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Abstract

We study the irreducibility of general bivariate polynomials over algebraically closed
fields of characteristic zero. We obtain factorization conditions in terms of the degree
index and we deduce the irreducibility for classes of polynomials that include that of
quasi–generalized difference polynomials.
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Introduction

There exist many consistent results on the irreducibility of bivariate polynomials. Many of
them study the irreducibility of difference polynomials f(X) − g(Y ) and of their generaliza-
tions. One of the largest families of such polynomials is the class of quasi–generalized difference
polynomials. We remind that, if k is a field, F (X,Y ) ∈ k[X,Y ] is called a quasi–generalized
difference polynomial if

F (X,Y ) = cY d +

d∑
i=1

Pi(X)Y d−i ,

with c ∈ k \ {0}, d ∈ N∗, Pi(X) ∈ k[X] .
If

deg(Pi)

i
<

deg(Pd)

d
, 1 ≤ i ≤ d− 1 ,

then F is called a generalized difference polynomial.
Various authors obtained irreducibility conditions for such polynomials, for example Abhyankar–

Rubel [1], Angermüller [2], Ayad [3], Bhatia–Khanduja [4], Bishnoi–Khanduja–Sudesh [5],
Cohen–Movahhedi–Salinier [6], Panaitopol–Ştefănescu [8], Rubel–Schinzel–Tverberg [9].
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In this paper we shall study the irreducibility for some classes of bivariate polynomials of
the form

F (X,Y ) =

d∑
i=0

Pi(X)Y d−i ∈ k[X,Y ] ,

where P0(X) can be a non–constant polynomial and k is an algebraically closed field of char-
acteristic zero. This will be done using properties of the degree index associated to a general
bivariate polynomial and factorization properties derived from them.

Irreducibility conditions

To the polynomial

F (X,Y ) =

d∑
i=0

Pi(X)Y d−i ∈ k[X,Y ]

we associate the degree-index

pY (F ) = max
1≤i≤n

deg(Pi)− deg(P0)

i
.

We have

Proposition 1. If F = F1F2 is a nontrivial factorization of the polynomial F ∈ k[X,Y ] we
have

pY (F ) = max{pY (F1), pY (F2)} .

Proof: We suppose that

F (X,Y ) = P0(X)Y d + P1(X)Y d−1 + · · ·+ Pd−1Y + Pd(X)

and we consider the formal power series G(X,Y ) = Y dF (X−1, Y −1) ∈ k((X))[Y ] . We use the
representation

G(X,Y ) =

d∑
i=0

Hi(X)Y i ,

where Hi(X) = Pd−i(X
−1) ∈ k((X)) . We consider ri = ordHi(X) and

e(G) = max
1≤i≤d

r0 − ri
i

.

We put d1 = deg(F1), d2 = deg(F2) and we consider

G1(X,Y ) = Y d1F1(X−1, Y −1), and

G2(X,Y ) = Y d2F2(X−1, Y −1).

We have G = G1G2 in k((X))[Y ] and by results of G. Dumas [7] on the Newton polygon of a
product of two polynomials we have

e(G) = max{e(G1), e(G2)} .
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On the other hand ri = ordHi(X) = ordPi(X
−1) = −deg(Pi), so

r0 − ri
i

=
deg(Pi)− deg(P0)

i
,

which gives the result.

In the case P0 is a nonzero constant it was proved that the polynomial F (X,Y ) is irreducible
provided the degree index satisfies suitable conditions (see for example [2] and [8]).

Proposition 2. If F = F1F2 is a factorization of the polynomial
F (X,Y ) =

∑d
i=0 Pi(X)Y d−i ∈ k[X,Y ] with F1, F2 ∈ k[X,Y ] \ k and

pY (F ) =
deg(Pd)− deg(P0)

d
,

then pY (F ) = pY (F1) = pY (F2).

Proof: We consider the polynomial G(X,Y ) ∈ k[X,Y ] defined by

G(X,Y ) = P0(X)d−1F

(
X,

Y

P0(X)

)
= Y d +

d∑
i=1

P0(X)i−1Pi(X)Y d−i

Next, we consider the factorization F = F1F2 and we assume that

F1(X,Y ) = Q0(X)Y d1 +

d1∑
i=1

Qi(X)Y d1−i,

F2(X,Y ) = R0(X)Y d2 +

d2∑
i=1

Ri(X)Y d2−i.

We have P0 = Q0R0 and we put

G1(X,Y ) = R0(X)P0(X)d1−1F1

(
X,

Y

P0(X)

)
,

G2(X,Y ) = Q0(X)P0(X)d2−1F2

(
X,

Y

P0(X)

)
.

