) is
either 1 or 2. The first case is impossible since a 6= 1. The second case forces a = p− 1. Then
the congruence ba−1 ≡ 1 (mod q) reduces to bp−2 ≡ 1 (mod q). Hence ordq(b) | gcd(p−2, q−1).
Note that p − 2 is odd, so gcd(p − 2, q − 1) is odd. Also, for any prime divisor p′ of q − 1 we
know by (iii) that p′ is not a divisor of p− 2. We conclude that ordq(b) = gcd(p− 2, q− 1) = 1,
which is a contradiction since b 6= 1.

Proof: [Proof of Theorem 4] Let us fix an odd prime number q, with q ≡ 2 (mod 3), and let
mq be defined by

mq = 4
∏

p′ odd prime
p′<q

p′.

There are ϕ(mq) residue classes modulo mq relatively prime to mq. For each such residue class,
b say, by the Prime Number Theorem for Arithmetic Progressions (see [4, Chapter 22]), we
know that

#{p prime : p ≤ x, p ≡ b (mod mq)} ∼
1

ϕ(mq)

x

log x
.

Here
ϕ(mq) = 2

∏
p′ odd prime

p′<q

(p′ − 1).

The estimate (5.2) follows by counting the residue classes b modulo mq which satisfy Lemma
1. There is exactly one residue class modulo 4 as in Lemma 1, namely 3 (mod 4). Next, for
each odd prime divisor p′ of q− 1, there are p′− 3 admissible residue classes modulo p′, namely
those which are not congruent to 0, 1, or 2 modulo p′. Lastly, for any odd prime number p′

with p′ ≤ q− 2 for which p′ does not divide q− 1, there are p′− 2 admissible classes modulo p′,
namely those which are not congruent to 0 or 1 modulo p′. By combining all the above with
the Chinese Remainder Theorem we see that the number of residue classes b modulo mq which
are relatively prime to mq and satisfy the conditions from Lemma 1, call it Mq, is given by

Mq =
∏

p′ odd prime

q≡1 (mod p′)

(p′ − 3)
∏

p′ odd prime

q 6=1 (mod p′)
p′≤q−2

(p′ − 2).

Since each prime number p in any of these Mq arithmetic progressions modulo mq is such that
the pair (p, q) is good, it follows that

lim inf
x→∞

(log x)#{p prime : p ≤ x, (p, q) ∈ A}
x

≥ Mq

ϕ(mq)
= cq.
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To prove Theorem 5, first we make the following deduction.

Lemma 2. Suppose that q is an odd prime. If there exists an odd number b ∈ (1, q) such that
ordq(b) is odd, then there is a positive proportion of prime numbers p such that the pair (p, q)
is not in A.

Proof: We observe that, under the hypothesis, any prime number p with p ≡ 2 (mod ordq(b))
will guarantee that (p, q) 6∈ A, and by the Prime Number Theorem for Arithmetic Progressions,
there is a positive portion of such primes since ordq(b) is odd. Indeed, for those p, we can simply
choose a = p − 1. Since b is odd, we have ab−1 ≡ 1 (mod p), and since p ≡ 2 (mod ordq(b)),
we have ba−1 = bp−2 ≡ 1 (mod q).

To complete the proof of Theorem 5, we would need a result by Bourgain [3] which states
the following.

Theorem 6 ([3, Corollary of Theorem B]). Let H be a subgroup of F∗q where q is a prime, and

|H| = qδ. Then

max
(t,q)=1

∣∣∣∣∣∑
x∈H

eq(tx)

∣∣∣∣∣ < q−δ
′
|H|,

where eq(x) = exp(2πix/q), and δ′ > exp(−C/δ) for some absolute constant C > 1.

We are now ready to prove Theorem 5.

Proof: [Proof of Theorem 5] By Lemma 2, we need to find an odd number b ∈ (1, q) such that
ordq(b) is odd. Consider the set H = {xk : x ∈ F∗q}, then the order of each element in H divides
m, and thus all the elements in H have odd order. It then suffices to show that there is at least
one element in H other than 1 such that its minimal positive representative is odd. Now H is
a subgroup of F∗q of order m, so by Theorem 6, for any t relatively prime to q we have

∣∣∣∣∣∑
x∈H

eq(tx)

∣∣∣∣∣ < q−δ
′
|H| = o(|H|), (5.3)

and we will use this to show that if q �δ 1 then the desired element must exist.

In the following we will identify the elements in H with their minimal positive representa-
tives. Suppose that the only odd element in H is 1, say H = {1, 2h1, 2h2, . . . , 2h|H|−1} with

hi ∈ [1, q/2). Let A = {i : hi ∈ ( 1
12q,

5
12q)} and B = {i : hi 6∈ A}. Denote by <(z) and =(z) the
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real and imaginary parts of z, respectively. Then take t = (q + 1)/2, and then we have

=

(∑
x∈H

eq(tx)

)
= =

(∑
i

eq(hi) + eq

(
q + 1

2

))

=
∑
i

sin

(
2πhi
q

)
+ sin

(
π(q + 1)

q

)
>
∑
i∈A

sin

(
2πhi
q

)
+ sin

(
π(q + 1)

q

)
≥ 1

2
|A|+ sin

(
π(q + 1)

q

)
,

so by inequality (5.3) we must have |A| = o(|H|) as q → ∞. On the other hand, as we take
t = 1, we have

<

(∑
x∈H

eq(tx)

)
= <

(∑
i

eq(2hi) + eq(2)

)

=
∑
i

cos

(
2πhi
q

)
+ cos

(
4π

q

)
=
∑
i∈B

cos

(
2πhi
q

)
+
∑
i∈A

cos

(
2πhi
q

)
+ cos

(
4π

q

)
≥ 1

2
|B| − |A|+ cos

(
4π

q

)
� |H| for |H| large,

but this is not possible for large q by inequality (5.3). This completes the proof.
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