We observe that G, G1 and G2 are monic with respect to Y , and that

G(X,Y ) = G1(X,Y )G2(X,Y ).

For the computation of the degree index of the polynomial G we note that

deg(P i−1
0 Pi)

i
=

(i− 1) deg(P0) + deg(Pi)

i
= deg(P0) +

deg(Pi)− deg(P0)

i
,
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which yields

pY (G) = deg(P0) + max
1≤i≤d

deg(Pi)− deg(P0)

i
= deg(P0) + pY (F ).

On the other hand,

G1(X,Y ) = Y d1 +

d1∑
i=1

R0P
i−1
0 QiY

d1−i,

so for the computation of the degree index of G1 we notice that

deg(R0P
i−1
0 Qi)

i
=

deg(R0) + (i− 1) deg(P0) + deg(Qi)

i
,

= deg(P0) +
deg(Qi)− deg(Q0)

i
.

Similarly, we have

G2(X,Y ) = Y d2 +

d2∑
i=1

Q0P
i−1
0 RiY

d2−i,

and we obtain

deg(Q0P
i−1
0 Ri)

i
=

deg(Q0) + (i− 1) deg(P0) + deg(Ri)

i
,

= deg(P0) +
deg(Ri)− deg(R0)

i
.

Therefore

pY (G1) = deg(P0) + max
1≤i≤d1

deg(Qi)− deg(Q0)

i
= deg(P0) + pY (F1),

pY (G2) = deg(P0) + max
1≤i≤d2

deg(Ri)− deg(R0)

i
= deg(P0) + pY (F2).

Let us put
m = (d− 1) deg(P0) + deg(Pd),
m1 = deg(R0) + (d1 − 1) deg(P0) + deg(Qd1

),
m2 = deg(Q0) + (d2 − 1) deg(P0) + deg(Rd2

).

We obviously have m = m1 + m2 and d = d1 + d2, while from Theorem 1 in [8] we have
pY (G) = max{pY (G1), pY (G2)}. Therefore

m1

d1
≤ m

d
=

m1 + m2

d1 + d2
,

from which we deduce that m1d2 ≤ m2d1. Similarly, we have

m2

d2
≤ m

d
=

m1 + m2

d1 + d2
,
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from which we deduce now that m1d2 ≥ m2d1. This yields

m1

d1
=

m2

d2
=

m1 + m2

d1 + d2
=

m

d
,

which shows that pY (G) = pY (G1) = pY (G2). All that remains now is to subtract deg(P0) in
these equalities, which leads us to pY (F ) = pY (F1) = pY (F2), and completes the proof.

Remark: For the particular case when P0 is a non-zero constant, our Proposition 2 gives
Proposition 2 of Panaitopol-Ştefănescu in [8].

Corollary 3. Let F (X,Y ) =
∑d

i=0 Pi(X)Y d−i ∈ k[X,Y ], with P0Pd 6= 0, and d ≥ 1. If

pY (F ) = deg(Pd)−deg(P0)
d and gcd(deg(Pd)− deg(P0), d) = 1, then F is irreducible in k[X,Y ].

Proof: We may obviously assume that F is not divisible by a polynomial f ∈ k[X]. Let us
assume now that F = F1F2 is a non-trivial factorization of F in k[X,Y ], d1 = degY (F1),
d2 = degY (F2), and that F1 and F2 are represented as in the proof of Proposition 2. We have

pY (F1) = pY (F2) = pY (F ) =
deg(Pd)− deg(P0)

d
.

If follows that there exists an index i ∈ {1, . . . , d1} such that

pY (F1) =
deg(Qi)− deg(Q0)

i
=

deg(Pd)− deg(P0)

d
= pY (F ).

We put now a = deg(Qi)− deg(Q0) and m = deg(Pd)− deg(P0), and we have

a

i
=

m

d
with gcd(m, d) = 1.

Therefore ad = mi, and since m and d are coprime integers, there exists a positive integer u
such that i = ud, so in particular we must have i ≥ d. On the other hand we obviously have
i ≤ d1 < d, a contradiction. This shows that F must be irreducible in k[X,Y ], and completes
the proof.

Corollary 4 (Panaitopol–Ştefănescu, 1990). Let

F (X,Y ) = cY d +

d∑
i=1

Pi(X)Y d−i ,

where c ∈ k \ {0}, d ∈ N∗, and Pi(X) ∈ k[X] . If PY (F ) = deg(Pd)/d and gcd (deg(Pd), d) = 1 ,
the polynomial F is irreducible in k[X,Y ] .

Remark: Another extension of Corollary 4 was obtained by Bhatia–Khanduja [4].
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We consider now bivariate polynomials F in k[X,Y ] for which the degree index is not equal
to (deg(Pd)− deg(P0))/d .

Theorem 5. Let

F (X,Y ) =

d∑
i=0

Pi(X)Y n−i ∈ k[X,Y ], P0Pd 6= 0

and assume that there exists an index s ∈ {1, 2, ..., d} such that the following conditions are
fulfilled:

(a)
deg(Pi)− deg(P0)

i
≤ deg(Ps)− deg(P0)

s
for all i ∈ {1, 2, ..., d};

(b) gcd(deg(Ps)− deg(P0), s) = 1;

(c)
deg(Ps)− deg(P0)

s
− deg(Pd)− deg(P0)

d
=

1

sd
.

Then F (X,Y ) is either irreducible in k[X,Y ], or has a factor whose degree with respect to Y
is a multiple of s.

Proof: Let us suppose that there exists a non-trivial factorization F = F1F2 of the polynomial
F in k[X,Y ]. Let us put now m = deg(Pd)− deg(P0), a = deg(Ps)− deg(P0) and observe that
by hypothesis (a) we have pY (F ) = a/s, while by hypothesis (c) we have

a

s
− m

d
=

1

sd
.

Therefore ad− sm = 1. We suppose that

F1(X,Y ) = Q0(X)Y d1 +

d1∑
i=1

Qi(X)Y d1−i,

F2(X,Y ) = R0(X)Y d2 +

d2∑
i=1

Ri(X)Y d2−i.

and we also put m1 = deg(Qd1
)− deg(Q0) and m2 = deg(Rd2

)− deg(R0).
By Proposition 1 we have

pY (F ) = max{pY (F1), pY (F2)},

hence we must have the inequalities

m1

d1
≤ a

s
,

m2

d2
≤ a

s
.

We deduce that

m2

d2
=

(deg(Pd)− deg(P0))− (deg(Qd1
)− deg(Q0))

d− d1
=

m−m1

d− d1
≤ a

s
,
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so sm− sm1 ≤ ad− ad1, and it follows that

0 ≤ ad1 − sm1 ≤ ad− sm = 1.

Therefore ad1 − sm1 ∈ {0, 1}.
Let us first suppose that ad1 − sm1 = 0. In this case, since a and s are coprime integers, s

must divide d1 = degY (F1).
In the remaining case we have ad1 − sm1 = 1, which may be also written as a(d − d2) −

s(m−m2) = 1, or equivalently that (ad− sm) + (sm2 − ad2) = 1. Now, since ad− sm = 1, we
deduce that sm2 = ad2, and since a and s are coprime integers, s must divide d2 = degY (F2).

We therefore conclude that either F is irreducible, or has a factor whose degree with respect
to Y must be a multiple of s. This completes the proof of the theorem.

Examples

1. Let F (X,Y ) = p(X)Y d + q(x)Y + r(X) ∈ k[X,Y ] where p 6= 0 , d > 1 . We suppose that
deg(p) = 1 and deg(q) = deg(r) = 2 . We have

deg(q)− deg(p)

d− 1
=

1

d− 1
,

deg(r)− deg(p)

d
=

1

d
,

deg(q)− deg(p)

d− 1
− deg(r)− deg(p)

d
=

1

(d− 1)d
.

Since gcd(1, d− 1) = 1 we can apply Theorem 5 for s = d− 1 . Therefore either F is irreducible
in k[X,Y ], or has a divisor whose degree with respect to Y is a multiple of d−1. Such a divisor
must obviously have degree equal to d−1, so if F is reducible, then it must have a linear factor
with respect to Y .

Therefore either F is irreducible, or has a divisor of the form s(X)Y −t(X) with s, t ∈ k[X] ,
s 6= 0 .

2. Let F (X,Y ) = P (X)Y d+Q(X)Y 3+R(X)Y +S(X) ∈ k[X,Y ] , where P (X) 6= 0 , d > 3 .
If

deg(P ) = m ≥ 1, deg(Q) = n ≤ m and deg(R) = deg(S) = m + 1

the polynomial F is either irreducible in k[X,Y ], or has a divisor of degree 1 with respect to
Y .

Proof: Here we will apply Theorem 5 too. We first observe that

deg(Q)− deg(P )

d− 3
=

n−m

d− 3
≤ 0 <

1

d− 1
=

m + 1−m

d− 1
=

deg(R)− deg(P )

d− 1
.

On the other hand

deg(R)− deg(P )

d− 1
− deg(S)− deg(P )

d
=

1

d− 1
− 1

d
=

1

(d− 1)d
.
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Therefore pY (F ) =
1

d− 1
, and the hypotheses of Theorem 5 are satisfied.
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